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A reduced four-dimensional (integrated over perpendicular velocity) gyrokinetic
model of slab ion temperature gradient-driven turbulence is used to study the phase-
space scales of free energy dissipation in a turbulent kinetic system over a broad
range of background gradients and collision frequencies. Parallel velocity is expressed
in terms of Hermite polynomials, allowing for a detailed study of the scales of free
energy dynamics over the four-dimensional phase space. A fully spectral code – the
DNA code – that solves this system is described. Hermite free energy spectra are
significantly steeper than would be expected linearly, causing collisional dissipation
to peak at large scales in velocity space even for arbitrarily small collisionality. A
key cause of the steep Hermite spectra is a critical balance – an equilibration of
the parallel streaming time and the nonlinear correlation time – that extends to
high Hermite number n. Although dissipation always peaks at large scales in all
phase space dimensions, small-scale dissipation becomes important in an integrated
sense when collisionality is low enough and/or nonlinear energy transfer is strong
enough. Toroidal full-gyrokinetic simulations using the Gene code are used to verify
results from the reduced model. Collision frequencies typically found in present-day
experiments correspond to turbulence regimes slightly favoring large-scale dissipation,
while turbulence in low-collisionality systems like ITER and space and astrophysical
plasmas is expected to rely increasingly on small-scale dissipation mechanisms. This
work is expected to inform gyrokinetic reduced modeling efforts like Large Eddy
Simulation and gyrofluid techniques.

1. Introduction
The most fundamental turbulence paradigm is that of the Kolmogorov cascade

and the associated drive and dissipation ranges in three-dimensional, homogeneous,
high-Reynolds-number Navier–Stokes turbulence: energy is injected at large scales,
cascades conservatively through a broad inertial range, and is dissipated at small
scales where viscous dissipation becomes comparable to inertial forces. Despite several
decades of study (Krommes 2012) and a continually-broadening area of application
(from magnetic confinement fusion (Doyle et al. 2007; Garbet et al. 2010) to space and
astrophysics (Howes et al. 2006; Schekochihin et al. 2009; Howes et al. 2011a; Pueschel
et al. 2011; TenBarge and Howes 2012), a comparable coherent overall picture is still
developing in gyrokinetic turbulence. Certain aspects of the fluid picture carry over

† Email address for correspondence: drhatch@austin.utexas.edu



532 D. R. Hatch et al.

to gyrokinetics; cascade dynamics have been identified (Navarro et al. 2011b; Plunk
and Tatsuno 2011; Teaca et al. 2012) and power laws have been derived in simplified
and idealized cases (Plunk et al. 2010; Barnes et al. 2011), although these spectra are
not universal and can be modified by linear drive and/or dissipation (Görler and
Jenko 2008; Cerri 2013). The final piece of turbulent energy balance – dissipation
– is largely decoupled from the aforementioned power laws, and differs strikingly
from the fluid picture; in gyrokinetic systems dissipation can peak at large scales, and
there appears to be little scale separation between drive and dissipation (Hatch et al.
2011b; Navarro et al. 2011a, b; Teaca et al. 2012).

This question of the scales and parameter dependences of dissipation in gyrokinetic
systems remains largely un-addressed and is the focus of this work. The topic is
important not only in the context of fundamental turbulence studies, but also to
ensure accurate prediction of transport quantities in fusion devices with reasonable
computational resources. A fundamental understanding of dissipation in gyrokinetic
systems is expected to facilitate and inform reduced-modeling techniques like Large
Eddy Simulations (Navarro et al. 2014) and gyrofluid approximations (Dorland and
Hammett 1993).

Dissipation in gyrokinetics is due to collisions, which, in comparison with viscous
dissipation in neutral fluid systems, is also described by a (largely) diffusive operator,
albeit in velocity space rather than real space. As such, the gyrokinetic energy sink is
enhanced by small scales in velocity space, but not directly tied to small scales in real
space. Nonetheless, real space scales are indirectly connected to velocity space scales
in the context of the two main mechanisms responsible for development of velocity
space structure in gyrokinetic systems – linear phase mixing (Landau damping) and
nonlinear perpendicular phase mixing. The former is a linear phenomenon connected
with parallel (to the magnetic field) scales in both real and velocity space (Landau
1946; Hammett et al. 1992; Watanabe and Sugama 2006). Nonlinear phase mixing is
a nonlinear process that is intrinsically small scale (active at k⊥ρi > 1, where k⊥ is
the wavenumber in a direction perpendicular to the magnetic field and ρi is the ion
gyroradius) and links small-scale structures in perpendicular velocity space and real
space (Schekochihin et al. 2008; Tatsuno et al. 2009; Plunk et al. 2010).

Dissipation has been observed to peak at large perpendicular spatial scales in
gyrokinetic simulations, and a large portion of the energy can be dissipated at scales
where nonlinear phase mixing is not active. This large-scale dissipation has been
interpreted using the damped eigenmode paradigm (Terry et al. 2006; Hatch et al.
2011b, c; Makwana et al. 2014) – nonlinear excitation of linearly stable modes at
scales comparable to those of the driving instabilities. In gyrokinetics, these damped
modes are characterized by progressively smaller scales in parallel real space and
velocity space (Hatch et al. 2011b), suggesting a link with linear phase mixing –
i.e. nonlinear excitation of Landau-damped modes at large perpendicular scales. In
this work, we focus directly on the linear phase mixing mechanism in the context
of ion temperature gradient (ITG) driven turbulence with the goal of systematically
elucidating the role and importance of large and small scales in phase space with
regard to free energy dissipation. To this end we study a reduced-gyrokinetic system
in order to clearly identify the phase space (velocity and real space) scales at which
dissipation occurs. We find that collisional dissipation peaks at large scales in all
phase space dimensions, and spreads to small scales as collisionality decreases and/or
nonlinear energy transfer increases. The collision-frequencies characterizing present-
day fusion devices represent turbulent scenarios where dissipation slightly favors large
scales (k⊥ρi < 1). In other less-collisional scenarios (e.g. ITER-motivated parameter
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regimes and many space and astrophysical systems), dissipation is expected to occur
predominantly at small scales (k⊥ρi > 1), and nonlinear phase mixing is expected to
be an increasingly important dissipation mechanism.

This paper builds on (Hatch et al. 2013) and augments the material therein by
examining several key points in more detail and presenting a campaign of full-
gyrokinetic simulations using the Gene code (Jenko et al. 2000) that verifies and
expands on many of the results achieved using the reduced model. The paper is
outlined as follows: In Sec. 2, we describe the simplified gyrokinetic model used in
this work, and the associated free energy evolution equation. Hermite polynomials are
used to represent parallel velocity space, providing a useful basis for studying energy
transfer and dissipation in phase space scales. In Sec. 3 we introduce the DNA code
– a fully spectral code created to solve the system of equations described in Sec. 2 –
and describe the numerical implementation of the simulations. In Sec. 4 we examine
the Hermite free energy spectrum and derive an expression for the scaling of the
spectrum as a function of various dissipation parameters. A key step in this process
is the identification of a critical balance (Goldreich and Sridhar 1995; Barnes et al.
2011; TenBarge and Howes 2012) – between the nonlinear correlation time and the
characteristic parallel streaming time – that extends to high n in Hermite space, where
n is the Hermite number. This critical balance is examined in detail in Sec. 4, along
with numerical verification of the predicted Hermite spectra. The main conclusion
here is that the Hermite spectrum is steepened nonlinearly to the extent that collisional
dissipation peaks at large scales in velocity space. In Sec. 5, the insight gained in
Sec. 4 is applied to an examination and interpretation of the dissipation scales in
the full four-dimensional phase space. Dissipation is shown to peak at large scales
in phase space and spread to progressively smaller scales as collisionality decreases
and/or nonlinear energy transfer increases. Section 6 presents complementary toroidal
full-gyrokinetic simulations scanning the collision frequency and temperature gradient
scale length using the Gene code. A summary and discussion are provided in Sec. 7.

2. Model
2.1. Fourier–Hermite representation

The model used in this work is chosen to be as simple as possible while still rigorously
describing the dynamics of interest. We study ITG-driven turbulence in an unsheared
slab in the context of a simplified nonlinear gyrokinetic system. The simplification
entails an integration of the gyrokinetic equations over the perpendicular velocity
v⊥, replacing gyroaverage operators with factors of e−k2

⊥/2. This treatment is exact
when integrating over a Maxwellian (in v⊥) distribution function, as is done for all
gyroaverages of the electrostatic potential. The use of this simplified gyroaverage
operator on the perturbed distribution function in the Poisson equation (3) is an
approximation that is well justified for scales larger than k⊥ρi ∼ 1 (Dorland and
Hammett 1993). In the numerical results described below, simulations are limited to
these scales. By doing this we intentionally neglect nonlinear phase mixing (which
becomes important at k⊥ρi > 1) and model small-scale dissipative processes using
k⊥ hyperdiffusion. We roughly interpret dissipation due to this hyperdiffusion term
as an upper bound on the dissipation that would be attributable to nonlinear phase
mixing in a more comprehensive system. The model is similar to the model described
in (Watanabe and Sugama 2004) except that we retain a full range of scales in the
parallel direction.
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The transparency of the model is further enhanced by employing a Hermite
decomposition in parallel velocity space,

f (v) =

∞∑
n=0

f̂nHn(v)e−v2

, (1)

where Hn(x) = (n! 2nπ1/2)−1/2 ex2

(−d/dx)ne−x2

(several examples of the basis functions
are shown in Fig. 2). Hermite polynomials have a substantial history in the context
of representing velocity space scales in a variety of kinetic plasma systems (Grant
and Feix 1967; Armstrong et al. 1970; Hammett et al. 1993; Watanabe and Sugama
2004; Zocco and Schekochihin 2011). They have recently been shown to optimally
represent velocity space in gyrokinetic simulations (Hatch et al. 2012) and to facilitate
accurate solutions of linear kinetic operators (Bratanov et al. 2013). The normalized
reduced gyrokinetic equation in the Hermite basis reads

∂f̂k,n

∂t
=

ηiiky

π1/4

k2
⊥
2

φ̄kδn,0 − iky

π1/4
φ̄kδn,0 − ηiiky

21/2π1/4
φ̄kδn,2

− ikz

π1/4
φ̄kδn,1 − ikz

(√
nf̂k,n−1 +

√
n + 1f̂k,n+1

)

−νnf̂k,n +
∑

k′

(
k′

xky − kxk
′
y

)
φ̄k′ f̂k−k′,n, (2)

where f̂k,n(ρini0/Lnv
3
t i) is the ion distribution function, ni0 is the ion density, Ln is the

density gradient scale length, vti is the ion thermal velocity, n denotes the order of the
Hermite polynomial, t(Ln/vti) is time, ηi is the ratio of Ln to the temperature gradient
scale length LT , ky(ρ

−1
i ) is the Fourier wavenumber for the direction perpendicular to

both the direction of the background gradients [x → kx(ρ
−1
i )] and the coordinate

aligned with the magnetic field [z → kz(L
−1
n )]. The perpendicular wavenumber

is k⊥ = (k2
x + k2

y)
1/2, φ̄k(ρiTe0/Lne) is the gyro-averaged electrostatic potential, Te0 is

the background electron temperature, e is the elementary charge, and ν(vti/Ln) is
the collision frequency. We use the Lenard–Bernstein collision operator (Lenard
and Bernstein 1958) for the parallel velocity, for which Hermite polynomials are
eigenvectors: ν∂v[(1/2)∂v +v] → νn. The electrostatic potential is directly proportional
to the zeroth-order Hermite polynomial as determined by

φk = π1/4e−k2
⊥/2f̂k,0/[τ + 1 − Γ0(k

2
⊥)] , (3)

where τ is the ratio of the ion to electron temperature, and Γ0(x) = e−xI0(x), with
I0 the zeroth-order modified Bessel function. Note that here we do not remove the
flux-surface-averaged potential, as this treatment strongly suppresses the turbulence
in slab simulations (Watanabe and Sugama 2004).

To substantiate the expectation that we capture the salient dynamics with this
reduced model, we verify and expand on the main results regarding k⊥ dissipation
scales with high resolution, toroidal, full-gyrokinetic simulations using the Gene code,
as described in Sec. 6.

2.2. Free energy conservation and evolution

The free energy

εk,n = ε
(φ)
k δn,0 + ε

(f )
k,n, (4)



Phase space scales of free energy dissipation 535

with electrostatic component

ε
(φ)
k =

1

2
(τ + 1 − Γ0(k

2
⊥))−1|φk|2 (5)

and entropy component

ε
(f )
k,n =

1

2
π1/2|f̂k,n|2 (6)

is the ideal quadratic invariant in gyrokinetics, and plays a role analogous to kinetic
energy in neutral fluid turbulence (Navarro et al. 2011a; Plunk et al. 2012). The k-
and n-resolved free energy evolution equation is readily derived with the help of (2)
and (3). One thus obtains

∂ε
(φ)
k,n

∂t
= J

(φ)
k δn,0 + N

(φ)
k,n (7)

and

∂ε
(f )
k,n

∂t
= ηiQkδn,2 − Ck,n − J

(φ)
k δn,1 + Jk,n−1/2 − Jk,n+1/2 + N

(f )
k,n . (8)

The terms on the RHS of (7) and (8) represent various energy injection, dissipation,
and transfer channels, and are schematically represented in Fig. 1. The energy

source ηiQk = ηi	[−π1/4

21/2 ikyf̂
∗
2 φ̄] is proportional to the radial ion heat flux Qk

and limited to n = 2 as represented by the red arrow in Fig. 1. The energy
sink – collisional dissipation Ck,n = 2νnε

(f )
k,n – is directly proportional to the

Hermite number n multiplied by the free energy, and is shown by the blue
arrows in Fig. 1. There are also two conservative energy transfer channels. The
nonlinear energy transfer N

(f )
k,n (yellow curved arrows) redistributes energy in k

space but does not transfer energy between different n. The linear phase mixing
terms Jk,n−1/2 = 	[−π1/2ikz

√
nf̂ ∗

k,nf̂k,n−1] and Jk,n+1/2 = 	[π1/2ikz

√
n + 1f̂ ∗

k,nf̂k,n+1]
represent energy transfer between n and n − 1, n + 1 respectively, as denoted by the
vertical yellow arrows in Fig. 1. The notation Jn±1/2 used for the phase mixing terms
reflects the conservative nature of the energy transfer: the energy transferred from n0

to n0 + 1 (−Jk,n0+1/2 = −	[π1/2ikz

√
n0 + 1f̂ ∗

k,n0
f̂k,n0+1]) is equal to the energy received

by n0 + 1 from n0 (Jk,(n0+1)−1/2 = 	[−π1/2ikz

√
n0 + 1f̂ ∗

k,n0+1f̂k,n0
]). This elucidates the

role of these phase mixing terms as a linear and completely local transfer mechanism
in Hermite space. J

(φ)
k = 	[−ikzφ

1/4φ̄∗f̂k,1] is the energy transferred between the
electrostatic component at n = 0 and the entropy component (i.e. Landau damping),
represented by the diagonal yellow arrow in Fig. 1. The k- and n-summed energy
equation reduces to a balance of the net energy sources ηiQ and sinks C. The scales
in the full phase space at which this balance is achieved depend on the interplay
between the dissipation and the conservative energy transfer channels, and will be
examined in detail below.

3. DNA code and simulations
A fully spectral code has been created to solve (2) and (3). The code is named the

DNA code due to several algorithmic and structural influences from the gyrokinetic
Gene code. The code uses a Fourier representation in the three spatial dimensions and
a Hermite basis in parallel velocity space. An explicit fourth-order Runge-Kutta (RK4)
time scheme is used, with an initial time step constrained to keep the most extreme
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Figure 1. A schematic representation of the n- and k-resolved free energy evolution [quantified
in (8)]. Energy is injected at n = 2 (red arrow), conservatively redistributed in k space via
nonlinear energy transfer (yellow curved arrows), conservatively transferred in n space by
linear phase mixing (yellow vertical arrows), and dissipated by collisional dissipation (blue
arrows).

stable eigenvalues within the RK4 stability boundary. The time step is thereafter
dynamically adapted in the nonlinear regime to satisfy a Courant-Friedrichs-Lewy
(CFL) criterion relating the resolved perpendicular spatial scales to the fastest E × B

drift velocity in the simulation. Parallelization is implemented in Hermite space using
message passing interface (MPI); the code scales efficiently up to nmax/2 processors
where nmax is the number of Hermite polynomials used in the simulation.

The number of Hermite polynomials used in a simulation must be chosen in
conjunction with the collision frequency in order to eliminate artificial effects due to
truncation in Hermite space. A simple zero boundary condition (i.e. setting f̂nmax+1 = 0)
is sufficient if enough Hermite polynomials are kept. However, efficiency can be
improved by applying hypercollisions (Loureiro et al. 2013) νh(n/nmax)

p in addition
to the physical collision operator νn (here we use eighth-order hypercollisions).
This treatment retains the effects of the physical collision operator throughout n

space while reducing the necessary resolution by cutting off the tail of the Hermite
spectrum more sharply. The truncation is further improved by applying the boundary
condition (Loureiro et al. 2013) f̂nmax+1 = ikz

√
nmax + 1f̂n/(νh)(nmax + 1/nmax)

8.
We use a box size of 125.7ρi (increased to 144.4 in some simulations) in the x

and y directions, and resolve up to k(max)
x,y = 1.55. Hyperdiffusion (Barnes et al. 2011)

of the form ν⊥(kx,y/k(max)
x,y )8f̂k,n is employed in the perpendicular spatial directions

in order to cut off the spectrum at k⊥ρi ∼ 1.0 while leaving the scales k⊥ρi < 1
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virtually unaffected. The simulations saturate even without the hyperdiffusion, albeit
with artificially flat free energy spectra in k⊥ due to accumulation of energy at the
k⊥max boundary. The coefficient ν⊥ is tuned so that spectral indices of ∼−7/3 are
maintained for the kx and ky free energy spectra between the outer scale and k⊥ ∼ 1.0.
For the parallel direction, the box size is 62.8Ln, and the simulations resolve up to
kz = 4.7. In the literature, k = 0 modes are often artificially deleted (Parker et al.
1994; Watanabe and Sugama 2004) for slab ITG simulations. We opt to dynamically
evolve all k = 0 modes and implement a Krook damping term for kz = 0 and
kz = k(min)

z modes in order to avoid slowly growing low-kz modes that fail to saturate
(this is only necessary at very low collisionality and/or high gradient drive). This
Krook term is always a small fraction of the total dissipation.

4. Critical balance and Hermite spectra

4.1. High n energy equations

We first wish to identify the scaling of the Hermite free energy spectrum, which
directly determines the dissipation scales in velocity space and, by extension, in k

space. To this end we study the steady-state n � 1 free energy equation (Watanabe
and Sugama 2004; Zocco and Schekochihin 2011)

|kz|
∂

∂n

√
nεk,n =

1

2
N

(f )
k,n − νnεk,n. (9)

See Appendix for a discussion of this equation, which is an approximation of (8);
numerical tests indicate that this approximation does introduce significant deviations
from the exact energy equation but nevertheless preserves enough fidelity to accurately
predict the n dependence of the free energy.

It is useful to consider kz- and k-summed versions of (9):

∂

∂n
〈kz〉k⊥,n

√
nεk⊥,n = N

(f )
k⊥,n − νnεk⊥,n (10)

and
∂

∂n
〈kz〉n

√
nεn = −νnεn, (11)

where εn =
∑

k εk,n and

〈kz〉n =

∑
k |kz|ε(f )

k,n∑
k ε

(f )
k,n

. (12)

The terms εk⊥,n and 〈kz〉k⊥,n are defined analogously with the k sums being replaced
by kz sums.

Equation (11) can be solved in the case of fixed (no n dependence) 〈kz〉n (Watanabe
and Sugama 2004; Zocco and Schekochihin 2011), resulting in a n−1/2 scaling for
the Hermite free energy spectrum. In the model used in this work, the characteristic
parallel wavenumber is free to adjust self-consistently to the turbulent dynamics and
is therefore key for determining the scaling of the Hermite free energy spectrum.
In the next subsection we show that critical balance sets the characteristic parallel
wavenumber 〈kz〉n in such a way that the Hermite spectra are much steeper than
would otherwise be expected.
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Figure 2. (Colour online) Examples of several Hermite basis functions. Note that
the thermal velocity vti sets the envelope of each basis function even as the basis
functions are characterized by increasingly small-scale structure in velocity space. This
is quantified in the bottom panel, where the characteristic parallel velocity defined by

veff
n /vti =

∫
|v|(Hn(v)e−v2

)2dv/
∫

(Hn(v)e−v2

)2dv is plotted. veff
n /vti asymptotes to a constant

value as n increases.

4.2. Critical balance

Critical balance – an equilibration between the nonlinear decorrelation time and
the linear parallel wave propagation time – has typically been applied to low-order
moments – to magnetic fluctuations in the context of magnetohydrodynamics (MHD)
(Goldreich and Sridhar 1995) and kinetic Alfven wave turbulence (TenBarge and
Howes 2012), and to the electrostatic potential in ITG-driven systems (Barnes et al.
2011). Here we apply critical balance to moments of arbitrary order by extending
the concept to high n in Hermite space. As in (Barnes et al. 2011), we take the
characteristic parallel velocity to be the thermal velocity vti . Due to the Maxwellian
weighting in the Hermite basis functions [see (1)], the thermal velocity continues
to define the envelope of the basis functions as n increases and the basis functions
develop fine scale structure. This is demonstrated quantitatively in the bottom panel of
Fig. 2, where the characteristic velocity veff

n /vti =
∫

|v|(Hn(v)e−v2

)2dv/
∫

(Hn(v)e−v2

)2dv

is plotted; the characteristic velocity fluctuates at low n (it is enhanced for odd n)
and asymptotes to a constant at higher n.

Having established the thermal velocity as a characteristic velocity for all n, the
parallel streaming time is (〈kz〉nvti)

−1, which, when normalized to Ln/vti , is simply
the inverse of the normalized characteristic parallel wavenumber 〈kz〉n defined above
in (12). In order to examine critical balance and the resulting Hermite spectra, we
study a series of collisionless (retaining only k⊥ hyperdiffusion and hypercollisions)
simulations scanning the driving gradient ηi = [5.0, 7.5, 10.0]. Critical balance is
established by comparing the parallel streaming time to the nonlinear correlation
function Rk⊥,n(τ ) = 	[

∫
f̂ ∗

k⊥,n(t + τ )f̂k⊥,n(t)dt/
∫

|f̂k⊥,n|2dt], where f̂k⊥,n =
∑

kz
f̂k,n.

This comparison is shown in Fig. 3, where n-resolved temporal correlation functions
for several representative wavenumbers are shown along with the corresponding
characteristic parallel streaming times. Critical balance is verified by the striking
degree to which the parallel streaming time tracks the contours of the nonlinear
correlation time, even reproducing the fluctuations at low n.
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Figure 3. (Colour online) Contour plots of the temporal correlation function Rk⊥,n(τ ) for
several representative wavenumbers, kx = 0 and kyρi = 0.174, 0.348, 0.522, 0.696, 0.957 for
(A)–(E), respectively. Critical balance is manifest in the close correlation between characteristic
parallel streaming time 〈kzvti〉−1

n (dots) and the contours of Rk⊥,n(τ ).

The characteristic parallel wavenumber for the three driving gradients is shown in
Fig. 4, where a 〈kz〉n ∝ n1/2 scaling is clearly observed for high n (note that the zig-zag
in the plot is consistent with the fluctuation in the characteristic velocity shown in
Fig. 2). In order to understand the origin of this

√
n dependence, we consider the

nonlinearity corresponding to the kz-summed distribution function f̂k⊥,n =
∑

kz
f̂k,n

used above to calculate the nonlinear correlation time,

Nk⊥,n =
∑
kz

∑
k′

(k′
xky − kxk

′
y)φ̄k′ f̂k−k′,n (13)

∼ (k(φ)
x k0

y − k0
xk

(φ)
y )φ̄k(φ) f̂k0−k(φ),n, (14)
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Figure 4. (Colour online) The n-resolved characteristic parallel wavenumber 〈kz〉n. The n1/2

dependence is highlighted by plotting 〈kz〉n/
√

n (dashed lines), which is mostly constant in n
at high n.

where (14) is an approximation of (13) arrived at by replacing the sums over wave
numbers with a single term representative of the relevant characteristic scale lengths.
The sum over k′ is replaced by the contribution from a wave number k′ = k(φ)

representing the characteristic scale length of the electrostatic potential. Note that
the same electrostatic potential enters the nonlinearity for each n. The sum over kz

is approximated by a parallel wave number k0
z = k(φ)

z + �kz determined in relation
to k(φ) by the locality of nonlinear interactions. Here �kz represents the locality of
nonlinear interactions in kz. Note that the same arguments apply if the sum over k′

is retained as long as �kz is only weakly dependent on k(φ).
Using (14), the nonlinear decorrelation rate is then determined by taking the sum

of the characteristic time scales for φ̄kφ and f̂k0−kφ,n. The former is taken by virtue of
critical balance for φ to be the characteristic parallel wavenumber for the electrostatic

potential ωk(φ)

φ = k(φ)
z =

∑
k |kz|ε(f )

k,0∑
k ε

(f )
k,0

, and the latter is taken to be the linear phase mixing

time scale at �kz: ωk0−k(φ)

n =
√

n(k0
z − k(φ)

z ). The result is a nonlinear decorrelation rate

ωn
NL ∼ k(φ)

z +
√

n
(
k(φ)

z − k0
z

)
(15)

that captures the major features of the n-dependent characteristic parallel wavenumber
[note the normalization to vti/Ln and 1/Ln for the frequency and wavenumbers
respectively in (15)]. These features can be seen in Fig. 4, where the

√
n dependence

is illustrated with the dashed lines representing 〈kz〉n/
√

n ∼ �kz, which approach a
nearly-constant value at high n. Nonlinear transfer functions verify that the nonlinear
energy transfer in kz is quite local for the ηi = 5.0 case and becomes progressively less
local as ηi increases, consistent with the increasing values of �kz identified in Fig. 4.

In summary, the electrostatic potential determines a parallel length scale k(φ)
z and a

time scale k(φ)
z vti that are n-independent and present in the nonlinear term for all n.

This length scale determines a second length scale k0
z = k(φ)

z − �kz due to the locality
of the nonlinear interactions. The linear phase mixing time scale associated with this
locality scale

√
n�kz is the source of the

√
n dependence in the nonlinear correlation

time, and by extension via critical balance, in the parallel length scale 〈kz〉n. The
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consequences of this n-dependent parallel scale length will be discussed in the next
subsection.

4.3. Hermite free energy spectra

In order to derive the Hermite free energy spectrum, the 〈kz〉n ∼ �kzn
1/2 relation

determined above can be directly incorporated into the high-n free energy equation

∂

∂n
nεn = −a0n

pεn − Sn, (16)

where the first term on the RHS has been generalized so that it can represent either
the Lenard Bernstein operator (a0 = −ν/�kz and p = 1) or a hypercollision operator
(a0 = −νhn

−8
max/�kz and p = 8 for the eighth-order operator used here). The term Sn

has been added to represent an additional energy sink. In a full gyrokinetic system
this would represent collisional dissipation in perpendicular velocity space – i.e. the
dissipation mechanism enhanced by nonlinear phase mixing. In the present system it
represents perpendicular hyperdiffusion or, in the context of (10), nonlinear energy
transfer to higher k⊥.

Note that the additional factor of n1/2 on the LHS of (16) causes the phase mixing
term to maintain the same n-scaling as the Hermite free energy spectrum εn, i.e. if
εn ∝ n−β has a power law dependence, then the phase mixing term (∝ ∂

∂n
n−β+1)

preserves this same power law. Thus a power law can be maintained even in the
presence of an energy sink if the energy sink is proportional to the Hermite free
energy spectrum. This is indeed the case for both the perpendicular hyperdiffusion
and the nonlinear energy transfer (verified numerically), and the energy sink can be
expressed as Sn = αεn. See Bratanov et al. 2013 for a mathematically similar example
of power law spectra in the presence of dissipation in the context of a modified
Kuramoto–Sivashinsky equation.

The energy equation can now be cast in an analytically solvable form ∂
∂n

nεn =
−a0n

pεn − αεn, whose solution is

εn = c0n
−1−αe−(n/nc)

p

, (17)

where nc = (−a0/p)−1/p denotes the Hermite scale at which the collisional
(or hypercollisional) dissipation begins to dominate and the spectrum decays
exponentially. The power law spectra predicted by (17) are verified numerically for
both the α = 0 (i.e. no perpendicular hyperdiffusion) case [Fig. 5(a)] demonstrating
εn ∝ n−1 spectra, and the more physically relevant case α > 0 (i.e. including
perpendicular hyperdiffusion) for which the spectra are much steeper (the value
α = 0.85 is determined by a numerical fit).

The Hermite spectrum for the scale range k⊥ρi < 1 is shown in Fig. 6, demonstrating
that the steep spectrum is maintained in cases where the phase mixing cascade is
balanced by nonlinear energy transfer [as modeled by (10)] rather than by the
dissipation terms; in Fig. 6, the phase mixing terms (dashed line) are balanced by
the nonlinearity (dashed-dotted line), while the dissipation (from the small amount
of hyperdiffusion present at k⊥ρi < 1) is an order of magnitude smaller.

The full form of (17) is verified in Fig. 7, where the critical Hermite number
nc = (νh/�kz)

−1/8nmax (the value �kz = 0.1 is taken for the ηi = 5.0 case as determined
from Fig. 4) is shown to accurately predict the location at which the spectrum begins
to decay exponentially due to hypercollisional dissipation. As can be seen in Fig. 7,
nc provides an excellent estimate of the onset of the dissipation range, and the
exponential decay is also closely captured by (17).
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Figure 5. (Colour online) Hermite spectra of the free energy εn for three different values of
the normalized temperature gradient scale length ηi . The spectra are consistent with the power
laws defined in (17) for cases with ν⊥ = 0 (A) and ν⊥ �= 0 (B). Reprinted with permission from
D. R. Hatch et al., Phys. Rev. Lett. 111, 175001 (2013). Copyright 2013 the American Physical
Society.

Figure 6. (Colour online) Hermite free energy spectrum along with terms in the energy
balance equation for the scale range k⊥ρi < 1, demonstrating a case where the phase mixing
terms (dashed line) are balanced by the nonlinear term (dashed-dotted line), as described in
(10).

In Watanabe and Sugama 2004, Hermite spectra approaching n−1 are also observed
in a model without an additional energy sink (i.e. equivalent to the α = 0 case) and
using a parallel wavenumber that is tied to ky . Also in Watanabe and Sugama
2004, the power-laws of the Hermite spectra are observed numerically to depend on
collisionality, in contrast with both the analytical expressions derived in (Watanabe
and Sugama 2004) and in this work (17). Our numerical observations identify a
constant power law for simulations with varying collision frequencies (but otherwise
identical parameters) in the inertial range preceding the exponential decay.

At this point it is instructive to consider how the dynamics outlined in this section
may be manifest in more comprehensive systems, e.g. full-gyrokinetic toroidal systems
or space or astrophysical kinetic turbulence. The steep Hermite spectra are caused by
two processes – a nonlinear decorrelation rate that increases with n and the presence
of an additional energy sink. Although these processes may not be manifest in exactly
the same way in other systems, the trends are expected to be quite general: the strongly



Phase space scales of free energy dissipation 543

Figure 7. (Colour online) Hermite free energy spectrum for the ν = 0 case (only
hypercollisions) and ηi = 5.0 along with the equation defined by (17) using
nc = (−νh/8�kz)

−1/8nmax, α = 0.85, and �kz = 0.1.

increasing phase mixing time scale
√

nkz is expected to enter the nonlinear time scale
in some fashion, and an energy sink due to collisions in perpendicular velocity
space would be present in any comprehensive system. We thus expect that spectra
significantly steeper than the linear n−1/2 scaling to be universal in weakly collisional
magnetized plasma microturbulence. The consequences of such steep Hermite spectra
with respect to dissipation scales are discussed in the next section.

5. Dissipation scales
The Hermite free energy spectra described in the previous section translate

directly into Hermite dissipation spectra via the relation Cn = −2νnεn. For the
Hermite spectra, a scaling exponent of negative one is a critical exponent separating
collisional dissipation spectra that increase with n from those that decrease with n.
As described above, an n−1 spectrum can be considered a baseline that is steepened
by any additional dissipation due to collisions in perpendicular velocity space or
hypderdiffusion. This implies that collisional dissipation in parallel velocity space
peaks at large velocity space scales even in arbitrarily low collisionality parameter
regimes.

Hermite free energy spectra and resulting collisional dissipation spectra are shown
in Fig. 8 for a series of low-collisionality simulations including one using only
hypercollisions. The Hermite free energy spectra maintain a (largely) constant power
law over the collisionality scan in the n range where collisional dissipation is negligible
compared to the phase mixing terms. The end of this ‘inertial’ range is denoted by
the critical Hermite numbers nc; as seen in Fig. 8, the spectra begin to deviate from a
power law shortly preceding these critical Hermite numbers. The (hyper-)collisional
dissipation spectra are also shown in Fig. 8; for the collisional cases, the dissipation
peaks at the large velocity space scales but spreads farther to smaller scales as the
collisionality decreases.

The n dependence of the collisional dissipation is also key to understanding the
dissipation scales in the full phase space. Energy is injected at large phase space
scales (low kz and k⊥ in real space, and n = 2 in Hermite space), and is thereafter
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Figure 8. (Colour online) Hermite free energy spectra and collisional dissipation spectra
(including hypercollisions) for three simulations: ν = 0.0047 (dotted line), ν = 0.0015
(dashed-dotted), and ν = 0 (only hypercollisions) (dashed). The critical Hermite numbers for
the collisional dissipation (marked with xs) are nc = �kz/ν = (21, 67) for the two collisional
cases, and the critical Hermite numbers for the hypercollisions (marked with + symbols) are
nc = (νh/8�kz)

−1/8nmax = (40, 92, 145) respectively.

subject to energy transfer simultaneously to larger n and k⊥. Since the collisional
dissipation peaks at low n and the spectrum decreases with k⊥, this means that energy
is transferred to increasingly less-dissipative regions of phase space. As a result, the
collisional dissipation will always peak at large scales in phase space. This does not
imply, however, that small scales are unimportant; as the collisionality decreases, the
dissipation spreads to increasingly smaller scales so that in an integrated sense the
small scales can provide the dominant energy sink.

This phase space dependence of the dissipation is illustrated in Fig. 9, which shows
the n- and k⊥-resolved (summed over kz) dissipation from collisions and perpendicular
hyperdiffusion for simulations using a broad range of collision frequencies. The
dissipation is dominated by k⊥ hyperdiffusion (large scale in n and small scale in k⊥)
in the lowest collisionality case (Fig. 9(a)) and transitions to large scale (in k⊥ and n)
collisional dissipation as collisionality increases [Figs. 9(b)–(d)]. Note that the strong
peaking of the hyperdiffusion in phase space is somewhat deceptive – in the full
physical system (including perpendicular velocity space dynamics and a sufficiently
large range of small scale wavenumbers k⊥ρi > 1), as collisionality decreases, the
energy would be distributed and dissipated throughout a progressively larger range
of scales (rather than peaking sharply at k⊥ρi ≈ 1.5 as in Fig. 9).

6. Transition between saturation regimes
The relative importance of large and small scales with respect to dissipation is

determined by the competition between the collisional dissipation and the nonlinear
energy transfer to k⊥ρi > 1; higher collisionality means that more energy is dissipated
as it is transferred to higher n and k⊥, whereas faster nonlinear transfer channels
energy more quickly to k⊥ρi > 1 before it can be dissipated. In (Hatch et al. 2013), the
temperature gradient scale length (which determines the growth rate and by extension
the saturation amplitude of φ and the nonlinear transfer rate) is taken to parameterize
the nonlinear transfer rate so that the parameter LT /LC = (νLn/vti)(LT /Ln), where
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Figure 9. (Colour online) Dissipation spectra (including collisions, hypercollisions, and k⊥
hyperdiffusion) in Hermite and k⊥ space (summed over kz) for a series of simulations with
increasing collisionality. As collisionality increases, the dissipation shifts from mostly high-k⊥
(from hyperdiffusion) to mostly low-k⊥ (from collisions).

LC is the collisional mean free path, is shown to determine a transition between
small-scale and large-scale saturation regimes. Here we verify this result with toroidal
full gyrokinetic simulations using the Gene code.
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We examine a set of high-resolution Gene simulations representing both ITG and
electron temperature gradient (ETG) turbulence, scanning ν and R/LT (R is the major
radius), with the remaining parameters centered on the Cyclone Base Case parameter
set: normalized density gradient scale length R/Ln = 2.22, magnetic shear ŝ = 0.79
(ŝ = 0.1 for the ETG cases), safety factor q0 = 1.4, and inverse aspect ratio ε = 0.18.
The simulations use an s-α equilibrium (with α = 0). The Gene collision operator is a
comprehensive linearized Landau–Boltzmann collision operator that includes energy
and pitch angle scattering as well as conservation terms (Merz 2009; Doerk 2013). We
scan collision frequencies ranging from νR/vti = 0.0086 to 0.165, and three different
temperature gradient scale lengths: R/LT = 6.96 and R/LT = 9.5, which are strongly
turbulent, and R/LT = 5.0 which is near-threshold. The electrons (ions) are taken to
be adiabatic in the ITG (ETG) case. The definition used for the collision frequency
is νss = e4ns0T

−3/2
s0 m−1/2

s

√
2πln(Λ), where s denotes the particle species (ions for ITG

and electrons for ETG), and ln(Λ) is the Coulomb logarithm.
The simulations use (120, 120, 48, 48, 16) grid points in the (kx, ky, z, v||, μ)

coordinates, respectively (the perpendicular resolution is increased to 160 for the
ETG cases). For the perpendicular wavenumbers this resolution represents the total
number of Fourier modes, so that with a box size of Lx = Ly = 125.6ρi the
simulations resolve up to kmaxρi = 2.95 (3.95 for the ETG simulations).

In (Hatch et al. 2013), a comparison was made between collisional dissipation
in parallel velocity space and perpendicular hyperdiffusion. Here we choose the
parameter Dk⊥<1/Dk⊥>1 – the ratio of dissipation at large scales (k⊥ρi < 1.0) to
dissipation at small scales (k⊥ρi > 1.0) – as a simple metric for measuring the
relative importance of large- and small-scale dissipation. Numerical convergence was
established for this parameter at the lowest collisionality R/LT = 6.96 ITG case. As
discussed above, linear phase mixing (and the associated collisional dissipation in
parallel velocity space) operates at all k⊥ scales, while nonlinear phase mixing (and
the associated collisional dissipation in perpendicular velocity space) is negligible at
scales larger than the gyroradius. Thus the small-scale contribution Dk⊥>1 should
be considered an upper bound on the dissipation attributable to collisions in
perpendicular velocity space that are facilitated by nonlinear phase mixing. For these
Gene simulations the dissipation comes from two sources – collisional dissipation and
fourth-order hyperdiffusion in the parallel coordinate. The latter is always a small
fraction of the total dissipation and mostly confined to small perpendicular scales. The
results for the strongly-turbulent cases are shown in Fig. 10, which shows Dk⊥<1/Dk⊥>1

over a range of LT /LC along with a subset of the DNA results from (Hatch et al.
2013). In spite of the several differences in the models (the Gene simulations include
perpendicular velocity dynamics, toroidal geometry, and sub-gyroscale dynamics),
the DNA results and the Gene results show general agreement in the dissipation
scales, indicating that the major conclusions drawn from the DNA simulations are
likely to hold for a broad range of gradient-driven turbulence scenarios. The Gene

results show a higher degree of spread in Dk⊥<1/Dk⊥>1 for a given LT /LC , which
is likely an indication that the temperature gradient scale length is a less accurate
indicator of the nonlinear energy transfer rate in the systems studied with Gene

simulations.
The near-threshold Gene simulations (R/LT = 5.0) deviate strongly from the other

cases, showing a stronger preference for large-scale dissipation for both the ETG and
ITG cases, as seen in Fig. 11. This is a result of both linear and nonlinear processes:
the maximum linear growth is relatively more strongly decreased in the R/LT = 5.0
case than the other cases [for the gradient scan, the growth rate roughly follows the



Phase space scales of free energy dissipation 547

Figure 10. (Colour online) The ratio of dissipation at large scales (Dk⊥<1) to dissipation
at small scales (Dk⊥>1) for ITG and ETG simulations scanning collision frequency and
temperature gradient scale lengths.

Figure 11. (Colour online) The ratio of dissipation at large scales (Dk⊥<1) to dissipation at
small scales (Dk⊥>1) for near-threshold (R/LT = 5.0) ITG and ETG simulations scanning
collision frequency. The near-threshold cases exhibit much more large-scale dissipation than
the strongly turbulent cases shown in Fig. 10.

relation γR/vti ∼ 0.1(R/LT − 4.35)], and for the ITG simulations the relative zonal
flow amplitude is disproportionately amplified in the R/LT = 5.0 case.

In order to put these collisionality scans in the context of present-day fusion
devices, we compare the collision frequencies used in the Gene simulations with the
experimental ν∗ scans described in (Petty 2008). The range of collision frequencies
used in the Gene simulations (νR/vti = 0.0086−0.165) translates to the range ν∗ =

e2nq0

ε5/2T 3/2m
1/2
i

(a/vti) = 6.1 × 10−3 − 0.12, which covers the lower-collisionality portion of

Fig. 2 of (Petty 2008). The collisionality scans for some experiments, notably NSTX
and Alcator C-Mod, extend to collision frequencies higher than those represented in
our scans. It is reasonable to conclude that turbulence in present-day experiments is
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characterized by dissipation that is roughly evenly distributed between large and small
scales, tending somewhat toward large-scale dissipation scenarios. Near-threshold
cases are expected to tend more strongly to large-scale dissipation.

When extrapolating to ITER, two factors should be taken into account. First,
collisionality will decrease by approximately an order of magnitude (Petty 2008),
and second, the turbulence is expected to tend more toward near-threshold cases,
given that the heat flux in gyro-Bohm units will decrease with respect to present-day
machines (due, in particular, to the T 5.2 dependence of the gyro-Bohm heat flux which
is only partially compensated by other plasma parameter changes). The former effect
will favor small-scale dissipation, while the latter will favor large-scale dissipation. We
also note that most space and astrophysical plasmas are substantially less collisional
than fusion plasmas, so that nonlinear phase mixing is expected to be a crucial
dissipation mechanism in such systems.

7. Summary and discussion
This paper describes a detailed study of the phase space scales of free energy

dissipation in gradient-driven gyrokinetic turbulence. The fully spectral DNA code,
employing a Hermite representation in parallel velocity space, was used to solve
a reduced-gyrokinetic system in conjunction with full gyrokinetic simulations using
the Gene code. The Hermite representation used in the reduced model facilitates
a detailed study of the energy cascade and resulting dissipation in parallel velocity
space scales.

As a first step, the scaling of the Hermite free energy spectrum was examined and
found to be much steeper than would be expected linearly. This is due to two factors.
First, critical balance was shown to extend to small scales in velocity space (i.e. to high
Hermite numbers n). This n-dependent critical balance modifies the energy evolution
equation, increasing the Hermite spectrum from n−1/2 to n−1. The critically-balanced
energy equation, in turn, allows the phase mixing cascade to be balanced by an
energy sink that is proportional to the free energy spectrum (k⊥ hyperdiffusion in
the present model), further steepening the Hermite spectrum. An expression for the
Hermite free energy spectrum was derived and shown to match numerical results in
both the power-law inertial range and the exponential decay range.

The consequence of the steep Hermite spectra is that dissipation spectra (scaling like
n times the free energy for collisions in v||) will always peak at large scales in velocity
space. Spectra scaling like n−1.85 were observed in the DNA simulations, resulting
in strongly decreasing collisional dissipation spectra (scaling like nεn ∝ n−0.85). Since
energy is injected at the n = 2 Hermite polynomial, this means that dissipation also
peaks at large spatial scales, consistent with earlier studies of gyrokinetic dissipation.
Nonetheless small-scale dissipation, like collisional dissipation in perpendicular
velocity space due to nonlinear phase mixing, can become dominant in an integrated
sense when the collisionality becomes small enough and/or the nonlinear energy
transfer becomes large enough.

The relative importance of large-scale and small-scale dissipation was examined
in the context of the parameter LT /LC , where the temperature gradient scale length
R/LT is taken to roughly parameterize the nonlinear transfer rate. This parameter
determines a transition from predominantly small-scale dissipation (at very small
LT /LC) to predominantly large-scale dissipation as LT /LC increases. This transition,
originally identified in (Hatch et al. 2013) using the DNA code was verified using
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toroidal full-gyrokinetic simulations from the Gene code. The Gene simulations also
determined that near-threshold scenarios strongly favor large-scale dissipation.

Ranges of collision frequencies found in present-day experiments correspond to
regimes slightly favoring large-scale dissipation (assuming turbulence sufficently
distant from threshold). In ITER-like scenarios collision frequencies are much lower
(favoring small-scale dissipation), and turbulent regimes more likely to be near-
threshold (favoring large-scale dissipation). Low-collisionality space and astrophysical
plasma turbulence is expected to strongly favor small-scale dissipation.

From the perspective of fundamental turbulence studies, the value of this work lies
in its elucidation of free energy spectra in velocity space and the resulting phase space
dependence of dissipation. We do not expect that the Hermite free energy spectra
derived here are universal. However, the underlying phenomena are not limited to the
gradient-driven systems studied here. The extension of critical balance to high-order
moments is expected to be manifest in other low-collisionality, magnetized plasma
turbulence scenarios. Likewise, the increasing (with n) nonlinear correlation time and
the n-independent energy sink, both of which serve to steepen the Hermite spectrum,
are likely manifest in various ways in other scenarios. We thus expect Hermite spectra
significantly steeper than the linear n−1/2 scaling to be quite universal. Moreover,
we conclude that in general, dissipation in gyrokinetic turbulence is fundamentally
different than its fluid counterpart: dissipation is not a fundamentally small-scale
phenomenon (even in velocity space) – it peaks at large scales in the full phase space
and spreads to smaller scales in less-collisional, more nonlinear regimes. As such,
there is often little scale separation between drive and dissipation scales, and no k⊥
inertial range in the conventional sense (i.e. a range whose contribution to the total
dissipation is negligible).

From a practical standpoint, this work is expected to facilitate and inform reduced
modeling efforts, whose goal is to accurately resolve the large-scale low-order moments
that determine transport fluxes while modeling small-scale processes with reduced
resolution. Examples are Large Eddy Simulation techniques and gyrofluid approaches.
Moreover, as the purview of gyrokinetics expands to previously unexplored parameter
regimes (e.g. the plasma edge (Jenko et al. 2009; Scott et al. 2010; Wan et al. 2012),
ITER, stellarators (Xanthopoulos et al. 2007; Nunami et al. 2012; Helander et al.
2013), and magnetic reconnection (Numata et al. 2011; Pueschel et al. 2011; TenBarge
et al. 2014), care must be taken to ensure that dissipation processes are modeled in
ways that preserve the accurate resolution of desired quantities. The fundamental
understanding of dissipation provided by this work will contribute to a foundation
from which such considerations can be rigorously made.
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Appendix. Steady state n � 1 free energy equation
The steady state (∂/∂t → 0) energy equation for n > 2 is

	
[
ikzπ

1/2
(√

nf̂ ∗
k,nf̂k,n−1 +

√
n + 1f̂ ∗

k,nf̂k,n+1

)]
= N

(f )
k,n − νπ1/2|f̂k,n|2. (A1)

Using the transformation (Zocco and Schekochihin 2011) f̃n = (isgn(kz))
nf̂n, where

sgn(kz) denotes the sign of kz, this can be re-expressed as

	
[
|kz|π1/2

(
−

√
nf̃ ∗

k,nf̃k,n−1 +
√

n + 1f̃ ∗
k,nf̃k,n+1

)]
= N

(f )
k,n − νπ1/2|f̃k,n|2. (A2)

In the following, we focus on the phase mixing terms [LHS of (A2)], which will be
denoted with the notation PM.

The following decomposition is used to separate the amplitude information from
the time dependence and phase information:

g̃k,n(t) = ak,nhk,n(t), (A3)

where ak,n = 1
T
(
∫ t1+T

t1
|g̃k,n|2dt)1/2 and hk,n(t) = g̃k,n(t)/ak,n. Now using the definitions

δk,n+1 = ak,n − ak,n+1,

δk,n−1 = −ak,n + ak,n−1, (A4)

and

σk,n±1 = 	
[
h∗

k,nhk,n±1

]
, (A5)

PM can be rewritten as

PM = |kz|π1/2(−σn−1

√
na2

n − σn−1

√
nanδn−1

+ σn+1

√
n + 1a2

n+1 − σn+1

√
n + 1an+1δn+1), (A6)

which thus far entails only a reformulation of the phase mixing terms in (A1) without
any approximations (wave vector subscripts have been suppressed for clarity).

The approximations δn±1 → 0 (approached for n � 1) and σn±1 → 1 produce

PM ≈ 2|kz|
(√

n + 1ε2
n+1 −

√
nε2

n

)
, (A7)

which is a discretized version of PM in (9).

REFERENCES

Armstrong, T. P., Harding, R. C., Knorr, G. and Montgomery, D. 1970 Methods in Comput. Phys.
9, 29.

Barnes, M., Parra, F. I. and Schekochihin, A. A. 2011 Phys. Rev. Lett. 107, 115003.

Bratanov, V., Jenko, F., Hatch, D. R. and Brunner, S. 2013 Phys. Plasmas 20, 022108.

Bratanov, V., Jenko, F., Hatch, D. R. and Wilczek, M. 2013 Phys. Rev. Lett. 111, 075001.

Cerri, S. S. 2013 private communication.

Doerk, H. 2013 Gyrokinetic simulation of microtearing turbulence. PhD thesis, Universität Ulm.

Dorland, W. and Hammett, G. W. 1993 Phys. Fluids B 5, 812.

Doyle, E. J. et al. 2007 Nucl. Fusion 47, S18.

Garbet, X., Idomura, Y., Villard, L. and Watanabe, T. H. 2010 Nucl. Fusion 50, 043002.

Goldreich, P. and Sridhar, S. 1995 Astrophys. J. 438, 763.

Görler, T. and Jenko, F. 2008 Phys. Plasmas 15, 102508.

Grant, F. C. and Feix, M. R. 1967 Phys. Fluids 10, 1356.

Hammett, G. W., Beer, M. A., Dorland, W., Cowley, S. C. and Smith, S. A. 1993 Plasma Phys.
Control. Fusion 35, 973.



Phase space scales of free energy dissipation 551

Hammett, G. W., Dorland, W. and Perkins, F. W. 1992 Phys. Fluids B 4, 2052.

Hatch, D. R., del-Castillo-Negrete, D. and Terry, P. W. 2012 J. Comp. Phys. 231, 4234.

Hatch, D. R., Jenko, F., Navarro, A. B. and Bratanov, V. 2013 Phys. Rev. Lett. 111, 175001.

Howes, G. G. et al. 2006 Astrophys. J. 651, 590.

Howes, G. G. et al. 2011a Phys. Rev. Lett. 107, 035004.

Hatch, D. R. et al. 2011b Phys. Rev. Lett. 106, 115003.

Hatch, D. R. et al. 2011c Phys. Plasmas 18, 055706.

Helander, P., Beidler, C. D., Bird, T. M., Drevlak, M., Feng, Y., Hatzky, R., Jenko, F., Kleiber, R.,
Proll, J. H. E., Turkin, Y. and Xanthopoulos, P. 2013 Plasma Phys. Control. Fusion 54, 124009.

Jenko, F., Dorland, W., Kotschenreuther, M. and Rogers, B. N. 2000 Phys. Plasmas 7, 1904.

Jenko, F., Told, D., Xanthopoulos, P., Merz, F. and Horton, L. D. 2009 Phys. Plasmas 16, 055901.

Krommes, J. 2012 Annu. Rev. Fluid Mech. 44, 175.

Landau, L. 1946 J. Phys. USSR 10, 25.

Lenard, A. and Bernstein, I. B. 1958 Phys. Rev. 112, 1456.

Loureiro, N. F., Schekochihin, A. A. and Zocco, A. 2013 Phys. Rev. Lett. 111, 025002.

Makwana, K. D., Terry, P. W., Pueschel, M. J. and Hatch, D. R. 2014 Phys. Rev. Lett. 112 095002.

Merz, F. 2009 Gyrokinetic simulation of multimode plasma turbulence, PhD thesis, Universität
Münster.

Navarro, A. B., Teaca, B., Jenko, F., Hammett, G. W., Happel, T. and the ASDEX Upgrade Team,
2014 Phys. Plasmas 21, 032304

Navarro, A. B. et al. 2011a Phys. Plasmas 18, 092303.

Navarro, A. B. et al. 2011b Phys. Rev. Lett. 106, 055001.

Numata, R., Dorland, W., Howes, G. G., Loureiro, N. F., Rogers, B. N. and Tatsuno, T. 2011 Phys.
Plasmas 18, 112106.

Nunami, M., Watanabe, T.-H., Sugama, H. and Tanaka, K. 2012 Phys. Plasmas 19, 042504.

Parker, S. E. et al. 1994 Phys. Plasmas 1, 1461.

Petty, C. C. 2008 Phys. Plasmas 15, 080501.

Plunk, G., Cowley, S. C., Schekochihin, A. and Tatsuno, T. 2010 J. Fluid Mech. 664, 407.

Plunk, G. G. and Tatsuno, T. 2011 Phys. Rev. Lett. 106, 165003.

Plunk, G. G., Tatsuno, T. and Dorland, W. 2012 New J. Phys. 14, 103030.

Pueschel, M. J., Jenko, F., Told, D. and Büchner, J. 2011 Phys. Plasmas 18, 112102.
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