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a b s t r a c t

The understanding and prediction of transport due to plasma microturbulence is a key
open problem in modern plasma physics, and a grand challenge for fusion energy research.
Ab initio simulations of such small-scale, low-frequency turbulence are to be based on the
gyrokinetic equations, a set of nonlinear integro-differential equations in reduced (five-
dimensional) phase space. In the present paper, the extension of the well-established
and widely used gyrokinetic code GENE [F. Jenko, W. Dorland, M. Kotschenreuther, B.N.
Rogers, Electron temperature gradient driven turbulence, Phys. Plasmas 7 (2000) 1904–
1910] from a radially local to a radially global (nonlocal) version is described. The neces-
sary modifications of both the basic equations and the employed numerical methods are
detailed, including, e.g., the change from spectral methods to finite difference and interpo-
lation techniques in the radial direction and the implementation of sources and sinks. In
addition, code verification studies and benchmarks are presented.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

One of the key physics problems on the way to efficient fusion power plants based on toroidal magnetic confinement is
the thorough understanding and reliable prediction of the so-called anomalous transport of heat, momentum, and particles
across the magnetic surfaces (hereafter referred to as the radial direction). This effect, which significantly degrades the qual-
ity of the plasma confinement (thus preventing burning plasmas in present-day experiments), is commonly attributed to
small-scale (roughly comparable to the ion or electron gyroradius), low-frequency (much smaller than the ion and electron
gyrofrequency) turbulence driven by microinstabilities which extract free energy from the background temperature and
density gradients.

Since the high-temperature, low-density fusion plasmas are only weakly collisional, kinetic theory provides the appropri-
ate framework for their theoretical description. In principle, this would amount to solving self-consistently one Vlasov equa-
tion per particle species for the respective six-dimensional distribution function together with Maxwell’s equations. For the
study of microturbulence, this system includes many irrelevant spatio-temporal scales, however, and moreover, it is (still)
inaccessible to well-resolved numerical simulations. To remedy this situation, the so-called (nonlinear) gyrokinetic approach
[1] has been developed since the 1980s, which eliminates fast dynamics (like the gyromotion of the particles as well as
plasma waves or compressional Alfvén waves) but retains the complete low-frequency physics, expressed in terms of
five-dimensional distribution functions (the gyrophase-dependence is removed) and three scalar fluctuating fields (the
electrostatic potential, the parallel component of the vector potential, and the parallel component of the magnetic field).
As it turns out, such a description is perfectly suited to study gradient-driven microturbulence in magnetized plasmas.
. All rights reserved.
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Various gyrokinetic codes have been developed since the 1990s (many of them are discussed, e.g., in Ref. [2]), differing
primarily in the following ways: (1) the employed algorithms may be of Eulerian (grid-based), Lagrangian (particle-based),
or semi-Lagrangian type – using a df splitting or not; (2) the physics models may be reduced with respect to the full gyroki-
netic system (neglecting, e.g., kinetic electrons and/or electromagnetic effects); (3) the geometry treatment may be based on
realistic magnetohydrodynamic (MHD) equilibria or on simplified models; (4) the simulation domain may range from a
(radially local) flux-tube to the full torus (including nonlocal effects); (5) the codes may be accessible only to the code
authors or to a wider user community. The GENE code [3], which was first developed [4] (starting in 1999) by Jenko at
IPP Garching, and later extended by various co-workers and collaborators (see, e.g., Refs. [5–9]), is a comprehensive Eulerian
df code (retaining full physics contents and geometry input) which is publicly available and has a world-wide user base.
GENE is portable to a large number of supercomputer architectures and usually scales well up to the maximum number
of available processors (see, e.g., Refs. [7,10]). While the original version was restricted to a radially local flux-tube treatment,
a full-torus (global) version of GENE has recently been developed in the context of a close collaboration of the authors of the
present paper from IPP Garching and EPFL Lausanne. The key steps which were necessary for this extension will be described
below.

Before that, a few more explanations concerning the differences between local and global simulations may be in place,
however. Since the typical radial correlation lengths of turbulence driven by the most common microinstabilities like ion
temperature gradient modes or trapped electron modes tend to be in the range of only several ion gyroradii (those of elec-
tron temperature gradient modes are still smaller), it seems justified to neglect radial variations of the background profiles
and the magnetic geometry in the context of flux-tube simulations as long as the corresponding scale lengths are sufficiently
disparate from the correlation lengths. This may be assumed to hold in the core region (except for discharges with internal
transport barriers) of larger present-day or future tokamaks like JET or ITER, and to a significant degree also for medium-size
machines like ASDEX Upgrade or DIII-D. Here, all profiles are evaluated just at a single radial position so that, e.g., temper-
atures and densities are constant throughout the whole radial simulation domain. First order derivatives appearing explicitly
in the gyrokinetic equations are kept as well in order to retain, e.g., the linear gradient drive terms, as can be justified by
means of a multiscale approach. For convenience, periodic boundary conditions are then often used in the radial direction,
automatically keeping the (average) background gradients fixed and facilitating the use of spectral techniques. The latter, in
turn, allow for a simple and very accurate computation of corresponding derivatives and operators in the gyrokinetic equa-
tions as will be shown later. With all these simplifications, however, one implicitly assumes a gyro-Bohm transport scaling,
i.e. a Bohm scaling reduced by the gyroradius-to-machine-size ratio q⁄where the latter has to be small. In order to determine
the limit of such a-priori scalings and in order to capture meso-scale effects like heat flux avalanches (see, for instance, Refs.
[11–14]) one thus has to rely on global (as opposed to local) codes where the radial simulation box sizes can extend up to the
full machine size, therefore covering full radial temperature, density and geometry profiles. In this case, periodic boundary
conditions are inappropriate and have to be replaced, leading to major changes in the underlying numerical schemes. Nev-
ertheless, as the correct prediction of the transport scaling represents a crucial task for the development of future fusion de-
vices, sufficient motivation is provided to tackle this effort – in particular, as most of the existing global simulation results
have been obtained employing reduced physics, e.g., adiabatic electrons.

The aim of the present paper is to describe the corresponding modifications of the previously solely local GENE code (for
some additional details, see Refs. [15,16]) in order to meet the aforementioned requirements for the investigation of nonlocal
effects. It is organized as follows. In the next section, the basic equations will be presented. In Section 3, the numerical imple-
mentations are discussed, followed by presentations of verification and validation studies in Section 4. Finally, a summary
and conclusions are detailed in Section 5.
2. Theoretical background

2.1. Gyrokinetics

Both theoretical considerations and experimental observations indicate that the turbulent fluctuations of various plasma
quantities in the core of fusion experiments obey the so-called gyrokinetic ordering [1]. According to the latter, the fluctu-
ations are highly anisotropic (the parallel correlation lengths typically exceed the perpendicular ones by 2–3 orders of mag-
nitude), of small amplitude (compared to the respective mean values), and of low frequency in relation to the gyrofrequency:
kk
k?
� q/1

T
� n1

n
� T1

T
� B1

B
� x

X
� �� 1: ð1Þ
Here, kk and k\ denote, respectively, the characteristic wave numbers parallel and perpendicular to the background magnetic
field, q is the charge, /1, n1, T1, and B1 the fluctuating parts of the electrostatic field /, the density n, the temperature T and the
magnetic field B. Furthermore, x denotes a characteristic fluctuation frequency, X = jqjB/(mc) is the gyrofrequency and � is a
smallness parameter. In addition, the perpendicular turbulence length scales typically satisfy
q
LG
� �� 1; ð2Þ
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with the gyroradius q ¼
ffiffiffiffiffiffiffiffiffiffi
T=m

p
=X and the characteristical gradient length LG of temperature, density, and magnetic field.

Based on those orderings, it is reasonable to employ a reduced description of the particle dynamics, i.e., to find – e.g., with
the help of Lie perturbation methods [1] – a set of coordinates for which the gyroangle remains a cyclic variable even in the
presence of fluctuating fields. The fast particle gyromotion in a nearly constant background field can thus be substituted by a
gyro-ring description, so that the six-dimensional set of particle space and velocity coordinates (x,v) is replaced by five so-
called gyrocenter coordinates (X,l,vk) where X is the gyrocenter position, l ¼ mv2

?=ð2BÞ is the magnetic moment, and vk/v\
are the velocity components parallel/perpendicular to the magnetic field.

2.2. The gyrokinetic Vlasov equation

The accordingly transformed so-called full-f Vlasov equation of the species r then reads [1]
@Fr

@t
þ dX

dt
� rFr þ

dvk
dt

@Fr

@vk
þ dl

dt
@Fr

@l
¼ 0 ð3Þ
in advection equation form, with
dX
dt
¼ vkb̂0 þ

B0

B�0k
v�n þ vrB þ vc
� �

;

dvk
dt
¼ �dX=dt

mrvk
� qrr�/1 þ

qr

c
b̂0
@A1k

@t
þ lrB0

 !
;

and
dl
dt
¼ 0

ð4Þ
in the low b limit where the thermal to magnetic pressure ratio b � 8pp0=B2
0 is less than a few percent as in most present-day

tokamaks. Here, B0 denotes the modulus of the magnetic field vector B0, b̂0 ¼ B0=B0 the corresponding unit vector,
B�0k ¼ b̂ � B�0 the parallel component of B�0 ¼ B0 þr� ðB0vk=XÞ, �n1 ¼ �/1 �

vk
c A1k the gyroaveraged modified potential,

v�n ¼ c
B2

0
B0 �r�n1 the generalized E � B velocity, vrB0 ¼

lc
qrB2

0
B0 �rB0 the gradient-B velocity, and vc ¼

v2
k

Xr
r� b̂0

� �
?

the cur-

vature drift velocity which can alternatively be expressed as vc ¼
v2
k

Xr
b̂0 � rB0

B0
þ b

2
rp0
p0

h i� �
. Overbars denote gyroaverages being

defined as
�/1ðXÞ � G /1ðXÞ½ 	 � 1
2p

I
dh/1ðXþ rðhÞÞ ð5Þ
with the gyroaverage operator G and the gyroradius vector r(h) being orthogonally aligned to the magnetic field.
The gyrokinetic Vlasov equation can be rewritten and also further simplified in the context of a df splitting of the total

distribution function into an equilibrium part F0 – here, a local Maxwellian – and a fluctuating part F1. According to the gyr-
okinetic ordering, one has F1/F0 � � which can be applied to Eq. (3). Hence, keeping only first order terms in �, the rn � B
nonlinearity is retained while higher-order terms like the so-called vk-nonlinearity are neglected in line with careful studies
in Refs. [17–19]. Finally, a new variable
g1r ¼ F1r �
qr

mrc
A1k

@F0r

@vk
ð6Þ
will be used in the following in order to combine the two time derivatives appearing in Eq. (3).

2.2.1. Field aligned coordinates
Taking advantage of the anisotropic character of the turbulent fluctuations, the GENE code utilizes a field aligned coor-

dinate system (x,y,z) in which x is a radial coordinate acting as a flux-surface label, z is a parallel coordinate, and y is a binor-
mal coordinate. Given that the parallel correlation lengths exceed the perpendicular ones by 2–3 orders of magnitude, this
procedure helps to save a respective number of grid points compared to a simple geometry setup ignoring this feature. The x
and y directions are related to the equilibrium field via the relation
B0 ¼ CðxÞ$x� $y; ð7Þ
where CðxÞ is a transformation function which generally depends on the flux surface and which is defined by the specific
MHD equilibrium. The corresponding Jacobian and the metric read
J�1 ¼ ðrx�ryÞ � rz ¼ B0 � rz
CðxÞ ð8Þ
and
g ¼ ðgijÞ ¼ ðrui � rujÞ ð9Þ
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with i, j = (1,2,3) and u(1,2,3) = (x,y,z). Furthermore, the combined metric coefficients c1 = gxxgyy � gxygyx, c2 = gxxgyz � gyxgxz

and c3 = gxygyz � gyygxz will be used in the following sections. More details may be found, e.g., in Refs. [20,15,16].

2.2.2. Normalization
In the context of numerical simulations, appropriately normalized equations are generally called for. Here, all physical

quantities will be expressed in terms of a dimensional quantity usually identifiable by the index ’ref’ and a dimensionless
prefactor, earmarked with a hat. The basic reference values are the elementary charge e, a reference mass mref, a reference
temperature Tref, a (macroscopic) reference length Lref and a reference magnetic field Bref, so that e.g., the charge of the rth
species can be written as qr ¼ eq̂r. Moreover, some composed quantities are used, which are the reference velocity
cref ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tref=mref

p
, the reference gyrofrequency Xref = eBref/(mrefc), the reference gyroradius qref = cref/Xref and the reference

thermal to magnetic pressure ratio bref ¼ 8pnref Tref=B2
ref . With those definitions, the gyrocenter coordinates and time are nor-

malized as listed in Table 1 where vTrðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T0rðxÞ=mr

p
¼ cref v̂TrðxÞ denotes the thermal velocity of the rth species at ra-

dial position x. While on the one hand, a separation of scales due to different masses has been taken into account, it is not
desirable to normalize the velocity space coordinates to radially dependent temperature profiles since such an approach
would require additional interpolation schemes in corresponding derivatives or integrations. Thus, temperatures in velocity
space normalization factors are just taken at a reference position x0 which may for instance correspond to the center of the
simulation domain or the position at which the profiles reach half of their maximum. However, their species dependence is
still taken into account which allows for a velocity space adaption to highly separated temperature profiles which might for
instance happen during strong electron heating. Finally, it should be noted that the parallel coordinate z is considered to be
dimensionless (angle-like), the corresponding length scale hence appears in the metric normalization.

The potentials, fields and distribution functions are chosen to be expressed as shown in Table 2 where again radial depen-
dencies are only present in the normalized distribution functions itself. For further clarification, the normalized equilibrium
part shall be given explicitly considering the previously mentioned local Maxwellian
bF 0rðxÞ ¼
n̂prðxÞ

½pbT prðxÞ	3=2
e
�

v̂2
k þl̂bB0 ðxÞbTpr ðxÞ ; ð10Þ
where additional abbreviations have been introduced for density and temperature profiles which are normalized to their
value at the reference position x0,n̂pr ¼ n0rðxÞ=n0rðx0Þ and bT pr ¼ T0rðxÞ=T0rðx0Þ. Finally, the (combined) metric coefficients
are given in the units being presented in Table 3.

With the aforementioned approximations and definitions, the normalized version of the gyrokinetic Vlasov-equation, Eq.
(3), reads
@ĝ1r

@t̂
¼ Vn;y@ŷ

�̂n1 þ VC;xĈr;x þ VC;yĈr;y �
bB0bB�0k

1bC @ x̂
�̂n1Ĉr;y � @ŷ

�̂n1Ĉr;x

� �
þ VC;zĈr;z þ VF1 ;vk

@bF 1r

@v̂k
þ VF0

bF 0r ð11Þ
with the abbreviations
Ĉr;i ¼ @ i
bF 1r þ

q̂rbT 0r

bF 0r@i
�̂/1: ð12Þ
Table 1
Normalization of the gyrocenter coordinates and time.

x y z vk l t

qref qref 1 vTr(x0) T0r(x0)/Bref Lref/cref

Table 2
Normalizations of the fields and the distribution functions.

/1 A1k F0r F1r

Tref
e

qref
Lref

qref Bref
qref
Lref

n0rðx0Þ
v3

Trðx0Þ
qref
Lref

n0rðx0Þ
v3

Trðx0Þ

Table 3
Normalizations of the combined metric coefficients and further geometry related factors.

c1 c2 c3 J C

1 1/Lref 1/Lref Lref Bref
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and
bB�0kbB0

¼ 1þ bref

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂rbT 0rðx0Þ

2

s
ĵ0k

q̂rbB2
0

v̂k; ð13Þ
where the equilibrium current density j0k is normalized to e nrefcref. The first term on the right hand side of Eq. (11) including
the prefactor
Vn;y ¼ �
1bC
bB0bB�0k

Lref

Lnr

þ Lref

LTr

v̂2
k þ l̂bB0bT pr

� 3
2

 !" #bF 0r
represents the linear drive term which is a function of the logarithmic radial density and temperature background gradients,
L�1

nr
ðx0Þ ¼ �@x ln n0rjx0 , and L�1

Tr
ðx0Þ ¼ �@x ln T0rjx0 . In local codes where the gyroradius is considered to be infinitesimally small

compared to the tokamak minor radius, i.e. q⁄ = q/a ? 0, those gradients and all other (slowly) radially varying equilibrium
functions A(x) are now evaluated at a single flux surface at x = x0 following the approximation
AðxÞ ¼ Aðx0Þ þ
@A

@ðx=LrefÞ

����
x0

x� x0

Lref
� Aðx0Þ þ

@A
@ðx=LrefÞ

����
x0

Oðq�Þ:
However, in the global code, radial variations being in line with the aforementioned orderings are taken into account instead.
The linear drive is thus a function of the radial coordinate. The second and third term contain the combined curvature and
gradient-B prefactors
VC;x ¼ �
bT 0rðx0Þ

q̂r

l̂bB0 þ 2v̂2
kbB�0k bK x;
and
VC;y ¼ �
bT 0rðx0Þ
q̂r
bB�0k ðl̂bB0 þ 2v̂2

k ÞbK y � bref

v̂2
k p̂0bCbB0

Lref

Lp

" #
;

with the gradients of the equilibrium magnetic field bK x ¼ � 1bC Lref
Bref

@B0
@y þ

c2
c1

@B0
@z

� �
and bK y ¼ 1bC Lref

Bref

@B0
@x �

c3
c1

@B0
@z

� �
and the logarithmic

background pressure gradient L�1
p ¼ �@x ln p0ðxÞ. The remaining prefactors succeeding the nonlinearity (term 4 and 5) in Eq.

(11) are the parallel derivative prefactor
VC;z ¼ �v̂Trðx0Þ
bCbJbB0

v̂k;
the trapping term prefactor
VF1 ;vk ¼
v̂Trðx0Þ

2

bCbJbB0

l̂@ ẑ
bB0
and the F0 contribution term
VF0 ¼
bT 0rðx0Þ

q̂r

l̂bB0 þ 2v̂2
kbB�0k bK x �

Lref

Lnr

þ Lref

LTr

v̂2
k þ l̂bB0bT pr

� 3
2

 !" #
;

stemming from the gradient-B and curvature drifts being multiplied with rF0. In the current code version, the local
Maxwellian is considered as an exact equilibrium distribution and the above term is thus neglected, hence following an often
employed approach, see Ref. [21] and the discussion therein. The generalization to, e.g, a canonical Maxwellian or to precom-
puted neoclassical equilibria will be addressed in a future work. Anyway, linear simulations are not affected as this term just
acts on the ky = 0 mode in axisymmetric devices. Furthermore, even nonlinear simulations using this approximation can
exhibit an amazing level of agreement compared to simulations with a canonical Maxwellian as has been demonstrated
in Ref. [22].

2.3. The gyrokinetic field equations

2.3.1. Velocity space moments of the particle distribution function
Both in order to solve Maxwell’s equations (which are employed to determine the perturbed fields self-consistently) as

well as for diagnostic purposes, velocity space moments of the distribution functions – expressed in particle coordinates –
are required. Hence, the following considerations prove useful. Starting with the definition of the ath moment in vk and the
bth moment in v\,
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Mab;rðxÞ ¼
Z

d3vva
kv

b
?frðx;vÞ; ð14Þ
one arrives at the guiding-center formulation by applying the previously introduced transformation
Mab;rðxÞ ¼
Z

d3XdvkdldhJva
kv

b
? � dðXþ r� xÞFr;gcðX;vk;l; hÞ; ð15Þ
where the corresponding phase space Jacobian is given by J ¼ 1
m3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðxkmÞj

p
with the determinant of the Lagrange tensor, see

e.g., Ref. [23], jxkmj ¼ @C0;m

@Zk � @C0;k

@Zm

��� ��� ¼ m2B�0k. Employing now a first-order pull-back operator [1] in order to use the gyrocenter

instead of the guiding-center distribution function Fr,gc and considering a local Maxwellian as background distribution func-
tion yields to first order in �
Mab;rðxÞ ¼ p
Z Z

dvk dl0Gy
B�0k
B0

va
kðl0Þ

b
2v

b
2þ1
Tr F1r � qr

n0rvaþb
Tr

T0r
� ðaÞðb=2Þ!�

Z
dl0Gy

n0rvaþb
Tr

T0r
� ðaÞ l0ð Þb=2e�l0 G

( )
/1 ð16Þ
with the abbreviation
� ðaÞ ¼ IðaÞ þ 8pT0r

B2
0

j0k

qrvTr
Iðaþ 1Þ ð17Þ
for the vk integration where
IðaÞ ¼ 1ffiffiffiffi
p
p

Z 1

�1
dxxae�x2 ¼

0; a odd;
1; a ¼ 0;
1�3���ða�1Þffiffi

2
p a a even:

8><>: ð18Þ
Here, Gy denotes the adjoint operator of G, which represents gyroaverages of the form GyF � 1
2p

H
dhFðx� rðhÞÞ and l0 = lB0/

T0r has been introduced in order to improve the readability although the implementation is employing a l grid.

2.3.2. The gyrokinetic Poisson equation
The perturbed electrostatic potential is linked to the perturbed charge density by means of the Poisson equation
�r2/1ðxÞ ¼ 4p
X
r

n1rðxÞqr; ð19Þ
where r is running over all species and the density perturbation of the rth species n1r(x) = M00,r(x) is given by the (0,0)-
velocity space moment of the distribution function f1r(x,v) in particle coordinates. Using Eq. (16) and considering the flute-
like character of the turbulent fields, which allows to neglect parallel derivatives compared to perpendicular ones, leads to
�r̂2
?k̂

2
D þ

X
r

q̂2
r

n̂0rbT 0r
1�

Z
dl̂0Gy n̂0rbT 0r

e�l̂
0 G

" #( )
/̂1 ¼

X
r

n̂0rðx0Þq̂rp
Z Z

dv̂kdl̂GybB0
bF 1r ð20Þ
in normalized units. Here, k̂D ¼ kD
q ref
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

ref
4pnref mref c2

r
which can be identified as the normalized Debye length.

Adiabatic electrons. For basic investigations, the limit of massless/adiabatic electrons is often employed, in particular in
order to lower the computational costs. In this case, fluctuations of the electrostatic potential along the magnetic field lines
are almost instantaneously balanced by the electrons which implies a modified adiabaticity relation
n1e

n0e
¼ e

T0e
ð/1 � h/1iFSÞ: ð21Þ
Here, h� � �iFS denotes flux surface averaging [24] which is defined for an arbitrary function f(x) as
hf iFSðxÞ ¼
@

@V

Z
V

dV 0f ðxÞ ¼
Z Z

dydzf ðxÞJðxÞ
Z Z

dydzJðxÞ:
�

ð22Þ
Considering in addition a vanishing electron gyroradius and Debye length and neglecting magnetic field fluctuations, the
normalized Poisson equation in the adiabatic electron limit becomes
/̂1 ¼
n̂0ebT 0e

1þ
X
r–e

q̂2
r

n̂0rbT 0r
1�

Z
dl̂0Gy n̂0rbT 0r

e�l̂0 G
" #( )�1

� p
X
r–e

n̂0rðx0Þq̂r

Z Z
dv̂k dl̂GybB0

bF 1r þ 1
n̂0ebT 0e

h/̂1iFS

" #
:

The flux surface averaged potential is finally obtained by flux surface averaging the whole quasi-neutrality equation, thus
erasing the electron contribution. Assuming a separate and independent treatment of operators and potentials, it is given by
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h/̂1iFS ¼ p
X
r–e

n̂0rq̂r

Z Z
dv̂kdl̂GybB0

bF 1r

	 

FS
�
X
r–e

q̂2
r

n̂0rbT 0r
1�

Z
dl̂0Gy n̂0rbT 0r

e�l̂0 G
* +

FS

" #( )�1

: ð23Þ
2.3.3. Ampère’s law
Using the Coulomb gauge r � A = 0 and neglecting any equilibrium electric field, Ampère’s law can be expressed as
�r2
?A1k ¼

4p
c

j1k ¼
4p
c

X
r

qrM10;rðxÞ: ð24Þ
for the perturbed parallel component using the same approximations provided by the gyrokinetic ordering as, for instance, in
the derivation of Poisson’s equation. Replacing M10,r(x) by its explicit representation given in Eq. (16) and changing to nor-
malized quantities yields the following normalized equation
�r̂2
? þ bref

X
r

q̂2
r

Z
dl̂0Gy n̂0rIð2Þ

m̂r
e�l̂0 G

( )bA1k

¼ bref

2

X
r

q̂r n̂0rðx0Þv̂Trðx0Þp
Z Z bB�0kv̂kGyĝ1rdv̂kdl̂� bref

n̂0r ĵ0kbB2
0

Ið2Þ �
Z

dl̂0Gy n̂0r ĵ0kbB2
0

Ið2Þ e�l̂0 G
" #

/̂1

( )
; ð25Þ
where Ið2Þ is typically evaluated numerically in order to avoid the so-called Ampère cancellation problem [25] which other-
wise would stem from different treatments of the vk integration on the left and right hand side of Eq. (25).

2.4. The collision operator

As mentioned before, the low densities and high temperatures of fusion plasmas lead to low collisionalities. For certain
regimes, this may justify the use of a Vlasov treatment, focusing on indirect particle interactions via collectively generated
fields and neglecting collisions altogether. In general, however, direct particle interactions, to lowest order binary collisions,
constitute an important ingredient of the overall dynamics. Thus, an additional collision operator, here CðFr; Fr0 Þ, is con-
structed and added to the right hand side of the kinetic equation,
@Fr

@t
þ _X � rFr þ _l @Fr

@l
þ _vk

@Fr

@vk
¼
X
r0

CðFr; Fr0 Þ: ð26Þ
In GENE, collisions are modeled using a Landau–Boltzmann collision operator,
CðFr; Fr0 Þ ¼
@

@v
� D
$
� @
@v
� R

� �
Fr; ð27Þ
where D
$

denotes a diffusion tensor
D
$
¼ 2pq2

rq2
r0

m2
r

ln Kc
@2

@v@v

Z
d3v 0 v � v0j jFr0 ð28Þ
with the Coulomb logarithm lnKc (see, e.g., Ref. [26]), and the dynamical friction
R ¼ 4pq2
rq2

r0

mrmr0
ln Kc

@

@v

Z
d3v 0 Fr0

v � v0j j : ð29Þ
Consistently with the df approach, the collision operator is linearized as follows:
eC ¼ CðF0r; F1r0 Þ þ CðF1r; F0r0 Þ:
Further details can be found in Ref. [8].

2.5. Sources and sinks

In the absence of any explicit heat or particle source, the temperature and density profiles in a global nonlinear simulation
tend to relax. The corresponding gradients eventually get close to their critical values, the turbulence drive is strongly de-
creased, and a state close to marginality is reached. The goal of adding sources and sinks is thus to maintain a quasi-steady
state turbulence regime.

2.5.1. The Krook operator
When Dirichlet boundary conditions are considered in the radial direction for both the distribution function F1, as well as

the fluctuating fields /1 and Ak1, the temperature and density at both ends of the simulation domain are constrained to their
initial values, while a profile relaxation occurs in the center of the domain. This may lead to strong, unphysical profile
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variations close to the boundaries, which in turn can generate strong turbulence in the edge of the simulation box. In order to
avoid such behavior, an artificial Krook damping operator is applied in buffer regions. This operator is added to the right
hand side of the gyrokinetic Vlasov Eq. (11) and is defined as
ĥK ¼ �m̂KðxÞĝ1r; ð30Þ
where the profile function m̂KðxÞ is zero outside of the buffer regions, and is typically determined by a fourth order polyno-
mial ramp inside, as illustrated in Fig. 1. The maximal amplitude of mk is set to be comparable to the linear growth rates and
the width of the buffer regions typically represents 5 � 10% of the simulation domain on each sides.

2.5.2. The Krook-type heat source
In order to allow for quasi-steady state nonlinear simulations, an artificial Krook-type heat source is implemented in addi-

tion. This source, similar to the one described in Ref. [27], is applied over the whole radial simulation domain and is designed
to control the temperature profile, while conserving the flux-surface averaged density and parallel momentum. The follow-
ing term is thus added to the right hand side of the gyrokinetic Vlasov Eq. (11):
bSKðx; jvkj;lÞ ¼ �ĉh hbF 1rðX; jvkj;lÞi hbF 0rðX; jvkj;lÞi
h
R

dvhbF 1rðX; jvkj;lÞii
h
R

dvhbF 0rðX;vk;lÞii

" #
; ð31Þ
where h. . .i refers to the flux-surface average and
bF 1rðX; jvkj;lÞ ¼
bF 1rðX;vk;lÞ þ bF 1rðX;�vk;lÞ

2
: ð32Þ
The conservation of density is ensured through the correction term h
R
� � �i=h

R
� � �i, while the conservation of parallel momen-

tum is verified since SK is even in vk as result of the symmetrization of the distribution with respect to this variable.

2.5.3. The localized heat source
The most realistic source model currently available in GENE is closely following the implementation being, e.g., described

in Ref. [28] for the gyrokinetic turbulence code GYSELA [29]. It represents a localized heat source and is added to the right
hand side of the Vlasov equation as follows
dg
dt
¼ SH ¼ S0

bSx
bSE: ð33Þ
Here,
bSE ¼
2
3

1
p̂0rðxÞ

bEbT pr
� 3

2

 !bF 0r ð34Þ
with bE ¼ v̂2
k þ l̂bB0

� �
, denotes an energy source term being normalized such that pbB0p̂0rðx0Þ

R
dv̂k dl̂bEbSE ¼ 1. This choice

ensures that neither particle nor momentum are injected as can be confirmed by computing the according moments. In addi-
tion, a radial source profile Sx;inðx̂Þ, e.g., a Gaussian shape, can be freely defined by the user. It is then normalized according to
bSxðx̂Þ ¼ Sx;inðx̂Þ
.Z

d3x̂Sx;inðx̂ÞbJðx̂; ẑÞ: ð35Þ
−0.5 0 0.5
x/lx

ν K (x
)

Buffer
regions

Fig. 1. Coefficient profile m̂kðxÞ of the damping Krook operator applied within edge buffer regions in nonlinear simulations.
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Finally, an amplitude S0 which is given in units of n0rðx0Þqref cref=ðv3
Trðx0ÞL2

ref Þ can be specified. The total injected power is
thus
Padd ¼ S0

Z
d3x

Z
d3vEbS x

bSE ¼ bS0nref Trefq3
ref cref=Lref : ð36Þ
2.6. Equilibrium models

So far, no explicit expressions have been given for the different geometrical terms appearing in Eq. (11) which are related
to the actually chosen magnetic equilibrium. In an axisymmetric system, as is currently considered in the global version of
the code, the field aligned coordinates (x,y,z) can be obtained from the straight field line coordinate system (W,v,/), where
W is the poloidal flux function, v the generalized poloidal angle and / the toroidal angle through the relations:
x ¼ CxðWÞ � x0; y ¼ Cyðqv� /Þ � y0; z ¼ v: ð37Þ
with the coefficients functions Cx and Cy such that CðxÞ ¼ dCxðxÞ
dW Cy

� ��1
.

For many applications, it can be useful to consider a simple analytical equilibrium, and a circular concentric flux surface
model is thus implemented in the code. Considering Solovev-type solutions of the Grad–Shafranov equation [30] in the large
aspect ratio limit R0/a
 1, where R0 and a are respectively the major and minor tokamak radii, the equilibrium poloidal flux
function can be expressed as W = Wedge(r/a)2. Here, r is the radius local to a given flux surface as illustrated in Fig. 2. In this
limit, the magnetic surfaces thus have a circular cross section, and the magnetic field is given by
B0 ¼
R0Bref

R
e/ þ

r
R0�q

eh


 �
; ð38Þ
where Bref is the magnetic field at the magnetic axis, and �q is a pseudo safety factor which can be related to the real safety
factor according to
qðrÞ ¼ 1
2p

Z 2p

0
dh

B0 � $/
B0 � $h

¼
�qðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p ; ð39Þ
with the inverse aspect ratio � = r/R0. This pseudo safety factor profile �q ¼ �qðrÞ is motivated by the ad-hoc relation
dW=dr ¼ Bref r=�qðrÞ and occasionally used instead of q(r) as input parameter in intercode benchmarks. However, the straight
field line angle v is defined such that ðB0 � $/Þ=ðB0 � $vÞ ¼ q, which leads to the q(r) dependent relation
dv=dhB0 � $/=ðqB0 � $hÞ. Integrating over h yields
vðr; hÞ ¼ 1
q

Z h

0
dh0

B0 � $/

B0 � $h0
¼ 2 arctan

ffiffiffiffiffiffiffiffiffiffiffiffi
1� �
1þ �

r
tan

h
2

� �" #
: ð40Þ
From these definitions for W and v, the metric tensor gab ¼ $a � $b in (W,v,/) is obtained from the known metric in the
(r,h,/) coordinate system, leading to
gWW ¼ B2
ref r

2

�q2 ; gvv ¼ 1
r2

R2
0�q2

R2q2
þ �

2 sin2 v
ð1� �2Þ2

" #
;

gWv ¼ �Bref�
�q

sin v
ð1� �2Þ ; g// ¼ 1

R2 ;

gW/ ¼ gv/ ¼ 0:

ð41Þ
Fig. 2. Circular flux surface in toroidal coordinates (r,h,U).
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With those relations, the metric tensor in the field aligned coordinates (x,y,z) can finally be derived to be
gxx ¼ dCx

dW

� �2

; gWWgzz ¼ gvv;

gxy ¼ dCx

dW
Cy q0vgWW þ qgWv� �

;

gyy ¼ C2
y ðq0Þ

2v2gWW þ 2qq0vgWv þ q2gvv þ g//
h i

;

gxz ¼ dCx

dW
gWv; gyz ¼ Cy q0vgWv þ qgvv� �

:

ð42Þ
When using this circular analytical model, the x variable is chosen as x = r � x0, i.e. dCx=dW ¼ �q=ðrBref Þ, and Cy = r0/q0. Note,
that the presented equilibrium model differs from the standard implementation of the s � a model as all terms in � are re-
tained here [20].

In order to investigate more realistic equilibria, interfaces with the MHD equilibrium code CHEASE [31] or the field line
tracer TRACER [32] can alternatively be used.

3. Numerical implementation

Having discussed the theoretical framework, the present section is dedicated to the discussion of the numerical schemes
which are used to discretize the gyrokinetic system of equations.

Following the method of lines [33], the distribution function and the fields are first discretized on a fixed grid in phase
space while the time variable is left continuous. The hyperbolic integro-differential system of equations is thus reduced
to a system of ordinary differential equations which can then be solved using, e.g., a standard Runge–Kutta method.

3.1. Eigenvalue and initial value solver

Often, gyrokinetic investigations involve a careful study of the linear properties of the existing microinstabilities, deter-
mining, for instance, their growth rates and real frequencies. For linear investigations, all relevant terms in the gyrokinetic
Vlasov equation can be cast into an operator acting on a state vector representing the distribution function. Using iterative
eigenvalue solvers provided by the SLEPC [34,35] extension of the PETSC [36–38] package then allows for the analysis of the
full eigenvalue spectrum or of parts thereof. These libraries are also employed to determine the maximum linear time step
for initial value calculations based on explicit time schemes. Concerning the latter, several options are at hand. Besides stan-
dard Runge–Kutta schemes of 3rd and 4th order, a numerically optimized 6-stage, 4th order Runge–Kutta scheme as pro-
posed in [39] is available as well. A more detailed discussion can be found in [8].

3.2. Flux tube approach and boundary conditions

The flute-like character of plasma microturbulence – already mentioned in the context of the gyrokinetic ordering – al-
lows for a minimization of the simulation volume and thus of the computational costs. Local codes, for instance, usually con-
sider a flux-tube domain whose length corresponds to one poloidal turn [40–42]. The appropriate boundary conditions will
be discussed in the following since they are linked to the ones used in the global GENE version.

3.2.1. Radial boundary condition
Periodic boundary conditions, f(x,y,z) = f(x + Lx,y,z) (here, f denotes an arbitrary function), as they are typically imple-

mented in local codes can still be used in the global version for comparisons. However, such a choice is not applicable in
global computations since radial and in general non-periodic variations of equilibrium quantities shall be kept. Thus, GENE
is currently equipped with two alternatives. Either, all quantities are held fixed at the boundaries B using Dirichlet type con-
ditions, f ðx; y; zÞjx2B ¼ 0, or floating temperatures and density profiles are allowed. The latter is achieved by employing von
Neumann type conditions, @xf ðx; ky ¼ 0; zÞ

��
x2B ¼ 0 for the constant part in the y direction (ky = 0) and else (ky – 0) the afore-

mentioned Dirichlet type conditions such that particle and heat fluxes vanish at the boundaries. In the present version of the
code, these conditions are applied to both gyrocenter and particle coordinate representations in the same manner. It should
be mentioned at this point that the effect of the boundary conditions is expected to penetrate some distance into the sim-
ulation domain. The associated characteristical length scale naturally depends on q⁄ and on the strength of the radial cou-
pling being, for instance, caused by radial derivatives and the gyroaveraging procedure.

3.2.2. Boundary condition in the binormal direction
In the y direction, often called binormal (referring to the orthogonal vectors ðêx; êy; êzÞ at outboard midplane) or toroidal

(with respect to the alignment of the corresponding covariant basis vector êy) direction, periodic boundary conditions are
taken in the local as well as the global GENE code which is well justified for axisymmetric devices. Within the flux tube
concept the box size might, however, be restricted to an integer fraction (inverse toroidal mode number n0) of the full flux
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surface. Here, periodicity can still be assumed if the box size Ly is larger than a few correlation lengths of the turbulence
structures to be investigated. As pointed out in Ref. [43], such an approach corresponds to a thinning out of mode numbers
in the y direction as becomes obvious if a Fourier transformation
f ðx; ky; zÞ ¼
1
Ly

Z Ly

0
dye�ikyyf ðx; y; zÞ ð43Þ
is applied. Here, the discretized mode number spectrum is given by ky ¼ kmin
y � j with kmin

y ¼ 2p=Ly ¼ n0=Cy and j being
integer-valued. Thus, increasing the toroidal mode number n0 similarly increases kmin

y or – if kmin
y shall be kept constant –

the possible j values are restricted to j = n0 � l with l = 0,1,2, . . .. The implementation in GENE is based on such a Fourier
representation in the y direction to allow for the application of spectral methods.

3.2.3. Parallel boundary condition
Obviously, a thin flux tube in an axisymmetric equilibrium which extends for one poloidal turn is characterized by exactly

the same geometric quantities at both ends. However, it is clear that these ends do not physically match for non-integer q
values, and that finite magnetic shear induces a tilting of the simulation box. An additional x and y dependent phase factor is
thus introduced [42] in order to compensate for those effects. The parallel (z) boundary condition then reads
f ðx; ky; zþ LzÞ ¼ f ðx; ky; zÞ exp �2pin0qðxÞjð Þ; ð44Þ
where j denotes, as before, the integer-valued index of the ky mode and n0 is the aforementioned toroidal mode number. At
this point it should be noted that local codes consider the magnetic shear, as well, by keeping the first order Taylor expansion
of the safety factor profile in the q⁄? 0 limit – similar to the treatment of the background gradient terms in Eq. (11).

3.3. Spatial differentiation

Currently, both the radial (x) and the parallel (z) directions are discretized on a fixed equidistant grid, and finite difference
schemes are applied for the numerical representation of derivatives. Typically, fourth-order centered schemes turn out to be
most efficient while providing reasonable accuracy. The third direction (y) is represented in Fourier space and thus allows for
an exact representation of spatial derivatives. Alternatively, the nonlinear terms can be treated using a mixed spectral/finite
difference variant of the Arakawa scheme [44]. The latter discretizes the nonlinear terms such that the conservation prop-
erties which are analytically fulfilled, are also retained numerically. With this scheme, the code achieves stable nonlinear
saturation with small or even zero numerical dissipation in the perpendicular plane, allowing for more robust code operation
than with standard centered differences. The implemented term is
N ¼ 1
3

iky
�n1 �

@g1r

@x
� @

�n1

@x
� ikyg1r

� �
þ iky

�n1 �
@g1r

@x
� g1r �

@�n1

@x

� �
þ @

@x
g1r � iky

�n1 � �n1 � ikyg1r
� �
 �

; ð45Þ
where, for computational efficiency, all terms separated by dots (�) are Fourier-transformed to real space before performing
the multiplication.

3.4. Gyroaveraging

Several terms in the basic equations contain gyroaveraged quantities like
�f ðxÞ ¼ G f ðxÞ½ 	 ¼ 1
2p

I
dh f ðxþ rðhÞÞ; ð46Þ
where r = r(h) is the (cyclic) gyroradius vector orthogonally aligned to the magnetic field and G denotes the aforementioned
gyroaverage operator whose explicit representation is going to be derived in the following.

In a first step, periodic boundary conditions are utilized in the y direction which allows for switching to a Fourier repre-
sentation. Hence, Eq. (46) can be written as
�f ðxÞ ¼ 1
2p

X
ky

Z 2p

0
dh f ðxþ rxðhÞ; ky; zÞeikyðyþryðhÞÞ; ð47Þ
where the contravariant components of r in the nonorthogonal flux tube coordinates is given by rx ¼ r � rx ¼
ffiffiffiffiffiffiffi
g11

p
qr cos h

and ry ¼ r � ry ¼ qrðg12 cos hþ ffiffiffiffiffic1
p

sin hÞ=
ffiffiffiffiffiffiffi
g11

p
if a linearized metric is considered. For the evaluation of the h integration,

interpolation techniques are obviously required. A finite elements approach seems to be a reasonable choice for this purpose.
The function to be gyroaveraged is rewritten in terms of finite-element base functions Kn(x) for each value of f on the coarse-
grained grid at position x(n). Using the compact vector representation
f ðxÞ ¼ KðxÞ � f ð48Þ
with KðxÞ ¼ ðK0ðxÞ; . . . ;KNx�1ðxÞÞT and f ¼ ðf ðxð0ÞÞ; . . . ; f ðxðNx�1ÞÞÞT transforms Eq. (47) into
�fðky; z;lÞ ¼ Gðky; z;lÞ � fðky; zÞ: ð49Þ
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The gyroaverage operator is thus a matrix with the elements
Fig. 3.
functio
differen
legend,
Ginðky; z;lÞ ¼
1

2p

Z 2p

0
dhKnðxðiÞ þ rxÞeikyry

: ð50Þ
In order to avoid further computational effort, the base functions Kn(x) are chosen such that the values on the coarse grid
can easily be extracted again, which happens if the interpolated function coincides with the original values. Furthermore,
Kn(x) is considered to be finite just in the vicinity of the coarse grid point x(n), thus becoming zero when approaching the
next neighboring grid point. Possible alternatives taking into account several grid points, for instance splines, would require
a solution of a linear system of equations.

A simple choice in this context are polynomials of order p at each position x(n) following the boundary conditions
@u

@xu
Pn;mðxÞ

����
x¼xðiÞ

¼ dindum ð51Þ
for the mth derivative of the function which effectively amounts to a Hermite polynomial interpolation. Here, the indices are
i = n, (n + 1) and u = 0, . . . , (p � 1)/2. Changing again to a matrix-vector notation where f contains all function values on the
coarse grid and Pm ¼ ðP0;m; . . . ; PNx�1;mÞT , derivatives of mth order can be formally represented by the mth power of a matrix
D. The construction of the latter then depends on the finite difference scheme actually chosen for the numerical evaluation of
derivatives which is a 4th order centered scheme. In summary, Eq. (48) becomes
f ðxÞ ¼ KðxÞ � f ¼
Xðp�1Þ=2

m¼0

PmðxÞDmf: ð52Þ
Illustration and comparison of the finite element interpolation implemented in GENE. In the upper plot, black dots (a) represent the values of a test
n sin(2px) (c) on a coarse grid whereas the blue line (b) indicates interpolation results using the base functions drawn as dotted lines. Since
ces between (b) and (c) are hardly visible, they are explicitly shown in the lower plot. (For interpretation of the references to colour in this figure
the reader is referred to the web version of this article.)
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For most applications, polynomials of degree p = 5 as shown in Fig. 3 seem to be a good trade-off between high accuracy and
moderate computational effort.

3.5. Integration

Except for some post-processing applications, numerical integrations are almost exclusively performed in the velocity
space since associated moments are required in the field equations. To allow for an optimum number of grid points, a Gauss-
ian quadrature scheme with Gauß–Legendre weights and knots is used in the l direction while the alternative extended
Simpson’s rule [45] is applied in the vk direction.
4. Code verification

Some results obtained with the global GENE version are presented in this section and benchmarked against analytical and
numerical test cases.

4.1. The local limit

A first obvious and important test is to check whether the global code eventually reaches the local limit with decreasing
q⁄ parameter which is in the following given by q⁄ = qi/a. As a side effect, judgments on the validity of local simulations for
specific devices can be drawn. Naturally, the details of such a study depend to some extent on the chosen radial profiles
which has been shown elsewhere [46,15,47]. In the present case, peaked temperature and density gradient profiles are cho-
sen of the form
Fig. 4.
finite br

gyrorad
bT i;e ¼ exp �jTeDT tanh
ðx� x0Þ=a

DT

� �
 �
;

n̂i;e ¼ exp �jneDn tanh
ðx� x0Þ=a
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� �
 �
;

ð53Þ
where jT = max(R0/LT) = 6.9589 and jn = max(R0/Ln) = 2.232 denote the maximum gradient values, e = a/R0 = 0.3616 the in-
verse aspect ratio, and DT, Dn = 0.3 the characteristical width of the gradient peak which is centered at x0 = 0.5a. In addition,
the flux surfaces are assumed to be circular and concentric with a safety factor profile of q(x/a) = 0.498(x/a)4 � 0.466(x/
a)3 + 2.373(x/a)2 + 0.854 such that q0 = q(x0 = 0.5a) = 1.42 matches the Cyclone Base Case (CBC) [48] value. Two species –
electrons and one ion species – are considered with their mass ratio set to mi/me = 1836 as in hydrogen plasmas. The result-
ing growth rates of linear simulations with a fixed binormal wavenumber of kyqs � 0.284 in the center of the simulation do-
main and a fixed reference bref value of 2.5% but varying q⁄ are shown in Fig. 4. The normalization used is the ion sound speed
cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
divided by the tokamak major radius R0. Obviously, the local and global results converge for q⁄[ 1/400 – but

even at q⁄ � 1/200, they differ only by less than 10%. This finding does not depend on the way the q⁄ scan is performed. As
one option, the radial simulation box length can be kept fixed with respect to the gyroradius so that a smaller and smaller
radial domain of the macroscopic profiles will be resolved with decreasing q⁄ (note that in this case, periodic boundary con-
ditions have to be employed instead of Dirichlet boundary conditions else). Alternatively, the radial box size can be set to a
Growth rate at kyqs � 0.284 as function of the inverse q⁄ value. Here, kinetic electrons with a proton-electron mass ratio are considered as well as a
ef of 2.5%. The temperature and density gradient profiles are peaked with DTi,e, Dn = 0.3. The radial simulation box is kept fixed with respect to (I) the
ius and (II) the minor radius. The local code result using the maximum gradients is shown as thin, black line.
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fixed fraction of the minor radius, and hence the number of ion gyroradii within the domain is increasing with decreasing q⁄.
(In order to resolve those fine scales, more and more radial grid points need to be employed, making this second approach
computationally much more challenging.) The first approach has been chosen for another set of linear investigations where b
has been modified. The resulting growth rates of the corresponding ITG-KBM transition are presented in Fig. 5 for several
values of q⁄. Generally, the variation of the global growth rates qualitatively resembles the local one but is reduced in ampli-
tude depending on the gyroradius-to-machine-size ratio.

These local limit tests can be considered successful, serving as a first indicator for the reliability of the global-GENE imple-
mentation. However, comparisons with analytical models or other codes allow for a more comprehensive evaluation and will
thus be presented in the following sections.

4.2. Rosenbluth–Hinton test

A well established test for gyrokinetic codes is based on the time evolution of an initial E � B zonal flow impulse in a
toroidal plasma with circular flux surfaces and a large aspect ratio. In the absence of collisions and any nonlinear coupling,
a rapid but damped oscillation of the geodesic acoustic mode (GAM) [49] is observed which relaxes to a finite stationary va-
lue AR so that
Fig. 5.
local on
h/1iFSðx; tÞ
h/1iFSðx; t ¼ 0Þ ¼ ð1� ARÞe�cGt cosðxGtÞ þ AR: ð54Þ
In the local limit – i.e., neglecting radial couplings – and for adiabatic electrons, the residual has been analytically predicted
by Rosenbluth and Hinton [50,51] to be
AR ¼
1

1þ 1:6qðrÞ2=
ffiffiffiffiffiffiffiffiffiffi
r=R0

p : ð55Þ
Since zonal flows are identified as one of the most important saturation mechanisms in several parameter regimes, for in-
stance in ITG mode dominated turbulence, it is widely accepted that this test has to be passed by gyrokinetic codes.

In the following investigation, the same safety factor profile as before is employed but temperature and density profiles
are taken to be constant as in the analytic calculation. The number of grid points in the (x,z,vk,l) directions is
(63 � 16 � 128 � 16) and the box lengths are chosen to be ðLx; Lvk ; LlÞ ¼ ð48qref ;3vTiðx0Þ;9T0iðx0Þ=BrefÞ. The resulting residual
levels at the center of the simulation domain are plotted in Fig. 6 for several values of q⁄. While the deviation from the
Rosenbluth–Hinton prediction is significant at large q⁄, it becomes less than 10% at 1/q⁄ J 200 and thus demonstrates a
reasonably good agreement when taking into account the relatively large inverse aspect ratio and effective kmin

x mode.
A further example employs parameters being similar but not identical to those presented in Ref. [21]. In particular, they

prescribe a linear safety factor profile q(x/a) = 0.7 + 0.9 � (x/a) and an inverse aspect ratio of a/R0 = 1/10. With this choice, an
even better agreement with the analytic prediction can be expected, although q⁄ is taken to be 1/40. The numerical param-
eters are the same as before, except for the radial direction where 48 grid points are taken along a box length of Lx = 38qref.
Contrary to local codes where exactly one safety factor q and radial position x/R0 are chosen and thus just one residual can be
investigated per simulation, a global code automatically provides results for a wide parameter range. Hence, the residual lev-
els and oscillation frequencies gained by fitting are displayed for all radial positions except for the two outermost grid points
in Fig. 7. The analytical results, given by Eq. (55) and
Growth rate at kyqs � 0.284 as function of the bref for different values of q⁄ together with the local code result. The global growth rates resemble the
es but are reduced in amplitude depending on the gyroradius-to-machine-size ratio.



Fig. 6. Rosenbluth–Hinton residual (black dots and line) evaluated at the radial center position of the simulation box for different settings of q⁄. The red line
indicates the Rosenbluth–Hinton prediction. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Rosenbluth–Hinton residual (a) and oscillation frequency (b) evaluated at all radial positions except for the two outermost grid points. The black
resent numerical results whereas the red solid line illustrates the analytical prediction. Note that (unphysical) negative values of AR are suppressed
the boundaries. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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[52], are included for comparison. Clearly, both values agree

well with the predictions within 0.3 [ x/a [ 0.8. The deviations at the remaining radial positions can be attributed to the
Dirichlet boundary condition. Considering the relatively large reference gyroradius qs = 0.025a employed in this simulation,
it is obvious that gyroaverages at intermediate to high l values, which might partially be calculated outside the simulation
domain, may exhibit an influence even at radial positions being far away from the boundaries. Indeed, simulations at smaller
q⁄ (q⁄ = 1/100,1/200), possess a narrower transition region but do not show such excellent agreement. For instance, numer-
ical and analytical residual levels deviate up to about 20% at x/a = 0.3. Hence, the remarkable coincidence found in the pres-
ent case seems to be restricted to a very narrow parameter regime.
4.3. Linear benchmark

Having successfully passed the Rosenbluth–Hinton and local limit tests, more complicated scenarios involving more com-
prehensive physical effects can be studied.

In this section, direct comparisons between GENE and the global particle-in-cell (PIC) code GYGLES [53] solving the linear
gyrokinetic equations are presented. Once again, parameters similar to the CBC set are employed so that e = a/R0 = 0.6043 m/
1.6714 m = 0.3616. The temperature and density profiles of the gyrokinetic ions and adiabatic electrons are assumed to fol-
low Eq. (53) with gradient peak values of jT = 6.9589 and jn = 2.2320 at x0 = 0.5a. The characteristical widths are set to
DT = Dn = 0.3. Extracting from the DIII-D discharge 81499 which constitutes the CBC basis, a temperature of
A comparison of growth rates (left) and real frequencies (right) calculated by the linear, gyrokinetic PIC code GYGLES and the global GENE version for
batic electron test case further described in the text.
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T0(x0) = 1.9693 keV and a reference magnetic field of Bref = 1.9 T allows for estimating q⁄ � 1/180 in case of pure deuterium
plasmas. The geometry is chosen to be circular concentric as before with a parabolic safety factor profile of
Fig. 9.
values a
referen
qðx=aÞ ¼ 0:854þ 2:4045ðx=aÞ2: ð57Þ
The resulting growth rates and frequencies obtained by GYGLES [54] and GENE using Dirichlet boundary conditions are pre-
sented in Fig. 8 and show excellent agreement except for the highest ky modes. However, this deviation can be explained by
the different treatment of gyroaverage and field operators at these wave numbers. In the GYGLES version at hand, a long
wavelength approximation, k\q� 1, is applied so that Larmor radius effects are kept up to second order (k\q)2 while all
orders are considered in GENE.

The numerical GENE parameters employed in the present linear study are the following. At each binormal wave number,
the radial box size is set to Lx = 160qs and 16 grid points are used in the parallel direction. All remaining grid sizes and res-
olutions vary. For instance, at low wave numbers, i.e. kyqs < 0.5, (160 � 32 � 16) grid points in the (x,vk,l) directions and a
velocity space box of ðLvk ; LlÞ ¼ ð3vTiðx0Þ;9T0iðx0Þ=Bref Þ turn out to be sufficient while at higher wave numbers up to
(256 � 64 � 128) grid points and ðLvk ; LlÞ ¼ ð5vTiðx0Þ;18T0iðx0Þ=BrefÞ are required.

4.4. Nonlinear benchmark

In 2008, a test case for nonlinear gyrokinetic simulations with adiabatic electrons has been defined within the framework
of the European Integrated Tokamak Modeling (ITM) benchmarking effort [55] and was considered to check the nonlinear
GENE behavior.

The underlying physical parameters are very similar to those used in the linear GYGLES-GENE comparison so that only
important deviations are listed in the following. In particular, they comprise the temperature and density profiles since their
gradients are not peaked but flat over a wide radial range,
xðT;nÞðrÞ ¼ jðT;nÞ 1� sech2 ðr � riÞ=ðaDrÞ½ 	 � sech2½ðr � raÞ=ðaDrÞ	
� �

ð58Þ
with ri/a = 0.1, ra/a = 0.9 and Dr = 0.04.
The benchmark itself describes a nonlinear relaxation problem, i.e. no additional sources or sinks are applied. The chosen

observable is the volume averaged turbulent, ion thermal diffusivity as a function of the average ion temperature gradient,
both averages done over the radial domain 0.4 < r/a < 0.6. Sampling both values at successive time points generates a cloud of
points as can be seen in Fig. 9. The following stages can be identified: At the beginning, the thermal diffusivity grows at a
fixed temperature gradient, thus clearly reflecting the linear phase. As soon as the nonlinearity becomes important, an over-
shoot occurs which is followed by a first saturation phase where the diffusivity and the gradient both fluctuate around a con-
stant value for some time. Eventually, the ion temperature profile starts to relax and thus lowers the heat diffusivity. All
these features have been found within the ITM benchmarking effort by the nonlinear, gyrokinetic PIC codes ORB5, GYSELA
[29,56], and ELMFIRE [57]. A comparison of Fig. 9 with Fig. 2 in Ref. [55] confirms that the GENE results using Dirichlet
boundary conditions well fit with those of the ITM benchmark.

For a very extensive nonlinear benchmark between ORB5 and GENE using heat sources and sinks in order to allow for a
quasi-stationary state comparison, the reader is furthermore referred to Ref. [22].

4.5. Code performance and parallelization

In order to perform time efficient computations and to treat large problem sizes, massive parallelization is called for. For
instance, the grid resolution for a typical two-species, nonlocal and nonlinear trapped electron mode turbulence simulation
Volume averaged turbulent ion thermal diffusivity in units of vGB ¼ csq2
s =a vs. the normalized ion temperature gradient. The points represent both

t successive time points. Here, nonlinear GENE simulation results are shown for two different initial gradient settings (a) and (b), together with the
ce result obtained from local simulations [48] (c).



Fig. 10. Strong scaling, i.e. time per time step normalized to its value at 576 cores as a function of the number of cores for global computations on the EPCC
Hector CRAY XE6 machine with respective resolutions nx � nky � nz � nvk � nl � nspec ¼ 512� 32� 24� 64� 24� 2.
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for a medium-sized tokamak can be estimated to 512 � 32 � 24 � 64 � 24 in the x, ky, z, vk, l directions which roughly trans-
lates to 200 GB memory. In terms of computational time, several 100 kCPUh can be expected. GENE thus offers MPI parall-
elization along all of the (x,y,z,vk,l) directions as well as over the species label, and it also provides the possibility to use
OpenMP. Hence, the code is able to run on several 10,000 cores. However, determining the most efficient MPI mapping then
clearly constitutes a nontrivial task which is why GENE is equipped with an automatic detection comparing the timings of all
available mappings during initialization. Furthermore, an effort has been made to automatically adapt the code to the avail-
able cache size which typically varies from machine to machine. For this purpose, two or more alternatives are implemented
for core parts of GENE which differ in the way the arrays are distributed in memory and which are also compared with re-
spect to the runtime during initialization. In extreme cases, a factor of 10 has been saved compared to a single implemen-
tation being used on all available architectures. Examples of GENE scalings using the local approximation can, e.g., be found
in Ref. [10]. A strong scaling, i.e. increasing the number of cores while keeping the system size constant, computed on the
EPCC Hector CRAY XE6 machine for the global parameters described above is additionally shown in Fig. 10.
5. Conclusions

The grid-based gyrokinetic turbulence code GENE has been extended to include radial variations of the background pro-
files and metric coefficients, thus enabling investigations of nonlocal phenomena. In addition, various types of source/sink
terms have been added which allow for a control of the profile evolution. The numerical implementation of the underlying
equation has been discussed and several verification studies have been presented which confirm the maturity and correct-
ness of the software. Finally, a good parallel performance has been demonstrated which is an essential prerequisite due to
the enormous computational effort being required to resolve the turbulent structures while considering a large radial frac-
tion of a fusion device.

We gratefully acknowledge insightful discussions and, in particular, the invaluable cooperativeness of L. Villard and B.F.
McMillan to perform intercode comparisons.
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