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In the context of toroidal gyrokinetic simulations, it is shown that a hierarchy of damped modes is

excited in the nonlinear turbulent state. These modes exist at the same spatial scales as the unstable

eigenmodes that drive the turbulence. The larger amplitude subdominant modes are weakly damped and

exhibit smooth, large-scale structure in velocity space and in the direction parallel to the magnetic field.

Modes with increasingly fine-scale structure are excited to decreasing amplitudes. In aggregate, damped

modes define a potent energy sink. This leads to an overlap of the spatial scales of energy injection and

peak dissipation, a feature that is in contrast with more traditional turbulent systems.
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In high Reynolds number fluid turbulence, as modeled
by the Navier-Stokes equation, energy is injected at large
scales and conservatively transferred by nonlinear interac-
tions through a broad inertial range to a dissipation range at
small scales [1]. Saturation is achieved when the rate of
energy injection at large scales is balanced by the rate of
energy dissipation at small scales. Saturation theories for
plasma microturbulence typically involve variations on this
theme. Indeed, such an energy cascade occurs in both
physical space and velocity space for small-scale (k?�i �
1, where k? is the wave number perpendicular to the
magnetic field and �i is the ion gyroradius), homogeneous,
two-dimensional, decaying plasma turbulence [2]. For to-
roidal fusion plasmas, conventional wisdom also holds that
dissipation occurs largely at small spatial scales. This is
consistent, for example, with the notion that zonal flows
suppress turbulence by shearing, an inertial process that
enhances transfer to small scales [3]. In this work, we show
that for ion temperature gradient (ITG) driven turbulence
in toroidal fusion plasmas as modeled by the gyrokinetic
equations, dissipation occurs at all spatial scales, peaking
at the large scales including those where the instability
drives the turbulence. This is made possible by the non-
linear excitation of damped modes at the same spatial
scales as the unstable eigenmodes that drive the turbulence.
This excitation of a large number of damped modes makes
plasma microturbulence much different from hydrody-
namic turbulence in a way not fully appreciated before.

The instabilities that drive plasma microturbulence are
mathematically defined as eigenmodes of a linear operator.
In almost all microturbulence models, the unstable eigen-
modes are accompanied by stable eigenmodes which have
typically been neglected in analyses of turbulent dynamics.
Recent work has shown that damped eigenmodes are criti-
cal in understanding saturation and transport in fluid mod-
els of plasma microturbulence [4]. Initial efforts have been
made to examine the effect in gyrokinetics [5]. In this

work, the explicit role of damped modes in gyrokinetic
simulations is examined for the first time.
The gyrokinetic model solves for the gyrocenter distri-

bution function g, representing the perturbed distribution
of guiding centers (deviation from Maxwellian). It is a
function of six variables: three spatial coordinates (the
radial direction x, the mostly poloidal binormal direction
y, and the direction parallel to the magnetic field, z), two
velocity coordinates (represented here by parallel velocity
vk and magnetic moment �), and time. The adiabatic

electron assumption reduces the problem to a single ion
distribution function. We employ the flux-tube representa-
tion [6] allowing a Fourier decomposition in x and y. The
resulting wave numbers (kx and ky), which we will call

wave vectors in this Letter, are coupled through the non-
linearity of the gyrokinetic equation. At issue is the depen-
dence of energy dissipation on these perpendicular scales.
When studying linear stability in plasma microturbu-

lence, one selects a wave vector and solves for the eigen-
values and eigenvectors of a linear differential operator. In
gyrokinetics, linear analysis is frequently limited to an
initial value simulation; when there is an instability at
this wave vector, the eigenmode with the largest growth
rate grows exponentially and eventually dominates the
solution. The resulting solution for the distribution func-
tion can be expressed as gkx;kyðz;vk;�;tÞ¼fðz;vk;�ÞhðtÞ,
where f defines the mode structure and h defines the time

dependence in the form of e�ið!þi�Þt. For the parameters
used in this study, the ITG instability is the only instability
in the system, and at each wave vector there is at most one
unstable eigenmode. The region of instability is at large
scales, approximately kx�i � ð�1=2; 1=2Þ and ky�i �
ð�kymin

�i;�1=2Þ. Outside of this region, at smaller spatial

scales, all linear eigenmodes are stable, which contributes
to the conventional wisdom that dissipation occurs pre-
dominantly at small scales. However, in the region of
instability, despite the presence of unstable eigenmodes,
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there also exist stable eigenmodes that can provide a means
of energy dissipation provided they are driven to finite
amplitude by nonlinear interactions. For each wave vector,
numerical discretization allows for N ¼ nz � nvk � n�
degrees of freedom, where the n’s denote the number of
grid points in each coordinate. The unstable eigenmode
defines only one of these degrees of freedom; the remain-
ing degrees of freedom provide an energy sink at large
spatial scales.

We seek to characterize the nonlinear state by decom-
posing the gyrokinetic distribution function for selected
wave vectors (kx and ky) as a superposition of modes:

gkx;kyðz; vk; �; tÞ ¼ X

n

fðnÞkx;ky
ðz; vk; �ÞhðnÞkx;ky

ðtÞ: (1)

The structure fð1Þðz; vk; �Þ corresponds to the unstable

eigenmode, but its time amplitude hð1ÞðtÞ, rather than ex-

hibiting its linear behavior e�ið!þi�Þt, fluctuates as deter-
mined by a balance between the linear drive and the
stabilizing influence of nonlinear interactions. The other
modes are also defined by fixed mode structures

fðnÞðz; vk; �Þ and fluctuate according to their respective

time amplitudes hðnÞðtÞ in such a way that a superposition
of all the modes exactly reproduces the total distribution
function at each moment in time. In contrast with the

unstable mode, the time amplitudes hðnÞðtÞ of damped
modes fluctuate according to a balance between nonlinear
drive and linear damping, the latter of which dissipates
energy from the system, thereby facilitating saturation of
the turbulence. This decomposition is constructed by per-
forming a proper orthogonal decomposition (POD) [7,8]
on data from a standard nonlinear gyrokinetic simulation.
This provides a means to examine separately the contribu-
tion of individual modes, stable or unstable, to the satura-
tion of the turbulence.

To study the role of damped modes in saturation, we
track energy injected into or removed from the turbulence
by using diagnostics related to the conserved (in the ab-
sence of drive and dissipation) energylike quantity [9] E ¼R
dvkd�dzB0�n0T0jgj2=F0 þ

R
dzDðk?; zÞj�j2, where

B0 is the equilibrium magnetic field, � is the electrostatic
potential, n0 and T0 are the background density and
temperature, respectively, and D is a function of z and
the perpendicular wave numbers. The energy evolves
according to

@Ek

@t

��������N:C:
¼ Qk þ Ck; (2)

where Q ¼ R
dvkd�dz�n0T0B0=LTðv2

k þ�B0Þg�iky �� is

a term proportional to the heat flux and includes the
turbulent drive ( �� is the gyro-averaged potential, and LT

is the temperature gradient scale length), C represents
collisional dissipation, and, in a simulation, whatever
artificial dissipation (e.g., hyperdiffusive terms) is included

in the code. The subscript N.C. indicates that this equation
describes only the nonconservative energy evolution,
i.e., processes that inject or dissipate net energy from the
fluctuations (as opposed to processes like the E� B non-
linearity that move energy from one scale to another in a
conservative fashion).
The GENE code [10] is used to simulate ITG driven

turbulence defined by the cyclone base case parameters
[11] of safety factor q ¼ 1:4, magnetic shear ŝ ¼ 0:8,
inverse aspect ratio � ¼ r=R ¼ 0:18, equilibrium ratios
of density and temperature ni=ne ¼ Ti=Te ¼ 1:0, and
background gradients R=LT ¼ 6:9 and R=Ln ¼ 2:2, where
R is the major radius. The perpendicular box size is
ðLx; LyÞ ¼ ð126�i; 126�iÞ, and the number of grid points

is 32� 48� 8 for the ðz; vk; �Þ coordinates, respectively.
The perpendicular spatial resolution consists of 128 grid
points in the x direction giving kx;max�i ¼ 3:12 and 64 ky
Fourier modes for ky;max�i ¼ 3:15. We deviate from the

cyclone base case by using a linearized Landau-Boltzmann
collision operator rather than exclusively artificial dissipa-
tion. The collision frequency is �ðR=vTÞ ¼ 3:0� 10�3,
which is much less than the dynamic time scales of the
system [e.g., the most unstable mode at ky�i ¼ 0:3 has a

growth rate �ðR=vTÞ ¼ 0:267 and frequency !ðR=vTÞ ¼
0:783 so that �=!� 10�2]. In these runs, Ck consists
mostly of collisional dissipation but also includes contri-
butions from fourth-order hyperdiffusive dissipation in the
z and vk coordinates.
To illustrate the spatial scale dependence of the energy

balance, we first consider separately the drive term Qk and
the dissipation term Ck in Eq. (2). Figure 1 shows Qk and
Ck from the saturated state of a simulation, averaged over
the parallel coordinate and time. In Fig. 1(a), kx depen-
dence is shown and ky is summed; in Fig. 1(b), ky depen-

dence is shown and kx is summed. There is a significant
amount of dissipation at all scales, including ky ¼ 0:0 and

high k?. However, the largest range of peak dissipation
corresponds with the same scales where the energy drive
peaks. As described in detail below, the drive Qk is

FIG. 1 (color online). Energy drive Qk and dissipation Ck time
averaged over the nonlinear state and averaged over the z
direction, as a function of (a) kx summed over ky and (b) ky
summed over kx.
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dominated by the unstable modes, while the dissipation Ck

is dominated by the stable modes. Contrast this with the
corresponding scenario in high Reynolds number Navier-
Stokes turbulence for which the drive is localized at large
scales, the dissipation is localized at small scales, and there
is a broad inertial range of intermediate scales with neither
drive nor dissipation.

The observed k dependence of the dissipation is due to
the excitation of a hierarchy of damped modes in the non-
linear state. POD analysis elegantly characterizes this
hierarchy of modes. POD uses the singular value decom-
position [12] of a matrix to create an optimal orthonormal
basis for fluctuation data. In this application, each column
of the input matrix consists of a time slice (at every 50 time
steps) of the nonlinearly evolved gyrokinetic distribution
function for a selected wave vector. The nonspectral coor-
dinates ðz; vk; �Þ are unraveled to one dimension, e.g., as

the data would be stored in computer memory. The singular
values sn define the amplitudes of the nth modes. The left
singular vectors are the POD modes—basis vectors that
are orthonormal with regard to the scalar productH
fðnÞ�fðmÞJðzÞdzdvkd�, where JðzÞ is a Jacobian [these

correspond to fðnÞðz; vk; �Þ in Eq. (1)]. The right singular

vectors are time traces of the amplitudes of the correspond-
ing POD modes [these, multiplied by the singular values,

correspond to hðnÞðtÞ in Eq. (1)].
It is observed that, for wave vectors with a strongly

unstable eigenmode, the n ¼ 1 POD mode is very similar
to the unstable linear eigenmode, they exhibit nearly iden-
tical mode structures, and the scalar product between the
two is �0:9. As a result, for much of this study we will
conceptually equate the n ¼ 1 POD mode with the corre-
sponding unstable linear eigenmode.

In order to elucidate the energy drive and dissipation
processes in the instability range, we will examine in detail
the POD analysis of the wave vector of peak transport:
ky�i ¼ 0:2 and kx�i¼0:0. These results are representa-

tive of other important energy-containing wave vectors in
the spectrum. The POD singular values decay rapidly in
mode number n up to n� 100. At that point and beyond,
the spectrum exhibits exponential decay as seen in
Fig. 2(a). Further insight can be gained by calculating Qk

and Ck for each mode fðnÞðz; vk; �Þ. In these calculations

Qk þ Ck can, in a sense, be conceptualized as growth (or
damping) rates since the modes are normalized and contain
no amplitude dependence. The mode-by-mode values of
Ck are all negative and increase strongly in amplitude with
mode number, as seen in Fig. 2(c). As expected, the first
POD mode produces a large positive value of Qk. The
remaining modes are associated with amplitudes of Qk

which decrease with mode number and have seemingly
random signs; i.e., their ��T phase angles are randomly
distributed around zero. This is shown in Fig. 2(b). These
results differ from fluid models, where the damped eigen-
modes are stable due to a large and systematic effect on

cross correlations like ��T [4] (in contrast with the modes
described here, which are damped due to collisional
dissipation).
The contribution of the n > 1 modes to the energy bal-

ance can be separated from that of the unstable
(n ¼ 1) mode by decomposing the distribution function

as g ¼ fð1Þhð1Þ þ fðresÞhðresÞ, where the residual distribution
function fðresÞhðresÞ is the sum of the n > 1 POD modes and
represents all fluctuations not associated with the unstable
mode. It is found that the energy drive Qk is dominated by
the unstable mode, whereas the dissipationCk is dominated
by the residual distribution function. This can be seen by
examining a selection of wave vectors in the region of
instability centered around the peak of the spectrum
(kx�i ¼ 0:0, ky�i ¼ ½0:05; 0:2; 0:3; 0:4�, and ky�i ¼ 0:2,

kx�i ¼ ½0:1; 0:2; 0:4�). For the sum of these wave vectors,

the residual driveQkðfðresÞÞ
R jhðresÞðtÞj2dt accounts for only

7% of the total energy drive, but the residual dissipation

CkðfðresÞÞ
R jhðresÞðtÞj2dt accounts for 63% of the total dis-

sipation. Both the dissipation associated with the n ¼ 1
mode and the residual dissipation peak at ky�i ¼ 0:2,

kx�i ¼ 0:0 and decrease as k? increases. In summary,
unstable eigenmodes (collectively represented here by

fð1Þkx;ky
) drive the turbulence. Nonlinear interactions excite

linearly damped modes (represented here by fðresÞkx;ky
) at the

same perpendicular scales (kx and ky) as the driving insta-

bility. The excitation of these modes causes the dissipation
to peak at large perpendicular scales. The calculation in this
paragraph, in conjunction with Fig. 1, establishes the main
claim of this Letter; Fig. 1 shows that the scale range of
energy drive and dissipation overlap, and this calculation
demonstrates that, in this same scale range, the dissipation
is dominated by modes other than the unstable mode.

FIG. 2 (color online). The spectrum of singular values (a),
energy drive Qk for each normalized POD mode (b), and dis-
sipation Ck for each normalized mode (c). For ky�i ¼ 0:2,

kx�i ¼ 0:0.
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In order to characterize the POD modes and describe
their role in the energetics, we show in Fig. 3 mode
structures for selected POD modes for the wave vector of
peak transport: ky�i ¼ 0:2, kx�i ¼ 0:0. In the top row of

Fig. 3, the parallel mode structures for the electrostatic
potential are plotted (for POD modes 1, 2, 10, and 100),
and in the bottom row the vk dependence is shown (for the
same POD modes at � ¼ 0:18 and z ¼ 0). As mentioned
above, the n ¼ 1 POD modes are very similar to the
unstable linear eigenmodes. The second most important
structure, the n ¼ 2 POD mode, is also very similar to a
linear eigenmode. This linear eigenmode is the most
weakly damped stable mode, having a damping rate an
order of magnitude smaller than the growth rate of the ITG
mode. Figure 3 also demonstrates the fine-scale structure
that develops in the z and vk coordinates. The scale lengths
in the z and vk coordinates both decrease as n increases. As

a result, these modes become increasingly dissipative due
to the higher-order derivatives in the dissipation operators.
The development of fine-scale structure in vk is consistent
with aspects of linear phase mixing [13]. There must also
be a nonlinear excitation mechanism involved in the pro-
cess since the linear system produces only the unstable
mode (all other eigenmodes decay exponentially). An ef-
fort to better understand this phenomenon will be an aspect
of future work.

The results presented in this Letter do not contradict the
numerically observed power law k? spectra reported in the
literature [2,14,15]. From a dissipation range analysis [16]
a spectrum goes as k�� exp½cðk=kdÞ�	�, where kd is the
wave number at which damping and nonlinear de-
correlation rates are equal, c is a positive constant,
and 0<	< 2=3, provided the damping increases with

wave number k more slowly than the nonlinear decorrela-
tion rate. This condition appears to be satisfied for the data
presented here. This spectrum transitions to a regime
dominated by the power law behavior for high k. An
analysis of high-k? spectra for simulations very similar
to those presented in this Letter is provided in Ref. [15],
where power law spectra agree quite well with those de-
scribed in Ref. [2].
The following is a plausible saturation scenario:

Through collisional dissipation, damped modes dissipate
a significant portion of the injected energy at the same
spatial scales as the instability operates (k?�i & 1). This is
accompanied by a spatial cascade carrying energy to
smaller perpendicular scales (k?�i > 1). At these smaller
scales, the remaining dissipation occurs and processes such
as nonlinear perpendicular phase mixing dominate.
In summary, we have shown that, in ITG driven turbu-

lence modeled by the gyrokinetic equations, dissipation
occurs at all scales, peaking in the wave number range of
the instability drive. The dissipation is associated with a
very large number of damped eigenmodes excited to finite
amplitude by nonlinearity.
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FIG. 3. Mode structures for a selection of POD modes at the
peak of the nonlinear spectrum, ky�i ¼ 0:2, kx�i ¼ 0:0. The

mode structures of the electrostatic potential are shown in the top
row for modes 1, 2, 10, and 100, and the vk dependence is shown
in the bottom row for the same POD modes at � ¼ 0:18 and
z ¼ 0. Fine-scale structure develops in both coordinates as n
increases.
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