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Abstract
A simple dynamical cascade model for the evolution of free energy is considered in the context
of gyrokinetic formalism. It is noted that the dynamics of free energy, that characterize plasma
micro-turbulence in magnetic fusion devices, exhibit a predator–prey character. Various key
features of predator–prey dynamics such as the time delay between turbulence and large-scale
flow structures, or the intermittency of the dynamics are identified in the quasi-steady-state
phase of the nonlinear gyrokinetic simulations. A novel prediction on the ratio of turbulence
amplitudes in different parts of the wavenumber domain that follows from this simple
predator–prey model is compared to a set of nonlinear simulation results and is observed to
hold quite well in a large range of physical parameters. Detailed validation of the
predator–prey hypothesis using nonlinear gyrokinetics provides a very important input for the
effort to apprehend plasma micro-turbulence, since the predator–prey idea can be used as a
very effective intuitive tool for understanding and designing efficient transport models.

Keywords: plasma turbulence, gyrokinetics, tokamaks, plasma simulation, predator–prey
dynamics
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1. Introduction

Predator–prey dynamics constitute a common paradigm in
natural sciences that provides a powerful perspective for the
interpretation of various complex phenomena [1]. In the
context of fusion plasmas, the paradigm offers an important
alternative insight into the dynamical behavior of micro-
turbulence, believed to be responsible for the anomalous
transport, and the self-regulating sheared flows that are driven
by this micro-turbulence, and which control the anomalous
transport [2]. The evolution of turbulence and zonal flows
(ZFs) that it drives may eventually explain the dynamical
coupling leading to the low to high confinement (L–H)
transition [2, 3] in magnetic fusion devices. Interesting quasi-
periodic activity, which may be linked to the predator–prey
oscillations between turbulence and large-scale flows in the
form of mean or ZFs or geodesic acoustic modes, (GAMs) has

been observed recently in a number of machines prior to and
during the L–H transition [4–6].

The predator–prey dynamics also play an important role
in the nonlinear cascade process via the refraction of the
turbulence in the low-k (k being the wavenumber) energy
containing scales to high-k dissipation scales by the self-
generated ZFs [7–9]. Interplay between ZFs and plasma
micro-turbulence is well known and has been widely observed
in various gyrokinetic simulations [10–13]. This mediating
role of ZFs for the cascade of free energy has also recently
been observed in gyrokinetic simulations [14].

The predator–prey dynamics in gyrokinetic turbulence is
characterized by analyzing gyrokinetic nonlinear simulations
performed with the GENE code. Time traces of zonal and
nonzonal free energies are analyzed in terms of their cross-
correlation, showing a clear time delay between the zonal free
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energy and the rest of the turbulence. This first clue of a
predator–prey dynamic is complemented by the kurtosis of
the free energy spectrum along binormal wavevector. The
latter clearly suggests a two domain scale separation along
the binormal wavevector, with an important intermittency at
intermediate, energy containing scales, while the smallest
dissipation scales are found very close to Gaussian distribution
in time. The results allow to design a three domain predator–
prey model that is tested successfully with respect to theoretical
predictions.

The gyrokinetic description is presented in section 2,
where the free energy, which is a quadratically conserved
quantity in gyrokinetic framework, is introduced. Predator–
prey oscillations are evidenced during gyrokinetic simulations
of ion temperature gradient (ITG) driven turbulence in
section 3, and the statistics of each Fourier mode along
binormal direction are analysed. A comparison between a
simple three population dynamical model [9] and various
gyrokinetic simulations is given in section 4.

2. Gyrokinetic description

Plasma turbulence in a strong magnetic field can be described
by the gyrokinetic equation [19–30], which by filtering the
rapid gyromotion, reduces the Vlasov equation to an equation
governing the evolution of the five-dimensional guiding-center
distribution function f = f (R, v‖, µ, t), where R is the
guiding-center coordinate, v‖ is the velocity coordinate along
the magnetic field B0 and µ = miv

2
⊥/(2B0) is the magnetic

moment, which is an adiabatic invariant. As will be presented
in the following section, this invariance allows the reduction
of the gyrokinetic Vlasov equation to a four-dimensional
advection in phase space, while the magnetic moment µ can
be simply considered as a label. This consideration holds
for the collisionless gyrokinetic system of equations, while
adding the effect of collisions can complicate the problem.
Since the pioneering works on the gyrokinetic formulation
[19–27] and the first attempts of numerical resolution of the
gyrokinetic equations [10, 23, 31], gyrokinetics solvers have
become important tools for a fundamental understanding of
turbulence in magnetized plasmas [33]. Exhaustive modern
reviews on the gyrokinetic equation and the associated plasma
micro-turbulence are available for the reader interested in
delving further into this subject [32–34].

2.1. Gyrokinetic equations

The total ion guiding-center distribution function f (R,
v‖, µ, t) is split between fluctuations and a Maxwellian
equilibrium f = F0 + δf with (F0 = e−v2

‖−µB0 ). In the local
version of the GENE code employed for this study [35], a field
aligned coordinate system is used (R → x, y, z with z the field
aligned, x the radial and y the binormal coordinates), and the
fields are Fourier transformed in the plane perpendicular to the
background magnetic field (x, y → kx, ky). The gyrokinetic
system of equations governing the dynamics of ion guiding-
center distribution function fk reads

∂tδfk +
(
v‖∂z + iωB0

)
δhk + a‖∂v‖δhk = iω∗Ti

F0i (J0�)k

+
∑

p+q=−k

(
b̂ × p.q

)
(J0�)�q δh�

p − D[δfk], (1)

where the notation δhk = δfk + qiF0(J0�)k/T0i has been
used for brevity. Ions are characterized by an equilibrium
density ni0 and a temperature Ti0. vTi

= √
2Ti0/mi , �ci =

qiB0/mi and ρi = vTi
/�ci are ion thermal velocity, cyclotron

frequency and Larmor radius respectively. Ion temperature and
density equilibrium profiles are contained in the density and
temperature gradient lengths L−1

n = −n−1
i0 dni0/dr and L−1

Ti
=

−T −1
i0 dTi0/dr , that appear in the diamagnetic frequency

ω∗T i = ω∗i (1 + ηi[v2
‖ + µB0 − 3/2]/v2

Ti
), via ηi = Ln/LTi

and ω∗i = −ρiky/Ln. The magnetic curvature and gradient
are taken into account in the associated frequency: ωB0 =
ρivTi

(v2
‖ + µB0/2)(Kxkx + Kyky) that contains the geometric

prefactors Kx and Ky related to magnetic inhomogeneity.
Details about the magnetic geometry can be found in [36].
Concentric circular flux surfaces are used in the present study.
The dynamics parallel to the background magnetic field B0

appear in the parallel acceleration: a‖ = −vTi
µ∂zB0/2. As

usual in gyrokinetics, the link between particles and guiding-
center coordinates is provided by the gyroaverage operator,
noted J0 since it simplifies to the Bessel function in k

space: J0 = J0(k⊥v⊥/�ci), where k⊥(z) is the perpendicular
wavenumber, and v2

⊥(z, µ) = µB0(z)/(2Ti0). The nonlinear
term associated to advection due to the E × B velocity read

N [δfk, (J0φ)k] =
∑

p+q=−k

(
b̂ × p.q

)
(J0φ)�q δh�

p.

Dissipative processes are modeled in this work by
hyperdiffusion operators, and the dissipation term takes the
general form:

D[δfk] = c⊥k2n
⊥ δhk + cz∂

4
z δhk + cv‖∂

4
v‖δhk,

dependence of the micro-turbulence characteristics when
varying cz and cv‖ has been intensively studied in [37], and
the standard values of the amplitudes for studying ion micro-
turbulence with adiabatic electrons are cz = 1.0, cv‖ = 1.0 and
c⊥ = 0.0. The c⊥ value can be adjusted in order to minimize
the perpendicular grid (kx, ky), corresponding to gyrokinetic
large eddy simulation (GyroLES) methods [18]. Two values of
n are considered in the following, n = 1 leading to a diffusion
operator, while n = 2 corresponds to a hyperdiffusion one.

The coupling between the ion guiding-center distribution
function δfk and the electrostatic potential �k is ensured by
the quasi-neutrality equation:

πB0

∫
dµdv‖ (J0δf )k

= �̃k + Zi

Te0

Ti0

[
1 − �0

(
v2

Ti
k2
⊥

�2
ci

)]
�k, (2)

where electrons have been assumed adiabatic with temperature
Te0 (with Ti0 = Te0 in the following). Here, �̃k = �k − 〈�k〉,
where 〈�k〉 is the flux surface averaged electrostatic potential.
�0(v

2
Ti
k2
⊥/�2

ci) is the modified Bessel function.
Simulations that we present in the following are performed

using the GENE code [35, 38]. Despite the fact that GENE is
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also adapted for electromagnetic and global problems [39],
the direct numerical simulations (DNSs) presented here are
restricted to local electrostatic ITG driven turbulence with
adiabatic electrons.

2.2. Free energy: a gyrokinetic conserved quantity

The gyrokinetic equation, as written in (1), has a number of
nonlinearly conserved quantities, one of which is the so-called
free energy, whose budget can be written as:

∂tE = G − D, (3)

where:

E = ni0

∫
d�k

δh�
k

2F0
δfk,

G = ni0

∫
d�k

δh�
k

F0
iω∗T iF0i (J0�)k ,

D = ni0

∫
d�k

δh�
k

F0
D[δhk],

define the free energy, its injection and dissipation
respectively (using the phase space integration

∫
d�k =∑

kx ,ky

∫
π
V

dz dv‖ dµ with the volume V = ∑
kx ,ky

∫
dz/B0).

An important feature of the free energy balance equation is
that only the background density and temperature gradients
contained in ω∗Ti

act as sources of free energy [40–42].
In contrast, parallel dynamics as well as magnetic field
curvature and gradients only distribute the free energy between
electrostatic and entropy terms [43]. The nonlinear term
N [δfk, (J0�)k] plays the role of transferring the free energy
across the perpendicular scales [14, 44]. A local free energy
balance in perpendicular Fourier space can be expressed as:

∂tE⊥ = G⊥ + N⊥ − D⊥ , (4)

where ⊥ may be taken to correspond to any partition of
the perpendicular Fourier space (for example k⊥ < ⊥ <

k⊥+1), and the contribution of the nonlinear term satisfies∑
⊥ N⊥ = 0.

2.3. The gyrokinetic large eddy simulation (GyroLES)
technique

The large eddy simulation (LES) technique was primarily
developed in the context of fluid (Navier–Stokes) turbulence.
It consists in resolving only the largest scales of turbulence,
while modeling the small scales by dissipative terms, which
allows an important gain in numerical requirement. This
technique has recently been extended to gyrokinetic turbulence
[15, 18]. From a mathematical point of view, small scales
can be filtered out by the action of a Fourier low-pass filter
in the perpendicular Fourier space (kx, ky), and the filtered
gyrokinetic equation can be expressed in terms of the filtered
distribution function δfk:

∂tδfk +
(
v‖∂z + iωB0

)
δhk + a‖∂v‖δhk = iω∗Ti

F0i (J0�)k

+N [δfk, (J0�)k] − D[δfk] − T [δfk, δfk], (5)

with the definition δhk = δfk + qiF0(J0�)k/T0i , and where a
new term appears from the filtering of the nonlinear term:

T [δfk, δfk] = N [δfk, (J0�)k] − N
[
δfk, (J0�)k

]
,

which is usually referred to as the sub-grid term, since it still
involves δfk and also requires the knowledge of the filtered
smallest scales.

It has been shown that the role of the smallest scales is to
dissipate free energy, and the sub-grid term can be modeled by
a dissipation term that can be added to the usual dissipations:
DLES[δfk] = c⊥k2n

⊥ δhk , with n = 1 and n = 2, corresponding
to a diffusion or respectively to a hyperdiffusion LES model.

In the following section 3, DNSs will first be considered,
in order to describe numerically all the turbulent scales
and observe in three cases the main features and insights
of predator–prey dynamics. For more extended parametric
studies that will be presented in section 4, GyroLES technique
will be used.

3. Predator–prey oscillations in gyrokinetic
turbulence

In this section, fundamentals of plasma micro-turbulence are
analyzed in free energy terms. Importance of the ZFs, small
and large scales perpendicular to the background magnetic field
will be discussed and compared, in order to design a minimal
predator–prey model for gyrokinetic turbulence.

3.1. Free energy interplay between ZFs and turbulence

In plasma turbulence, ZFs [45] are of special importance,
since these structures, extended over a given flux surface,
play a regulating role on the turbulence that generates them.
By defining two domains in perpendicular Fourier space: ⊥
associated to ZFs (ky = 0, k‖ = 0), and ̃⊥ associated to
the rest of the turbulent scales, the ZF free energy E can be
separated from the rest of the drift wave turbulence Ẽ , where
the energy budget takes the form

∂tE = N − D, (6)

∂t Ẽ = G̃ + Ñ − D̃. (7)

It is important to note here that it is the free energy (which
corresponds to potential enstrophy in the fluid limit) that
is exchanged between the ZFs and the drift waves and not
just the kinetic energy. The mechanism invoked here is not
that of a classical inverse cascade but of a potential vorticity
homogenization [46, 47], which manifests itself as disparate
scale interactions in k-space [48]. Since there is no linear
driving mechanism for the ZFs (i.e. G = 0), these structures
feed on the free energy of the fluctuations and hence play
the same regulating role on the underlying turbulence that a
predator species plays on the population of a prey species.

DNSs have been performed for three values of R0/LTi
=

6.0, 6.92, 8.0, with other parameters being those of the ITG
Cyclone Base Case [49] (R0/Ln = 2.22, the safety factor:
q = 1.4, the magnetic shear: ŝ = 0.796, the minor radius:

3
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Figure 1. Time evolution of the normalized free energy E associated with ZFs and Ẽ associated with the rest of the turbulence, for three
different values of R0/LTi

= 6.0, 6.92, 8.0 from top to bottom.

r0 = 0.18R0, and Te0 = Ti0). The associated grid sizes:
Lx × Ly = 128 × 128ρ2

i in the plane perpendicular to the
magnetic field, with a number of points Nx × Ny = 1282,
the parallel and velocity domains are respectively: Lz = 2π ,
Lv‖ = 6vTi

, µ = 9qiρivTi
, corresponding to Nz ×Nv‖ ×Nµ =

16 × 32 × 8 points.
Figure 1 represents the time evolution during turbulent

phase of free energy components E and Ẽ , that have been
normalized to their mean, and where only a small fraction
of the total time trace is represented in order to see the details
of dynamics. As expected from a predator–prey interpretation
[2], it can be observed that the free energy dynamics of the
ZF and the turbulence are largely correlated. In order to check
if this dynamic exhibits predator–prey features, one can look
at the phase relation between these two quantities to see if
there exists a time shift between the turbulence and the ZF free
energy fluctuations.

The cross correlation in time between the ZF free energy
and the rest of the turbulence can be defined as follows:

C(�t) =
∫

dt
(
Ẽ(t + �t) − 〈Ẽ〉) (

E(t) − 〈E〉)√∫
dt

(
Ẽ(t) − 〈Ẽ〉)2 ∫

dt ′
(
E(t ′) − 〈E〉)2

,

where 〈E〉 and 〈Ẽ〉 represent the time averages of the free energy
of the ZF and of the rest of the turbulence respectively.

The maximal value of the cross-correlation C(�t)

corresponds to the mean time delay between the free energy of
the ZFs E and the free energy of the rest of the turbulence Ẽ .

In figure 2(a), cross-correlation between E and Ẽ is given
as a function of the time lag. The average time delay �t

between E and Ẽ is given by the location of the maximal
correlation in figure 2. The time delay is found not to
depend on the logarithmic temperature gradient length, with
an approximate value: �t ≈ 2R0/vTi

in normalized units, or
expressed in physical units: �t ≈ 8 µs. The time delay is
found negative, indicating that Ẽ(t) precedes in time the ZF
free energy E(t): this gives the first clue for a predator–prey
dynamic between the ZFs considered as a predator and the
rest of the turbulence as the prey. As expected, the maximum
levels of correlation, measured with this method, are in good
agreement when varying the temperature gradient length.

ITG turbulence is mainly regulated by the value of the
ITG length R0/LTi

, and linear stability analysis gives a critical
value (R0/LTi

)c ≈ 4, which is observed to be upshifted due
to nonlinear interactions (R0/LTi

)c,exp ≈ 5.5 [49]. Close
to marginality, the ITG turbulence is dominated by the ZFs
dynamics, displaying an intermittent behavior. The difference
in the values of maximal correlation observed in figure 2
between high values of temperature gradient lengths R0/LTi

=
6.9, 8.0, and the value closer to marginality R0/LTi

= 6.0, can
be explained by important slow time dynamics when close to
marginality, that disappear when increasing the temperature
gradient.

In figure 2(b), this effect is eliminated by subtracting
from each turbulent signal its smooth filtered component: the

4
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(a) (b)

Figure 2. Cross-correlation between ZF and drift wave turbulent signals, for different values of the logarithmic temperature gradient R0/LTi

(a), and cross-correlation between ZFs and drift wave signals smoothed with a Gaussian filter of extent 50 time points (b).

resulting signal Xfast(t) can be expressed as follows:

Xfast(t) = X (t) −
∫

dt ′κ(t ′)X (t − t ′),

where X stands for ZFs (E) or drift waves (Ẽ) free energy,
and the smooth filter κ(t ′) is a Gaussian defined over 50
neighboring points. This procedure allows to remove the
slow time dynamics from the signals, and the resulting cross-
correlations between ZFs and drift wave fast signals are in good
agreement, as illustrated in figure 2(b).

3.2. Statistics of binormal Fourier modes

The predator–prey type dynamics are also expected to have
an intermittent nature. Therefore a look at the kurtosis κ is
instructive:

κ =
1
n

∑
i (xi − x)4(

1
n

∑n
i=1 (xi − x)2)2 − 3.

Indeed this latter quantity gives a measure of the deviation
from Gaussian distribution for the discrete time signal xi ,
where x = 1

n

∑n
i=1 xi is the mean and n the number of

points. The Gaussian distribution is given by a kurtosis equal
to zero, a positive value indicates a departure from Gaussian
with heavier tails and a more acute peak around the mean
(leptokurtic distributions), while a negative value indicates a
distribution with tails thinner than Gaussian and a lower and
broader peak around the mean (platykurtic). In particular, a
positive kurtosis is a signature of a signal with intermittent
behavior, which is very close to its mean most of the time, but
presents also a relatively high probability for rare and high-
amplitude events [50].

In figure 3, the kurtosis associated with the free energy
spectrum Eky is plotted as a function of the binormal
wavevector ky for the same runs as in figure 1. This has
been done during three nonlinear simulations (R0/LTi

=
6.0, 6.92, 8.0), by saving the time traces of each free energy
Fourier mode Eky (t), and computing the kurtosis associated to
each time signal. For all values of the temperature gradient,
a clear separation is observed between the large and small

Figure 3. Free energy kurtosis κ as a function of the binormal
wavevector kyρi , for different values of the logarithmic ITG R0/LTi

.

scales, where the statistics of the small scales are very close to
Gaussian (corresponding to a kurtosis of 0), while the largest
simulated scales associated with wavevectors kyρi < 0.5 show
a clear departure from the Gaussian distribution, suggesting
the presence of rare events with significant deviation from
the mean. Moreover, decreasing the temperature gradient
length R0/LTi

, the kurtosis of smallest scales also exhibits
a mild departure from the Gaussian distribution, suggesting
that the small scales of turbulence display weakly intermittent
dynamics while approaching marginality.

The coupling between free energy producing scales and
ZFs is a possible candidate to explain the higher intermittence
of the large scales: the shearing by ZF strongly reduce
turbulence at large scales by eddy breaking mechanism while
the reduction of large-scale turbulence diminishes the preys
available for the ZF to survive, leading to predator–prey
dynamics. On the contrary, due to their size, the small scales
are much less affected by this shearing effect. Finally, due to
their intermittent nature, the statistics of the large scales appear
to be very hard to capture, even with the very long time traces

5
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Figure 4. Free energy spectrum Eky for different values of the ITG
R0/LTi

.

considered, and the behavior of largest scales only holds as a
quantitative trend.

4. Gyrokinetic turbulence as a predator–prey system

While the usual predator–prey model already gives an
interesting perspective on the dynamics (section 3.1), the fact
that the predator–prey oscillations present the character of
pulses in k-space is also important (section 3.2). Indeed, the
free energy can be decomposed into the energy containing
component (corresponding to the energy injection scales,
associated to kurtosis far from Gaussian in figure 3), the
dissipative component (corresponding to the dissipative scales,
associated to kurtosis close to the Gaussian distribution in
figure 3) and a ZF component, whose special role has been
illustrated in figures 1 and 2. These three domains are
illustrated in figure 4, where the time-averaged right-hand
side of the free energy equation (4), i.e. Gky − Dky , is given
for various values of the logarithmic temperature gradient
R0/LTi

. Simulations have been performed on reduced grids
(Nx ×Ny = 48×24) by means of the GyroLES technique [15]
with a perpendicular hyperdiffusion model with c⊥ = 0.375.
All others parameters are those of the DNSs presented in the
previous section.

4.1. Gyrokinetic predator–prey model

The spectral transfer character of the predator–prey dynamics
(6), (7) can be studied by using a model of the form

∂tE = N − νF E, (8)

∂tE1 = N1 + γ E1, (9)

∂tE2 = N2 − νE2, (10)

where, E1 is the free energy at the injection scale, E2 is the
free energy at the dissipation scale and E is the zonal free

energy, and we have used the definitions: νF = 〈D/E〉,
γ = 〈(G1 − D1)/E1〉 and ν = 〈(D2 − G2)/E2〉, where the
brackets represent time averaging.

At this point, it is important to notice that the damping
and growing ky scales have not to be confused with linearly
growing and damped modes, that are argued to be of special
importance in self-regulation of plasma turbulence [16], and,
are of interest here, in gyrokinetics [17]. Due to the high
dimensionality of gyrokinetics, these modes are shown to
coexist for a given ky with linearly growing ones. Consistently,
our definition of the parameters νF , γ and ν with respect to the
free energy spectra Eky is summing in a same domain damped
and linearly growing modes, resulting in a net turbulent
damping or growth.

This three domain model is very similar to the model
studied in [9], except that we use free energy here, in line
with the gyrokinetic framework that we consider. As recently
shown by [14] the free energy contribution of the nonlinear
term can be expressed as a symmetrized triad transfer function:
Nk = ∑

p

∑
q C

p,q
k δhkδhpδhq, where C

p,q
k is an operator

converting the modified distribution function δhk into the
electrostatic potential �k . This allows us to write

N = λ hh1h2, (11)

N1 = λ1 hh1h2, (12)

N2 = λ2 hh1h2. (13)

where h1, h2 and h can be defined for instance using the

partition hS =
√∫

S
E(k⊥)d2k⊥ where the domain S of

integration in k-space is chosen to correspond to the injection,
dissipation and zonal regions respectively. Although the model
itself holds for any partition of the plane (kx, ky), the domain
partition chosen for the numerical results presented in this work
is defined along the ky coordinate, while summing along kx :
the corresponding shell domains S correspond to slices along
the ky direction. It must be noted here, that the spectral density
of free energy is defined as a velocity and parallel coordinate
integral: Ek⊥ = ni0π

∫
dz dµdv‖δh�

kδfk/(2V F0).
Following [9], equations (8)–(10) can be averaged over the

turbulent phase, so that time derivatives can be canceled since
the gyrokinetic simulation reaches a quasi-stationary state as
shown in figure 1. Coefficients λ1, λ2, λ̄, γ , ν and νF are
constants in time, and by eliminating the product 〈hh1h2〉 in
the averaged equations, the two following relations can be
obtained: 〈E1〉

〈E〉 = −λ1νF

λ̄γ
, (14)

〈E2〉
〈E〉 = λ2νF

λ̄ν
. (15)

It becomes evident from equation (14) that the geometrical
prefactor λ1 is negative, as could have been expected from
figure 4. The two other coefficients λ, and λ2 are positive,
recovering that the nonlinearity transfers free energy from
injection scales to dissipative scales as well as to ZFs. Finally
we have from equations (11)–(13) the different signs of the
contributions of the nonlinear term in the free energy balance:
N > 0, N 1 < 0, N 2 > 0.

6
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4.2. Numerical tests of gyrokinetic predator–prey model

The parameters λ1, λ2 and λ̄ correspond to geometrical
prefactors depending on the choice of the k-space partition
and the C

p,q
k that link � and h, and not on the physical

parameters. In contrast, the linear growth rate corresponding
to γ , the small-scale dissipation term ν, and the ZF drag
νF are defined through G1,2, G, D1,2 and D, and thus are
dependent on the free energy spectrum itself. Therefore, in
principle, the net dependence of these coefficients on physical
parameters such as the temperature gradient can be quite
nontrivial. This point is investigated in figure 5, where the three
parameters γ , νF and ν obtained from gyrokinetic numerical
simulations, are represented as functions of the imposed
R0/LTi

.
In figure 5, GyroLESs with various R0/LTi

are considered,
with perpendicular hyperdiffusion amplitude c⊥ = 0.5, n =

4 5 6 7 8

0
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Figure 5. Effective ZFs dissipation (νF , the solid line), growth rate
(γ , the dashed line) and small-scale dissipation (ν, the dotted line)
as functions of R0/LTi

, with hyperdiffusion GyroLES (c⊥ = 0.5).
An error estimate is given by the standard deviation of the free
energy time traces.

(a) (b)

Figure 6. Free energy ratios (E1/E (a), E2/E (b)) as functions of the ratio between the effective ZF dissipation, the effective growth rate and
the effective small-scale dissipation (see equations (14) and (15)). Blue circles and red crosses stand respectively for diffusion and
hyperdiffusion GyroLES model scanned along c⊥, green plus and squares represent two R0/LTi

scans, with respectively c⊥ = 0.5 and
c⊥ = 0.375 chosen for hyperdiffusion GyroLES. Black diamonds and stars correspond to a magnetic shear scan ŝ with respectively
c⊥ = 0.5 and c⊥ = 0.375.

2. The small-scale dissipation ν (dotted lines) is found
to be approximately constant, except for small values of
the temperature gradient. γ and surprisingly νF display a
nontrivial dependence with R0/LTi

, very similar to the heat
flux structure found in other studies [49].

In order to verify equations (14) and (15), the averaged
free energy ratios 〈E1〉/〈E〉 and 〈E2〉/〈E〉 are represented as
functions of the ratios νF /ν and νF /γ respectively in figure 6.
Six series of GyroLESs are considered, varying the diffusion or
hyperdiffusion amplitudes, the temperature gradient R0/LTi

,
as well as the magnetic shear, for a total of 40 nonlinear
GyroLESs. The advantage of using LES for these simulations,
(apart from the gain in speed) is that it provides an easy
handle on the small-scale dissipation via c⊥ and allows us to
modify ν independently in order to explore the parameter space
easily.

The curves seem to agree with the theoretically predicted
ratios in equations (14) and (15). Results are however found to
depart from the theory when the turbulence level is decreased,
especially in the low-shear case and for very high perpendicular
dissipation amplitudes. These disagreements correspond to the
limit of the GyroLES technique when the chosen grid cannot
capture completely the linear physics (low shear), or when the
GyroLES sub-grid model amplitude c⊥ is not strong enough
to compensate the lack of resolution. The deviation of the
ratio E1/E from a straight line, is rather small, while it is
more pronounced for E2/E . Again this could be due to the
reduction of the size of the dissipative range, by the GyroLES
technique, which affects mainly the small scales associated
to E2.

In order to compare the reduced predator–prey model
(8), (9), (10), with the results of nonlinear gyrokinetic
simulations, the appropriate parameter space is given by the
three parameters γ , νF and ν. Considering the different
temperature gradient scans obtained with DNS, or two different
GyroLES models (c⊥ = 0.5 and c⊥ = 0.375), the ratio νF /γ

is observed to be approximately constant: table 1 summarizes
the numerical values obtained.
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Table 1. Ratios ν/γ and νF /γ , for different values of the
temperature gradient R0/LTi

, and with different numerical methods.
LES#1 and LES#2 correspond to c⊥ = 0.375 and c⊥ = 0.5,
respectively (hyperdiffusion model n = 2). An error estimate is
given by the standard deviation of the free energy time traces.

R0/LTi
6.0 6.92 8.0

ν/γ , DNS 2.05 ± 0.01 2.01 ± 0.01 2.35 ± 0.01
ν/γ , LES#1 1.99 ± 0.01 1.64 ± 0.01 1.70 ± 0.01
ν/γ , LES#2 2.23 ± 0.03 2.03 ± 0.01 1.90 ± 0.01

νF /γ , DNS 0.25 ± 0.01 0.39 ± 0.01 0.49 ± 0.01
νF /γ , LES#1 0.44 ± 0.03 1.34 ± 0.01 1.48 ± 0.01
νF /γ , LES#2 0.39 ± 0.03 1.30 ± 0.02 1.74 ± 0.02

It is then possible to normalize the predator–prey system
(8), (9), (10) by γ , and to obtain

∂t ′E = λ
′
hh1h2 − νF

γ
E, (16)

∂t ′E1 = λ′
1hh1h2 + E1, (17)

∂t ′E2 = λ′
2hh1h2 +

ν

γ
E2, (18)

where the time has been normalized t ′ = γ t , as well as the
geometric prefactors λ

′ = λ/γ , λ′
1 = λ1/γ and λ′

2 = λ2/γ .
As suggested from the results presented in table 1, the ratio
ν/γ can be considered approximately constant, and the only
free parameter remaining is νF /γ . A simple comparison is
then possible between the normalized system (16), (17), (18),
and the nonlinear gyrokinetic simulations.

In figure 7, the local maxima of the ZFs free energy E
are represented as a function of the normalized ZF damping
coefficient νF /γ . In light gray, results obtained by solving
the reduced predator–prey system are given, where each point
corresponds to a local maximum in the time trace of the ZF
free energy E . In the simple predator–prey model, two distinct
regimes are obtained: periodic oscillations, with well-defined
amplitudes for the highest values of the parameter νF /γ ,
and a chaotic regime occurs when decreasing the parameter
νF /γ .

Results obtained with nonlinear gyrokinetic simulations
are shown in figure 7 together with the bifurcation diagram.
For each simulation, mean, maximum and minimum values
give the error bar representation used in the figure.

5. Discussion

We have performed a detailed characterization of the dynamics
and the associated spectral transfer, using the evolution of free
energy in gyrokinetic turbulence with a partition of the k-space
corresponding to the scales of free energy injection, free energy
dissipation and large-scale flow structures.

This study provides, yet another indication that the
predator–prey-like dynamical interactions between large-
scale flows and the micro-turbulence responsible from the
anomalous transport is an inherent part of plasma micro-
turbulence. The approach that is used in this work, namely
local, adiabatic electron, GyroLESs of ITG turbulence, is not

Figure 7. Bifurcation diagram showing the local maxima of E as a
function of νF /γ , obtained from simple predator–prey model (light
gray), as described in [9], compared with DNS (o) and two different
GyroLES models (× for LES#1 and + for LES#2). Three different
values R0/LTi

= 6.0; 6.92; 8.0 are considered (respectively, blue,
green and red).

the most complete description of plasma turbulence. However
it is sufficiently representative of core plasma turbulence
and allows us additional handle on the diffusivities due to
effective diffusive or hyperdiffusive terms introduced in the
LES formulation which permits the detailed scans shown in
this paper.

Our results show in particular that the free energy
exchange between the three partitions, mentioned above,
exhibits many of the well-known characteristic features of
the predator–prey dynamics. The ZF free energy E has been
shown to be phase delayed in time with respect to the turbulent
free energy Ẽ . Statistics of the turbulent free energy as a
function of the binormal wavenumber ky show rather different
characteristics between small Gaussian scales and large scales
with an intermittent behavior.

These observations provide physical insight and a
justification for the use of a simple reduced three population
model of plasma micro-turbulence, based on gyrokinetic
DNSs. This reduced model has been tested with gyrokinetic
numerical experiment, and we have shown that the predicted
relation between the average amplitudes of the different free
energy components as given in equations (14) and (15) holds
reasonably well in gyrokinetic simulations.

The role of predator–prey-like dynamics on the L–H
transition remains an open question. As of today, full physics
gyrokinetic simulations cannot tackle the L–H transition or the
intermediate phase with limit cycle oscillations. This means
such problems have to be considered using simple transport
models that include mesoscale physics such as ZFs, turbulence
spreading or even some simple cascade model. Such models
have to be justified by comparing their limiting predictions
to gyrokinetic simulations or experimental observations.
Development of such advanced mesoscale/transport models
will be one of the important theoretical activities in the
upcoming years.
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