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This paper presents effects of finite ballooning angles on linear ion temperature gradient (ITG)

driven mode and associated heat and momentum flux in Gyrokinetic flux tube simulation GENE. It

is found that zero ballooning angle is not always the one at which the linear growth rate is

maximum. The ITG mode acquires a short wavelength (SW) branch (k?qi> 1) when growth rates

maximized over all ballooning angles are considered. However, the SW branch disappears on

reducing temperature gradient showing characteristics of zero ballooning angle SWITG in case of

extremely high temperature gradient. Associated heat flux is even with respect to ballooning angle

and maximizes at nonzero ballooning angle while the parallel momentum flux is odd with respect

to the ballooning angle. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4868425]

I. INTRODUCTION

Tokamak plasmas are well known to be in turbulent state

due to micro scale instabilities from ion to electron Larmor ra-

dius scales driven by equilibrium temperature and density gra-

dients. Radially outward lossy transport of different properties

(e.g., heat or particle flux) of electron and ions are supposed

to happen through distinct channels created by these electron

and ion scale micro turbulence. More specifically, radially

outward ion heat loss is caused by ion temperature gradient

(ITG) driven mode. Among the various approaches, gyroki-

netic flux tube simulations are used as first principle calcula-

tions to study various properties of these micro instabilities in

a tokamak.1,2 Numerous works have been reported on various

aspects of these microinstabilities and microturbulence driven

by them. Extensive parametric studies of the linear ITG mode

have been carried by many authors over the past years. Flux

tube simulations, taking advantage of the short perpendicular

wavelength and long parallel wavelength, i.e., (k?� kk) of

these microinstabilities, make use of the field aligned coordi-

nate system to reduce computational burden.3 A flux tube is a

curved and sheared box centered around a field line that

makes an integral number of poloidal turns around the torus

thus sampling the entire flux surface. The equilibrium quanti-

ties are Taylor expanded to first order in the perpendicular

coordinates around the central field line (or box center). The

values and first derivatives of equilibrium quantities, together

with the metric coefficients that describe the shaping of the

box, are taken to be constant over the perpendicular extent of

the box. Only parallel variations are taken into account. Such

a local approximation is valid when the radial extent of the

box is small compared to the machine size. Profile shearing

effects, important when q* is finite, are not captured in this

formulation. Periodic boundary conditions are used in radial

(x) and binormal (y) directions, i.e., f ðxþ Lx; y; zÞ ¼ f ðx; y; zÞ
and f ðx; yþ Ly; zÞ ¼ f ðx; y; zÞ, where Lx (Ly) represents simu-

lation box length in radial (binormal) direction. The box

lengths are chosen to be bigger than the correlation lengths of

the turbulent fields in the corresponding directions. Such peri-

odic boundary conditions allow us to take Fourier representa-

tion for the x and y directions. The poloidal angle is used to

parameterize the parallel direction z. The magnetic shear ŝ
causes coupling of radial modes and leads to the parallel

boundary condition f ðkx; ky; zþ LzÞ ¼ ð�1ÞnNf ðk0x; ky; zÞ,
where k0x ¼ ðmþ nNÞkmin

x and ky ¼ mkmin
y and kx ¼ nkmin

x ; m
and n take values 0, 61, 62, …, and kmin

x;y ¼ 2p=Lx;y. N ¼
2pkyŝkmin

y =kmin
x is also an integer. The parallel mode structure

is formed by coupling all the kx modes for a given ky where

each Fourier mode (kx ky) balloon at poloidal angle hk ¼
�kx=kyŝ called ballooning angle. So a set kxf g �

…;�kmin
x ; 0; þ kmin

x ; ;…
� �

forms mode structure in z or h
that is symmetric about low field side (LFS) mid plane

(h¼ 0). Shifting each of the elements in kxf g by some non-

zero values rotates the mode structure in h and stationing it

away from LFS mid plane. That is a shift in the kx values bal-

loons the mode in h at h0 ¼ �kx;center=kyŝ, where kx,center rep-

resents the central kx mode. This paper explores the effects of

finite kx,center on linear eigenvalues spectrum and associated

transports of heat and momentum.

The ky spectrum of the eigenvalues differs significantly

when h0 6¼ 0 from that of the commonly considered case of

h0¼ 0. Finite growth rates in the usually stable region

(ky> 1) lead to development short wavelength (SW) branch

when maximum growth rates in h0 scan are considered. This

SWITG branch dies out on reduction of equilibrium temper-

ature gradient. This behavior is similar to SWITG reported

by authors4–7 in the past. The fundamental striking differ-

ence between our and past works is that past works consid-

ered extremely high temperature gradients (R/LT¼ 25 with

R/Ln¼ 10), which might be prevalent in pedestal anda)rameswar.singh@lpp.polytechnique.fr
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transport barriers, and h0¼ 0 whereas our results are for reg-

ular temperature gradients but at finite h0. The SW branch is

damped out towards lower temperature gradients but max

growth rates still showing marked difference from zero bal-

looning angle growth rates. Impact of finite h0 on associated

heat and parallel momentum flux is discussed.

The paper is organized as follows. Section II contains

formulation of the gyrokinetic equations in field aligned

coordinates as solved in GENE. Diagnostics used to extract

various information are also described in this section.

Results of linear flux tube simulations for ITG mode are

delineated in Sec. III. Finally, discussion and conclusions are

made in Sec. IV.

II. MODEL EQUATIONS

A. Formulation

The gyrokinetic formalism limited to the simple sce-

nario of a single ion species, adiabatic electrons, electrostatic

perturbations for a large aspect-ratio, s – a model equilib-

rium is used in this analysis. In this case, the evolution equa-

tion for the ion distribution function fi appropriately

normalized can be written as8

@fi

@t
þ xn þ xTi

v2
k þ lB0 �

3

2

� �� �
F0i

@�/
@y

þ
T0i lB̂ þ 2v2

k

� 	
qiB0

Kx
@hi

@x
þKy

@hi

@y

� �

þ vTi

2
v2
jj þ lB0; hi

h i
zvjj
þ �/; fi


 �
xy ¼ D½fi�: (1)

Here, hi is the nonadiabatic part of the distribution func-

tion, hi ¼ fi þ qiF0i
�/=T0i, where qi is ion charge normalized

to the elementary charge, F0i is the background distribution

function, �/ is the gyro-averaged electrostatic potential, vTi ¼ffiffiffiffiffiffiffiffi
2T0i

p
=mi is the ion thermal velocity, T0i is the ion tempera-

ture (normalized to the electron temperature), and mi is the

ion mass. The electrons are treated adiabatically, and hence

only the distribution functions fi are evolved in time. The

equilibrium magnetic field is expressed by B¼B0Bref where

Bref is the reference magnetic field on the magnetic axis.

D[fi] is a dissipation term given by D½f � ¼ �ðax@
4
x þ ay@

4
y þ

az@
4
z þ avjj@

4
vjj
Þfi where the coefficients ax, ay, az, and avjj are

adapted depending on the class of the physical problems.

Finally, the Poisson brackets are defined by ½f ; g�ab ¼ @af@bg
� @bf@a.

The first linear term contains the effect of the fixed ion

density xni¼Lref/Ln and temperature xTi¼ Lref/LT gradients

expressed in major radius Lref¼R units. The second linear

term describes effects due to magnetic curvature in which Kx

and Ky represent the standard curvature terms

Kx ¼ �
Lref

Bref

c2

c1

@B0

@z
; Kx ¼ �

Lref

Bref

@B0

@x
� c3

c1

@B0

@z

� �
; (2)

where c1,2,3 are combinations of metric tensor elements gij

defined as c1 ¼ gxxgyy � gyxgxy, c2 ¼ gxxgyz � gyxgxz;
c3 ¼ gxygyz � gxxgxz. Parallel dynamics involving magnetic

trapping as well as the linear Landau damping effect is con-

tained in the third term. The nonlinear term ½�/; fi� represents

the effect of the self-consistent electric field in the ExB drift

of charged particles. Since only linear calculations are pre-

sented in this paper, the effect of non-linear term is ignored.

In local GENE, the distribution function fi and the other

quantities like the electrostatic potential / are Fourier trans-

formed in the radial x and binormal directions y, i.e., @
@x!

ikx and @
@y! iky, where k represents wavenumber. The gyro-

kinetic Poisson equation is used to determine the self consist-

ent electrostatic field which can be expressed in terms of the

Fourier modes as follows:

q2
i n0i

T0i
1� C0ðbjÞ

 �

/k þ n0e /k � h/iFS


 �

¼ qipB0n0i

ð
J0ðkjÞfi dvkdl: (3)

Here, k2 ¼ 2k2
?l=B0; bi ¼ v2

Ti=2Xi while n0e and n0i are,

respectively, the equilibrium electron and ion densities. The

functions J0 and CðbiÞ ¼ expð�biÞI0ðbiÞ are, respectively,

the Bessel and the scaled modified Bessel functions of order

zero. k? is the perpendicular wave number given as

k2
? ¼ gxxk2

x þ 2gxykxky þ gyyk2
y , and Xi is the ion cyclotron

frequency. The angular brackets h/iFS denote flux surface

average of the electric potential.

The above gyrokinetic Vlasov-Maxwell equation is

solved for the analytical ŝ � a geometry in flux tube approxi-

mation for which the normalized metric and equilibrium

magnetic field are approximated by

gij ¼
1 ŝz� asinz 0

ŝz� asinz 1þ ðŝz� asinzÞ2 1=r0

0 1=r0 1=r2
0

0
B@

1
CA;

B0 ¼
1

1þ �tcosẑ

@B0

@z
¼ B2

0�tsinz J ¼ 1

B0

�t ¼
r0

R
:

This leads to the following curvature terms:

K̂x ¼ �
Lref

R
sinz;

K̂y ¼ �
Lref

R
coszþ sinzðŝz� asinzÞð Þ:

In the most of following linear calculations, the MHD pa-

rameter a ¼ �q2Rdb=dr is set to zero. The effect of a has

been discussed separately for eigenvalues only.

B. Diagnostics

The diagnostics used to obtain results in this paper are

described as follows.

1. Eigenvalues

Since all the kx grid points are coupled via the parallel

boundary condition, the linear eigenvalues are computed as

follows:8
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kðkyÞ ¼

X
kx;z

wðkx; ky; zÞkðkx; ky; zÞX
kx;z

wðkx; ky; zÞ
where kðkx; ky; zÞ

¼ ln
/ðtnÞ

/ðtn�1Þ

� �
=Dt: (4)

The result k¼ c þ ix represents the combined growth rate

and real frequency of the mode ky. The convergence criterion

for a given ky is that the scatter of k(kx, ky, z) is below a cer-

tain, adjustable limit cp connected to the precision of the

value for k
X

kx;z
wðkx; ky; zÞjkðkx; ky; zÞ � kðkyÞj2X

kx;z
wðkx; ky; zÞ

< cp: (5)

Here, cp¼ 10�3 has been taken for all computations. The

weight function is taken to be wðkx; ky; zÞ ¼ /ðtn�1Þ.

2. Mode averaged quantities

Mode averaged quantities such as k2
? are calculated as

follows:

hk2
?iðkyÞ ¼

ð
dzJðzÞ

X
kx

k2
?j/ðkx; ky; zÞj2ð

dzJðzÞ
X

kx
j/ðkx; ky; zÞj2

; (6)

where k2
? ¼ gxxk2

x þ 2gxykxky þ gyyk2
y . J(z) is the Jacobian

and gij are the metric coefficients.

3. Momentum and heat fluxes

The generic structure of any flux CAB in terms of it’s

spectral components Að~kÞ and Bð~kÞ is given by

CABðzÞ ¼ hAðx; y; zÞBðx; y; zÞixy ¼

ð
dx dyAðx; y; xÞBðx; y; zÞð

dx dy
;

¼
X
kx;ky

Aðkx; ky; zÞBðkx; ky; zÞ: (7)

Summation over ky extends over all þve and –ve ky modes

while GENE outputs for þve ky’s only. Hence using the

complex conjugation properties of Fourier amplitudes (i.e.,

A�ð~kÞ ¼ Að�~kÞ), the above expression is reduced to the fol-

lowing form which uses only ky� 0:

CABðzÞ ¼
X

kx

Aðkx; 0; zÞBðkx; 0; zÞ

þ 2Re
X

kx

X
ky>0

A�ðkx; ky; ZÞBðkx; ky; zÞ: (8)

Volume averaged fluxes are calculated as follows:

CAB ¼

ð
dzJðzÞCABðzÞð

dzJðzÞ
: (9)

Substituting radial E�B velocity fluctuation vr for A and

parallel momentum density mujj for B yields parallel mo-

mentum density flux Cjj

CjjðzÞ ¼ hvrmujji: (10)

Similarly, ion heat flux is defined as

QiðzÞ ¼ vr n0

Tjj
2
þ n0T? þ

3

2
nTi0

� �� �
; (11)

where Tjj; T?, and n represent parallel temperature, perpen-

dicular temperature, and density fluctuations of ion and n0

and Ti0 are equilibrium density and temperature of ions.

III. RESULTS FROM LINEAR GYROKINETICS

In this section, we present the results from the flux tube sim-

ulations using the GENE code for the linear electrostatic ITG

mode with adiabatic electron response. Various parameters and

reference values are tabulated below. Magnetic shear ŝ ¼ 1,

inverse aspect ratio �t¼ r0/R0¼ 0.16, major radius R0/Lref¼ 1,

safety factor, q0¼ 2, density gradient xn¼ 3, and temperature

gradient xT¼ 9 unless stated otherwise. The reference quantities

are Lref¼R0¼ 1.65 m, Bref¼ 1 T, Qref¼ e¼ 1.6 e–19C,

mref¼mi¼ 3.34 e-27 kg, Tref¼Te0¼ 350 eV, nref¼ ni¼ 3.5 eþ
19 m�3, cref¼ 129487.19 m/s, and qref¼ 0.0027029701 m. We

would stress here that the marked difference between the param-

eters chosen here and the previous works on conventional

SWITG is that the latter considered very high temperature and

density gradients R/LT¼ 25 and R/Ln¼ 10.

A. Eigenvalues

Fig. 1 shows kxcenter scan of linear growth rates at differ-

ent bi-normal wavenumber ky. The figure has a couple of fea-

tures that need explanation. The growth rates are periodic in

kxcenter or h0 for any ky. This is due to the fact that non-zero

kxcenter shifts the eigenmode away from LFS mid-plane, as

shown in Fig. 2, where it sees a different magnetic curvature

and hence different growth rate. 2p periodicity of curvature

term in h or z leads to 2pkyŝ periodicity of the growth rates

in kxcenter. Another surprising feature of Fig. 1 is that

kxcenter¼ 0 is not often the maximum growing mode. Low ky

modes show maximum growth at kxcenter¼ 0 while high ky

modes show maximum growth rate at kxcenter 6¼ 0. That is

high ky modes have maximum growth rates when the eigen-

mode is shifted away from the LFS mid plane. Values of

kxcenter and ballooning angle h0 corresponding to maximum

growth rates, viz., kxcenter,max and h0m, respectively, against

ky are shown in Fig. 3.

When growth rates maximized over all kxcenter or h0 are

considered the ITG mode instability window in ky broadens

way beyond ky> 1 in the SW regime as shown in Figs. 4 and

5. But the SW branch disappears at lower temperature
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gradients. This behavior is similar to h0¼ 0 SWITG driven

by extremely large temperature gradients. (In fact, very large

density gradient such that diamagnetic frequency exceeds

the mode frequency and for gi to stay above marginality the

needed temperature gradient becomes tremendously high.

For example, Fig. 10 in Ref. 4 shows that the instability

exists for R/Ln> 6 at gi¼ 2.5 which translates to R/LT> 15!)

However, the appearance of SW branch in our case, despite

having normal temperature gradients, is due to the fact that

at high ky the growth rates maximized over all h0’s are sig-

nificantly higher than that at h0¼ 0 (Fig. 1).

Toroidicity scan at R/LT¼ 9 in Fig. 6 shows that mode

growth and frequency for ky¼ 0.4 and ky¼ 1.4 vanish with

decreasing values of toroidicity �n¼Ln=R. This confirms that

the SW branch is toroidal in nature similar to the low ky high

wavelength branch. This characteristic of SWITG branch is

different from the conventional zero ballooning angle

SWITG which are slab like in nature.7 Further, it is also

interesting to see that the ballooning angle h0m corresponding

to maximum growth reduces with toroidicity from 0.2p at

�n¼ 1/3 to 0 at �n¼ 0.1 for ky¼ 0.4, whereas on the SW side

at ky¼ 1.4 the ballooning angle does not change with

toroidicity.

While a parameter was taken to be 0 in all the above cal-

culations, it can have finite values in real tokamak dis-

charges. Hence effects of finite a are analyzed. Fig. 7 shows

the a spectrum of growth rates and frequencies at the low

and high ky peaks for R/LT¼ 9 in Fig. 4. For ky¼ 0.4 and

h0¼ 0, the growth rate increases with a at low values and

then decreases beyond a> 0.8 which starts to increase again

at very large values beyond a> 1.6. For the same wavenum-

ber ballooning at h0¼60.2p, the growth rate peaks at two

values of a near 0 and 1.6. The maximum growth rates

increase with a at low values peaking at around 0.8 and then

FIG. 1. Linear growth rates c vs kxcenter (a) and c vs h0 (b) with ky as parameter. kxcenter¼ 0 or h0¼ 0 is not always the maximum growing mode. Very weakly

growing modes or damped mode growth rates in the valley are not well converged as per the rule Eq. (5) and are obtained from linear regression analysis of

the available time series of jnj2 and hence are only approximately correct.

FIG. 2. (a) Finite kxcenter shifts mode away from LFS midplane. The figure highlights the same for ky¼ 0.3 for few representative cases of growing modes. The

shown values of kxcenter correspond to h0=p ¼ 0;�0:05;�0:10;�0:15; 0; 0:05; 0:10; 0:15f g. (b) Some typical eigenfunctions in the ballooning space at ky¼ 0.4

and 1.4. The inset shows zoomed-in plot of the eigenfunctions.
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decreasing afterwards. At the high ky peak for R/LT¼ 9, the

growth rate for ky¼ 1.4 and ballooning angle h0¼ 0 decrease

with increasing a and completely stabilize at a¼ 0.4.

However, the maximized growth rates show multi-peak char-

acteristic with the height of peaks decreasing with a. It is

also interesting to note that the ballooning angle h0m corre-

sponding to maximum growths decreases from 0.4p at a¼ 0

to 0 at a¼ 1.4. The different peaks in the growth rate spectra

correspond to different branches as can be seen from jumps

in the frequency spectra in Fig. 7(b).

B. Mixing length estimates

Mixing length estimates are generally used to project

estimate of heat diffusivity in nonlinearly saturated turbu-

lence from linear mode calculations. Certainly, these calcula-

tions are not full proof but often give an idea of what can be

expected in a nonlinearly saturated turbulence regime.

Hence, the ky spectrum of mixing length estimates for differ-

ent values of temperature gradient is calculated. Fig. 8 shows

that mixing length values of the SW branch are not much

significant compared to the long wavelength part even

though estimates due to cmax are higher than that of modes at

h0¼ 0. It is important to note that the mixing length spectra

peak at ky¼ 0.1 in all three cases of R/LT and do not show

any peak characteristic of SW branch on high ky side. The

observed monotonically decreasing ky spectrum of the mix-

ing length estimates is a consequence of monotonically

increasing ky spectrum of hk2
?i as shown in the adjoining left

figure in Fig. 8.

C. Momentum and heat fluxes

Parallel momentum density fluxes Cjj normalized by

mode intensity h/2i at ky¼ 0.3 as a function of h0 are shown

in left panel of Fig. 9. Cjj=h/2i is seen to have odd parity

with respect to h0. This indicates momentum flux reversal

with mode tilt angle which may have important implication

for understanding of intrinsic toroidal rotation reversal.9,10

The odd parity of parallel momentum flux is a consequence

FIG. 3. (a) kxcenter vs ky at max. growth rates. (b) Ballooning angle h0m at max. growth rate vs ky.

FIG. 4. Thin solid lines with * indicate c for kxcenter¼ 0, thick solid lines

with o represent c maximized over all kxcenter, i.e., cmax.

FIG. 5. Thin lines with * indicate x for kxcenter¼ 0, thick lines with o indi-

cate x corresponding to cmax in Fig. 4.
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FIG. 6. (a) Growth rates vs toroidicity �n¼Ln/R and (b) frequency vs toroidicity �n¼Ln/R ky¼ 0.4, 1.4 and R/LT¼ 9. The numbers indicate values of balloon-

ing angles h0m corresponding to maximum growth.

FIG. 7. (a) Growth rates vs a and (b) frequency vs a at ky¼ 0.4, 1.4 and R/LT¼ 9. The numbers indicate the values of ballooning angles h0m corresponding to

maximum growth.

FIG. 8. hk2
?i vs ky (a) and c=hk2

?i vs ky (b) at balloning angles h0m corresponding to max growth rates cmax.
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of odd parity of the eigenmode averaged parallel wavenum-

ber. The right panel of Fig. 9 clearly demonstrates generation

of parallel momentum flux due to breaking of kjj symmetry

by breaking of eigenmode symmetry caused by finite h0. The

ky spectrum of Cjj (unnormalized) exhibits peaks at ky¼ 0.5

and 1.5 characteristic of long wavelength and short wave-

length peaks in growth rate spectra. This is depicted in Fig.

10 for cmax. To nail down, the origin of parallel momentum

flux by finite h0 z profiles of Cjj=h/2i and mode parities of /
and parallel velocity density ujj in z are calculated. Fig. 11

shows the structure of normalized parallel momentum flux in

z at different values of h0. It is seen that Cjj=h/2i is locally fi-

nite but exactly antisymmetric about z¼ 0 when h0¼ 0. This

characteristic can be understood from the even parity of /
and odd parity of ujj when h0¼ 0 as shown in Fig. 12. In

physical words, a mode centered on the LFS mid plane

drives parallel momentum flux locally in the poloidal angle

but flux in the upper plane is exactly canceled by flux in the

lower plane to give no net poloidally averaged parallel

momentum flux. At a finite h0, the z profile of Cjj=h/2i losses

this antisymmetry property in z hence flux in the upper plane

is not exactly canceled by flux in the lower plane constituting

a net parallel momentum flux. Again the loss of antisymme-

try of Cjj=h/2i can be understood from the breaking of sym-

metry of / and anti-symmetry of ujj about the LFS mid plane

(i.e., z¼ 0) at finite h0 as shown in Fig. 13.

Normalized heat flux Qi=h/2i exhibits even parity in h0

with a nonzero minimum at h0¼ 0. Fig. 14 shows Qi=h/2i
vs h0 for a test case of ky¼ 0.3 and R/LT¼ 9. Qi=h/2i
increases with h0 up to h0¼60.45p and then decreases rap-

idly to vanishingly small values as h0 !6p in the damped

eigenmode region. Heat flux distribution in poloidal angle z
is shown for different eigenmode ballooning angles are

shown in Fig. 15. Heat flux z profile is seen to follow the z
profile of mode intensity. Heat flux profile is exactly sym-

metric about z¼ 0 when h0¼ 0. At finite h0 eigenmode inten-

sity is shifted either below or above the LFS mid plane

depending on its sign which is also reflected in the poloidal

FIG. 9. (a) Cjj=h/2i vs h0 at ky ¼ 0:3; 0:6f g, R/LT¼ 9. The underlined regions indicate damped mode contributions. (b) hkjji vs h0 showing hkjji symmetry

breaking by finite h0.

FIG. 10. Cjj vs ky at ballooning angles h0m corresponding to max growth rate

and R/LT¼ 9.

FIG. 11. Cjj vs z with kxcenter as parameter at ky¼ 0.3 and R/LT¼ 9. The shown

values of kxcenter correspond to h0=p ¼ 0;�0:05;�0:10;�0:15; 0; 0:05; 0:10;f
0:15g.
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FIG. 12. Mode parities, at the end of simulation, along the field line when

kxcenter¼ 0 for ky¼ 0.3 at R/LT¼ 9.

FIG. 13. Mode parities, at the end of simulation, along the field line when

h0¼�0.15p for ky¼ 0.3 at R/LT¼ 9.

FIG. 14. (a) Qi=h/2i vs h0 at ky ¼ 0:3; 0:6f g, R/LT¼ 9. The underlined regions correspond to damped modes. (b) hk2
?i vs h0.

FIG. 15. Qi vs z with kxcenter as parameter at ky¼ 0.3 and R/LT¼ 9. The

shown values of kxcenter correspond to h0=p ¼ 0;�0:05;�0:10;�0:15; 0;f
0:05; 0:10; 0:15g.

FIG. 16. Qi vs ky at ballooning angles h0m corresponding to max growth rate

and R/LT¼ 9.
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structure of the heat flux. Like ky spectrum of parallel mo-

mentum flux, the ky spectrum of ion heat flux in Fig. 16

shows peaks at ky¼ 0.5 and 1.5 characteristic of long and

short wavelength growth spectra respectively. The even par-

ity of heat flux with respect to h0 could be understood from

the fact that potential fluctuation /, parallel temperature fluc-

tuation Tjj, and perpendicular temperature fluctuations T? all

have same even parity when h0¼ 0 as shown in Fig. 17. This

symmetry is broken when h0 6¼ 0 and the fluctuation intensity

in all fields maximizes at position other than z¼ 0 as shown

in Fig. 18 for an example of h0¼�0.15p.

IV. DISCUSSION AND CONCLUSIONS

We performed flux tube simulations of linear ITG mode

exploiting the freedom of mode ballooning angle for the first

time. So far, flux tube simulations have only been reported

for h0¼ 0 in the best of our knowledge. Following are the

major findings that add to the conventional wisdom:

• High ky modes often show maximum growth rates at h0’s

other than 0.
• ITG instability window extends to SW regime ky> 1

when growth rates maximized over all ballooning angles

are considered.
• The SW branch dies out on decreasing R/LT showing

behavior similar to the zero ballooning angle SWITG

driven by extremely large temperature gradients.
• The SW branch is toroidal in nature as opposed to the slab

like nature of conventional zero ballooning angle SWITG.
• a has overall stabilizing effect on the SW branch.
• Though mixing length estimates of cmax are slightly

greater than that of c0, the SW branch shows insignifi-

cantly low contribution to mixing length estimates com-

pared to the long wavelength branch.
• Loss of symmetry of potential fluctuation and loss of anti-

symmetry of parallel velocity fluctuations about LFS mid

plane due to finite h0 lead to net poloidally averaged paral-

lel momentum flux. The parallel momentum flux is anti-

symmetric with respect to h0, which provides a

mechanism of flux reversal and hence reversal of intrinsic

toroidal rotation.
• Heat flux shows even parity with respect to h0.
• Un-normalized heat and momentum flux ky spectra

obtained from cmax modes show peaks at ky¼ 0.5 and 1.5

characteristic of both low ky and high ky spectrum of cmax.

The freedom of setting arbitrary h0 deserves some dis-

cussion. The periodic nature of growth rates of the eigenmo-

des with respect to h0 can best be understood by calculating

eigenmode averaged curvatures hK̂yi ¼
Ðþp
�p dzK̂yðzÞj/j2ðzÞ

=
Ðþp
�p dzj/j2ðzÞ. For a test eigenfunction of the type

/ ¼ ð1þ cosðh� h0ÞÞ, it is easy to show that hK̂yi consists

of terms proportional to sinh0 and cosh0. That is an eigen-

mode “ballooned” at different poloidal angles samples dif-

ferent effective magnetic field curvatures and hence different

growth rates periodic in h0 for effective curvature being peri-

odic in h0. This is shown in an example for ky¼ 0.6 in Fig.

19. But understanding of why h0¼ 0 modes are not maxi-

mum growing modes at high ky region requires further deep

investigation which is not within the scope of this paper.

Obviously, the freedom of choosing h0 is neither desira-

ble nor self-consistent for the description of the mode. What

decides ballooning angle in more realistic situation when

global profile effects are considered? Eigenmode ballooning

angle becomes a free parameter in flux tube simulations due

to Fourier decomposition of perturbations in radial direction

allowed by periodic radial boundary condition which is

based on assumption that the profile shearing effects are not

important, i.e., q* ! 0. Hence, it is natural to wonder if

eigenmode ballooning angle in a global calculation with fi-

nite q* corresponds to h0m at all. In conventional ballooning

representation/formalism for 2D eigenmode structure calcu-

lation in the poloidal plane, the solution of the global eigen-

mode is accomplished in two steps. In the lowest order in

1/n, where n is toroidal mode number, the eigenmode struc-

ture along the field line is calculated via an eigenvalue

FIG. 17. Mode parities, at the end of simulation, along the field line when

h0¼ 0 for ky¼ 0.3 at R/LT¼ 9.

FIG. 18. Mode parities, at the end of simulation, along the field line when

h0¼�0.15p for ky¼ 0.3 at R/LT¼ 9.
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problem in which hk, which actually appears as an operator

hk ¼ �ði=nq0Þ d=dx, is set to zero and local approximation to

global eigenvalues is obtained.11 hk is determined

self-consistently from the integrability condition of the next

order inhomogeneous radial envelope equation.12 Kim

et al.13 and Kishimoto et al.14,15 showed that in 2D envelope

problem, the most unstable mode is characterized by bal-

looning angle h0m ¼ �signðŝx0rðx0r=2khc0ŝÞ1=3Þ, where c0 is

growth rate at zero ballooning angle and x0r is shear in real

frequency due to equilibrium profile shear which is a finite

q* effect. Hence, imposing finite tilts in flux tube simulations

seems to violate the basic philosophy of taking q* ! 0 in

the same. A comparison of h0m of the modes reported here

with the poloidal tilt angle in global gyrokinetic simulations

is desired which is left for future work.
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