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In gyrokinetic theory, the quadratic nonlinearity is known to play an important role in the dynamics by

redistributing (in a conservative fashion) the free energy between the various active scales. In the present

study, the free energy transfer is analyzed for the case of ion temperature gradient driven turbulence. It is

shown that it shares many properties with the energy transfer in fluid turbulence. In particular, one finds a

(strongly) local, forward (from large to small scales) cascade of free energy in the plane perpendicular to

the background magnetic field. These findings shed light on some fundamental properties of plasma

turbulence, and encourage the development of large-eddy-simulation techniques for gyrokinetics.
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Fully developed turbulence is fundamentally linked to a
conservative transfer of (free) energy in wave number
space from drive to dissipation scales [1]. While the re-
spective cascade dynamics for simple fluids (described by
the Navier-Stokes equation) has been the subject of count-
less studies and is fairly well understood, the situation is
quite different for turbulent plasmas, both at large scales
(compared to the particles’ gyroradii)—described by mag-
netohydrodynamics (MHD)—and, in particular, at small
scales—described by gyrokinetic theory [2]. The latter
case, in which one deals with a gyrocenter distribution
function in five-dimensional phase space, shall be the focus
of the present work.

In three-dimensional Navier-Stokes turbulence, the ki-
netic energy is conserved by the advective nonlinearity. It
is usually assumed to be injected into the system at the
largest scales through mechanical forcing, and to be dis-
sipated at the smallest scales by viscous effects. The role of
the nonlinearity is then to transfer the kinetic energy from
the large scales to the small ones in what is usually referred
to as a cascade process. In the gyrokinetic formalism, on
the other hand, the free energy acts as the quadratic con-
served quantity (see, e.g., Ref. [3] and various references
therein). It is usually injected into the system at large scales
via the background density and temperature gradients, and
expected to be dissipated at small (space and/or velocity
space) scales. It is anticipated that one role of the nonlinear
term in gyrokinetic turbulence is to transfer the free energy
from the largest perpendicular scales to the smallest ones
[4–6], but a definitive investigation of the free energy
transfer dynamics in a self-driven, three-dimensional sys-
tem (which is the standard case for magnetically confined
plasmas) is still lacking and shall be provided for the first
time in the present Letter.

Our study is based on numerical solutions of the non-
linear gyrokinetic equations obtained by means of the
GENE code [7–9]. Although GENE is able to treat general

toroidal geometry as well as magnetic field fluctuations
and collisions, these features shall not be used here.
Instead, we will focus on the reduced problem of electro-
static fluctuations, and a large aspect-ratio, circular
cross-section model equilibrium. For this simplified case,
the respective (appropriately normalized) equations read
(for details, see Ref. [9]):
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Here, the total distribution function Fj of species j is split

into a Maxwellian part F0j ¼ ��3=2e�ðv2
kþ�B0Þ and a per-

turbed part fj, and the nonadiabatic part of fj is given by

hj ¼ fj þ ðqj ��1=T0jÞF0j where ��1 is the gyro-averaged

electrostatic potential. hj and fj depend on the gyrocenter

position r ¼ ðx; y; zÞ, the parallel velocity vk, the magnetic

moment �, and the time t. As indicated already above, all
simulations in this paper are performed in ŝ� � geometry
with � ¼ 0, for which the curvature terms are given
by Kx ¼ �2 sinz and Ky ¼ �2ðcoszþ ŝz sinzÞ.
Furthermore, vTj ¼ ð2Tj0=mjÞ1=2 is the thermal velocity,

!nj ¼ �R@ logn0j=@x and !Tj
¼ �R@ logT0j=@x are the

normalized background density and temperature gradients,
R is the major radius,mj and qj are the mass and charge of

species j. The equilibrium magnetic field is taken to be
B ¼ B0Bref where Bref is the reference magnetic field on
the magnetic axis. Finally, the Poisson brackets are defined
by ½f; g�ab ¼ @af@bg� @bf@ag. Note that in Eq. (1), the
second term is responsible for the injection of free energy
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into the system. The third through fifth terms are, respec-
tively, the curvature, nonlinear, and parallel terms, none of
which acts as a source or sink of free energy. Since the
simulations presented below are done without collisions,
the numerical scheme used in GENE is not dissipative, and a
statistical steady state cannot be reached without some
form of dissipation [10], hyperdiffusion terms Dzfj and

Dvkfj are added to remove fine-scale fluctuations in z and

vk (for details, see Ref. [11]).
Equation (1) is complemented by the gyrokinetic

Poisson equation which is used to determine the self-
consistent electrostatic potential:
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Here, J0 is the Bessel function and �0ðbjÞ ¼ e�bjI0ðbjÞ
with the modified Bessel function I0. The (dimensionless)
arguments bj and �j are defined, respectively, as
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where �j ¼ ðqjB0Þ=ðmjcÞ and k? is the perpendicular

wave number.
In the absence of drive and dissipation, the gyrokinetic

equations, Eqs. (1) and (2), are known to conserve the free
energy E (see, e.g., Refs. [3,6]) which is usually split into
two quadratic parts according to E ¼ Ef þ E� with
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Here,
R
d� ¼ R

d3x
R
�B0n0jdvkd� denotes phase-space

integration. The evolution equation for the free energy is
given by
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and the dissipative term
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The quantity E plays the same role in gyrokinetic turbu-
lence as the kinetic energy in fluid turbulence [3].

The transfer of free energy between different modes in
the saturated turbulent state is induced by the nonlinear
term. Although it does not affect the global value of the
free energy (numerically, this is satisfied in GENE up to
machine precision), it can change, e.g., the value of this
quantity associated with particular perpendicular wave
numbers. Following the procedure used for studying en-
ergy transfer in Navier-Stokes and in MHD turbulence
[12–14], we decompose the perpendicular wave vector
plane into domains and measure the free energy transfer
between these domains. The set of domains fd‘g is assumed
to be a partition (no intersection between the domains and
all domains together cover the entire plane). The distribu-
tion function and electrostatic potential can then be written
as a sum over all contributions for which the perpendicular
wave vectors lie in the domain d‘. As a consequence of the
Parseval theorem, the free energy can also be split into
parts which are associated to the domains d‘: E ¼ P

‘E
‘ ¼P

‘E
‘
f þ

P
‘E

‘
�. In the problem considered hereafter, both

the entropy and electrostatic contributions to the free en-
ergy are conserved separately by the nonlinearity N . It is
thus legitimate to consider the entropy conservation inde-
pendently from the conservation of the electrostatic energy.
The evolution of E‘

f due to the nonlinear term can be

expressed as
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where we have used the property
R
d�f‘jf

‘
j ¼

R
d�f‘jfj

which is easily proven and expresses the fact that the
contributions f‘j are orthogonal ‘‘vectors’’ if their scalar

product is defined as the integration over �. Introducing
the explicit form of the nonlinearity, one obtains
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where the three-domain interaction terms are defined as
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Equation (9) shows that the evolution of the entropy asso-
ciated to the domain d‘ is the sum of triple interactions
between wave vectors associated with the domains d‘, d‘1 ,

and d‘2 . This is not a surprise since, like in the Navier-

Stokes equation, the quadratic nonlinearity in the gyroki-
netic equation is responsible for triadic interactions
between the Fourier modes. Proposing a clean definition
of the energy transfer between two domains might thus be
problematic in such a picture. However, considering the
structure of these three-domain interaction terms, the fol-
lowing two-domain interaction terms are natural quantities
to investigate:
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These two-domain interaction terms will be interpreted as
the energy transfers between the domains d‘ and d‘0 , even
if the redistribution of the free energy between the different
domains by the nonlinear term cannot be fully understood
without considering triadic interactions. As a consequence
of the Poisson bracket structure, it is easy to show that

T‘;‘0
f ¼ �T‘0;‘

f , which reinforces the interpretation in terms

of free energy exchange. Indeed, if the domain d‘ is
considered to receive a certain amount of free energy per

unit of time T‘;‘0
f from the domain d‘0 , then the domain d‘0

is seen as losing exactly the same amount of free energy per
unit of time in profit of the domain d‘. The same approach
can be used to define three-domain and two-domain inter-
action terms for the electrostatic part of the free energy
with the following definitions:
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The complete dynamical equation for E‘ then reads
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where the source and dissipation terms, G‘ and D‘, are
given by Eqs. (6) and (7), using h‘j , f

‘
j , and

��‘
1.

The free energy transfer terms defined above are now
evaluated from a numerical simulation using GENE. The
physical parameters employed in this context correspond
to a widely used case of collisionless ion temperature
gradient (ITG) turbulence known as the Cyclone Base
Case [15] where adiabatic electrons and one single ion
species are used. (Repeating the analysis shown below
for a reduced normalized temperature gradient of 6.3 in-
stead of the nominal 6.9, or with collisions added, no major
changes were observed, indicating the robustness of our
findings.) The simulation domain is about 125 ion gyrora-
dii wide in the perpendicular directions, and 256� 128�
16� 48� 16 grid points are used in (x, y, z, vk, �) space.

For further analysis, the perpendicular wave vector plane is
divided into shells d‘ ¼ fk?such asK‘ < jk?j � K‘þ1g
where the shell boundariesK‘ are chosen to grow algebrai-

cally K‘þ1 ¼ �K‘, with � ¼ 21=5 between shell ‘ ¼ 3 and
‘ ¼ 24. The first shell boundaries have been chosen differ-
ently (K1 ¼ 0, K2 ¼ 0:2, K3 ¼ 0:3) in order to ensure that
enough modes belong to those shells. Moreover, in order to
limit the number of shells, the last shell (‘ ¼ 25) is wider
and limited by K25 ¼ 6:3 and K26 ¼ jk?jmax ¼ 14:6.

Figure 1 shows the numerical results for the source and
dissipation terms (averaged over time during the saturated

phase of the simulation). As expected, the injection of free
energy is well localized at low k?. However, as it turns out,
the dissipative terms are not just active in the high k?
range, but throughout the entire k? spectrum, including
the drive range. An explanation of this phenomenon may
be provided in terms of the nonlinear coupling to damped
eigenmodes, as is discussed in Ref. [16]. There is a net
source of free energy up to shell ‘ ¼ 8 and a net dissipation
beyond that.

FIG. 1 (color online). Shell decompositions in perpendicular
wave number space of the drive (G‘) and dissipation (�D‘)
terms (as well as their sum) from a GENE simulation of ITG
turbulence.

FIG. 2 (color online). Shell-to-shell transfer in perpendicular
wave number space of entropy (a) and electrostatic energy
(b) from a GENE simulation of ITG turbulence.
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The corresponding shell-to-shell free energy transfer
terms are shown in Fig. 2, and various interesting features
can be observed there: (i) The entropy transfer is larger
than the electrostatic energy transfer by 2 orders of mag-
nitude. This is in line with the fact that only Ef is driven

directly, while E� is fed via linear transfer terms. Just a

small fraction of the free energy is passed on to E�.

(ii) While the electrostatic energy exhibits an inverse and
less local cascade behavior, this property hardly affects the
overall free energy dynamics, given the dominance of Ef

over E� and of Tf over T�. (iii) The entropy transfer (and

therefore also the free energy transfer) is from large scales
to small ones; it is negative for ‘0 > ‘ and, due to the
antisymmetry property, positive otherwise. (iv) The free
energy transfer is very local in wave number space. Indeed,

only values of T‘;‘0
tot with ‘ close to ‘0 are significantly

different from zero. In practice, for j‘� ‘0j> 5 the free
energy transfers almost vanish. This corresponds to a ratio
of wave numbers between the two shells of the order of 2.
(v) For ‘ > 15, the total transfers are found to depend
mainly on ‘� ‘0, not on the two indices separately. This
suggests the existence of an asymptotic self-similarity
range, despite finite dissipation (see Fig. 1). Given that,
in contrast to the damping rates, the nonlinear frequencies
characterizing the free energy transfer increase with ‘ (see
also Ref. [16]), cascade dynamics is allowed to develop.

Interestingly, as is shown in Fig. 3, the wave number
spectra of Ef and E� exhibit power laws at k? > 1, indica-

tive of self-similarity. Dimensional analysis based on
two-dimensional gyrokinetics lead Schekochihin and co-

workers [3] to the predictions Efðk?Þ / k�4=3
? and

E�ðk?Þ / k�10=3
? which are displayed for comparison.

One finds that the measured spectra are relatively close
to these expectations, regardless of the fact that terms
related to parallel free streaming, magnetic curvature,
and inherent drive and damping are all neglected in this
theory, and that Ef and E� are conserved independently of

each other in two dimensions. Clearly, future work will
have to further unravel the underlying physics.
In summary, the spectral transfer of free energy in

gyrokinetic turbulence displays various similarities with
the kinetic energy transfer in fully developed Navier-
Stokes turbulence, although this is not at all obvious
a priori. In particular, being dominated by the entropy
contribution, the free energy is subject to a (strongly) local,
forward cascade—despite the absence of a strict inertial
range. Moreover, the wave number spectra of the entropic
and electrostatic parts of the free energy exhibit power laws
with exponents which are close to the predictions from a
simplified two-dimensional analysis.
Insights like these may be expected to guide the appli-

cation of large-eddy-simulation techniques [17] to gyroki-
netics. Here, the idea is to only retain the dynamics of the
largest scales while the smallest ones are modeled. Indeed,
if the smallest scales are proven to act systematically as a
sink of free energy like it was the case here, it is reasonable
to propose a dissipative model for these small scales and
consequently reduce as much as possible the numerical
resolution. On such a basis, it may well become possible to
reduce the computational effort for gyrokinetic turbulence
simulations by a significant amount. The present work
represents a relevant step in that direction.
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FIG. 3 (color online). Wavenumber spectra of Ef and E� from
a GENE simulation of ITG turbulence. Predictions from a two-
dimensional theory are shown for comparison.
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