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Abstract
An overview is given of physics differences between stellarators and tokamaks, including
magnetohydrodynamic equilibrium, stability, fast-ion physics, plasma rotation, neoclassical
and turbulent transport and edge physics. Regarding microinstabilities, it is shown that the
ordinary, collisionless trapped-electron mode is stable in large parts of parameter space in
stellarators that have been designed so that the parallel adiabatic invariant decreases with
radius. Also, the first global, electromagnetic, gyrokinetic stability calculations performed for
Wendelstein 7-X suggest that kinetic ballooning modes are more stable than in a typical
tokamak.

(Some figures may appear in colour only in the online journal)

1. Introduction

It has been said that, in the early days when fusion research
was classified, much of the work was duplicated in various
laboratories across the world, so that, for instance, the tokamak,
the mirror machine and the Grad–Shafranov equation were
invented or discovered independently in several places. But
there was one exception: only Lyman Spitzer in Princeton
was ingenious enough to think of the stellarator [1]. It has
occupied an important position in the fusion programme for
six decades now, but has spent much of that time in the
shadow of its toroidal cousin, the tokamak. Perhaps for
this reason, the physical properties of stellarators are less
well known than they deserve to be. Historically, many key
concepts in magnetic confinement physics originated from
stellarators [2], and great strides have been taken in their
development in recent years, making the stellarator a very
serious candidate for a fusion reactor. In this paper we present
an overview of similarities and differences between stellarator
and tokamak plasmas, emphasizing conceptual and recent
theoretical developments. No attempt is made to review the
considerable body of experimental results that can be found
in the literature. Most of the material can be found in other
publications, but some of it is new, in particular in the section
on microinstabilities.

2. Magnetic field

As Spitzer realized [3] and Mercier proved mathematically [4],
there are three ways of producing a rotational transform of
a toroidal magnetic field. From an expansion of Maxwell’s
equations in the vicinity of the magnetic axis, the average
number of poloidal turns of a field line in one toroidal
revolution can be expressed as an integral along the length
l once around the magnetic axis [4, 5],

ι = 1

q
= 1

2π

∫ L

0

[
µ0J

2B0
− (cosh η − 1)d ′ − τ

]
dl

cosh η
− N.

(1)
Here J is the current density on the magnetic axis, N is an
integer of topological origin, eη = r2/r1 the elongation of
the flux surfaces, d(l) their tilting angle with respect to the
curvature vector κ = db/dl, where b = B/B is the unit vector
along the magnetic field B, and τ(l) = (dκ/dl) · (b × κ)/κ2

denotes its torsion, see figure 1. The three ways of twisting the
magnetic field are thus

• driving a toroidal current;
• elongating the flux surfaces and making them rotate

poloidally as one moves around the torus;
• making the magnetic axis non-planar, so that τ �= 0.

Tokamaks and reversed field pinches use the first method, LHD
uses the second one, TJ-II and Wendelstein 7-X the last two,
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Figure 1. Flux-surface geometry in the vicinity of the magnetic axis
of LHD. The rotational transform is generated by the poloidal
rotation of the flux-surface cross section as one moves around
the torus.

and NCSX all three. The last method alone was used by the
first stellarators built in Princeton, which had circular cross
section and the magnetic axis bent into the form of a figure
eight.

The first method is simplest in the sense that it allows
the device to be axisymmetric, making it easier to build, but
suffers from the disadvantage of being non-steady-state or
requiring non-inductive current drive. A further advantage of
axisymmetry is that the existence of flux surfaces is guaranteed,
whereas care is needed to avoid large magnetic islands and
stochastic regions in non-axisymmetric magnetic fields.

3. Macroscopic equilibrium and stability

Avoiding a toroidal plasma current brings great advantages
for plasma stability. Indeed, magnetohydrodynamic (MHD)
stability plays a far less prominent role in stellarators than
in tokamaks, where the toroidal current causes kink modes,
sawteeth and resistive and neoclassical tearing modes that all
limit the plasma performance. These instabilities are usually
absent in stellarators for the simple reason that there is no, or
very little, net toroidal plasma current.

There is, of course, a non-zero poloidal plasma current
present to satisfy force balance, J × B = ∇p, and just
like in a tokamak, the requirement ∇ · J = 0 implies the
existence of a Pfirsch–Schlüter current parallel to the magnetic
field, since the perpendicular current J⊥ = (B × ∇p)/B2 is
generally not divergence-free. In addition, at low collisionality
a bootstrap current arises for reasons similar to those in a
tokamak, although the details are different because the particle
orbits are not the same. The total toroidal current arising in this
way is, however, usually substantially smaller than the typical
(Ohmic) current in a tokamak. Of course, it is quite possible to
drive a more substantial current using a transformer, and then
tearing modes can be destabilized [6].

In principle neoclassical tearing modes can also exist in a
stellarator, since these do not depend on a destabilizing Ohmic
current profile for their existence but rather on a non-zero
bootstrap current. The latter is reduced when a magnetic island
forms and the pressure profile is flattened within it, and in
tokamaks this negative current perturbation causes the island
to grow further. In stellarators, however, the (global) magnetic
shear usually has the opposite sign from that in tokamaks, so

that, if an island should form and flatten the pressure profile,
the resulting reduction in the bootstrap current makes the island
shrink rather than grow. Neoclassical tearing modes are thus
nonlinearly stable unless the bootstrap current is negative [7].
(The bootstrap current is taken to be positive if it increases the
rotational transform.) In fact, finite plasma pressure often has
the tendency to ‘heal’ magnetic islands in stellarators [8–10].

Stellarators do not experience plasma-terminating disrup-
tions when, for instance, a stability limit is approached. The
only exception seems to be situations where a transformer is
used to induce so much toroidal current that tearing modes are
destabilized [11]. After 120 000 plasma discharges, LHD has
still not experienced a single current disruption [12].

In stellarators, the plasma density is not limited by the
‘Greenwald’ limit [13] but is instead determined by radiation
losses from the plasma core. It is therefore a ‘soft’ limit
and depends on the concentration and transport of impurities.
Because the Greenwald limit is absent, stellarators often
operate at a higher density than do tokamaks. The record is
held by LHD, where densities ne = 1021 m−3 are reached
in so-called super-dense core plasmas. The question why
stellarators do not have a Greenwald limit cannot be answered
without understanding its origin in tokamaks. A recent
explanation by Gates and Delgado-Aparicio [14] suggests that
the limit is due to the destabilization of magnetic islands (in
the outer regions rather than the core) by radiation losses:
at high enough density these cannot be overcome by local
Ohmic heating, and this leads to further island growth. As the
authors themselves note, this mechanism would not operate in
stellarators.

The pressure limit is also approached in a different way
from that in tokamaks. The limit set by pressure-driven
MHD modes is surprisingly ‘soft’; for instance, LHD routinely
operates far above the ideal-MHD ballooning limit. It is not
entirely clear why this is possible, but it appears that finite-
Larmor-radius effects are playing a stabilizing role. Moreover,
a significant fraction of the plasma pressure can be produced
by suprathermal ions from neutral-beam injection, which has
a stabilizing effect on ballooning modes [15]. By shaping the
plasma appropriately, it is possible to raise the ideal ballooning
limit significantly. In W7-X the volume-averaged normalized
pressure limit is about 〈β〉 = 5%. Because the stability limit
is so high and soft, the equilibrium pressure limit is more
important than in the tokamak. The Shafranov shift limits
the pressure in a classical stellarator to about

βmax ∼ ι2

2A
,

where A denotes the aspect ratio. By optimizing the magnetic-
field geometry so as to reduce the Pfirsch–Schlüter current, it
is possible to reduce the Shafranov shift significantly, and this
has been carried out successfully in the designs of W7-AS [11]
and W7-X. Another equilibrium effect limiting the achievable
pressure is the tendency of the magnetic field to become
stochastic in the edge region at high beta. Figure 2 shows
calculations of this effect in W7-X using the PIES code,
which solves the force balance equation J × B = ∇p

2
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Figure 2. Poincaré sections of two equilibria in W7-X with
different normalized pressures. The pressure profiles are in both
cases of the form p = p0(1 − s)(1 − s4), with s the normalized
toroidal flux coordinate. The Shafranov shift and a stochastization
of the edge region are clearly seen in the 〈β〉 = 5% equilibrium.

without assuming nested flux surfaces [16]. As the volume-
averaged normalized pressure 〈β〉 increases from 1% to 5%,
the confinement region, i.e. the volume inside the largest closed
flux surface, shrinks from 31.7 to 19.3 m3.

Fast-ion-driven modes, such as toroidal Alfvén eigen-
modes (TAEs), have been observed in most stellarators. Such
modes arise in the gaps of the continuous Alfvén spectrum
that form when a plasma cylinder is bent into a torus. In stel-
larators, the breaking of axisymmetry gives rise to additional
gaps and discrete modes lying therein. There are therefore
more types of Alfvén eigenmodes in stellarators than in toka-
maks, e.g. helicity- and mirror-induced Alfvén eigenmodes,
there are more wave–particle resonances, and thus more scope
for instability [17]. For instance, while in a circular tokamak
with large aspect ratio the main TAE resonances are v‖ = vA

and v‖ = vA/3, where vA is the Alfvén speed, it is possi-
ble to have resonances with v‖ > vA in stellarator geometry.
On the other hand, the alpha-particle pressure in a reactor is
proportional to the slowing-down time,

pα ∼ τs ∼ T 3/2
e /ne,

which is expected to be smaller in stellarators than in tokamaks,
thanks to the ability of the former to operate above the
Greenwald limit. The fast-particle drive for Alfvénic modes
can thus be smaller in the stellarator, if an operating point with
high density can be chosen. Note that at constant thermal
pressure, p ∼ neTe or fusion power Pfus ∼ n2

eT
2

i , the alpha-
particle pressure scales as pα ∼ n

−5/2
e , so increasing the

plasma density by a factor of 2.5 leads to ten times lower alpha-
particle pressure.

3.1. More mathematical issues

45 years ago, Grad [18] pointed out that general scalar-pressure
MHD equilibria are likely to be very complicated when the

plasma is not axisymmetric. Unless awkward conditions
are satisfied, the pressure gradient must vanish on every
rational surface, and flux surfaces will not exist throughout
the plasma in general. Toroidal magnetic fields without a
continuous symmetry are composed of a fractal mix of chaotic
field lines, magnetic islands and intact flux surfaces. It has
been argued that the only nontrivial solutions to the equation
J×B = ∇p in chaotic regions contain an uncountable infinity
of discontinuities in both ∇p and J , and on these grounds
fundamental criticism can be raised against codes that attempt
to solve this equation numerically [19].

There appear to be three ways out of this dilemma. The
most common one is the method chosen by the VMEC code
[20], which insists on the existence of nested flux surfaces
and computes the equilibrium by minimizing the MHD energy
subject to the mathematical constraints that follow. In general,
there will then be an infinite Pfirsch–Schlüter current density
on most rational surfaces, diverging as 1/x with the distance
x from the surface. (Alternatively, the pressure gradient could
vanish on all rational surfaces). In practice, however, the
numerical resolution is usually sufficiently limited that most
of these singularities are not noticeable.

The second way is to allow magnetic surfaces to break
up and form islands and stochastic regions, but to ignore the
infinity of singularities that these imply, e.g. by letting them be
washed out by finite spatial resolution. Physically, this might
be justified by arguing that the MHD equilibrium condition
J × B = ∇p is modified by kinetic effects (leading to finite
viscosity and flow) on small scales.

Finally, one can insist on solving orthodox force balance,
J × B = ∇p, implying B · ∇p = 0, so that the pressure
vanishes exactly in chaotic regions. Dewar, Hudson and
co-workers have shown that it is possible to make the problem
tractable by taking the pressure profile to be ‘stepped’. That
is, the pressure is prescribed to be piecewise constant and to
change discontinuously at a finite number of irrational flux
surfaces, between which the field is assumed to be in a Taylor-
relaxed state. The mathematical problem of finding such
an equilibrium can be formulated as a variational principle
suitable for numerical solution, see [21] and papers cited
therein.

Mathematical subtleties specific to non-axisymmetric
plasmas also arise in the theory of ballooning modes [22]. The
ballooning equation predicts different stability properties for
different field lines on the same flux surface in a stellarator,
and it is not straightforward to construct global modes, since
the solutions to the ray equations generally are chaotic. There
are parallels to the semi-classical theory of quantum systems
with chaos [23].

4. Neoclassical transport

The advantages of stellarators discussed above—steady state,
high density, the absence of current-driven instabilities and
disruptions—come not only at the price of complicated
geometry. As Gibson and Taylor observed [24], there are
generally unconfined particle orbits regardless of the magnetic-
field strength. This is not only problematic for the confinement
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of alpha particles, whose orbits are practically collisionless, but
can also lead to prohibitively high neoclassical transport of the
thermal particle species.

4.1. Typical collisionality regimes

There are several different collisionality regimes for
neoclassical transport in stellarators, and in contrast to the
situation in tokamaks the electrons and ions are often in
different regimes. These have been reviewed in great detail
elsewhere [25–29], and it has been established that the
neoclassical heat flux is very significant in the plasma core
of most experiments. At low collisionality, the electrons are
usually in the 1/ν-regime, where the diffusivity is inversely
proportional to the collision frequency ν,

De ∼ ε
3/2
eff v2

d

νe
, (2)

and thus scales as

De ∝ ε
3/2
eff T

7/2
e

neB2R2
.

Here εeff is a geometric quantity characterizing the confinement
qualities of trapped-particle orbits, vd is their drift velocity,
Te is the electron temperature and R is the major radius of
the device. Because of the strong Te scaling, the neoclassical
losses are expected to dominate at high electron temperature,
and this is indeed observed to be the case. In W7-AS, the
transport followed neoclassical predictions in roughly half the
plasma volume if the temperature was high enough (�1 keV)
and was attributed to turbulence in the outer regions of the
plasma [11].

The scaling (2) has a simple origin. In a classical
stellarator, the particles responsible for the transport are
trapped in local magnetic wells of depth δB/B ∼ εh, the
helical magnetic ripple, and drift radially at the velocity vd.
Collisions scatter the particles in and out of the wells on
the time scale of the inverse effective collision frequency,
�t ∼ 1/νeff ∼ εh/ν. They therefore undergo a random walk
with step size �r = vd�t , and the diffusion coefficient (2)
results from multiplying the estimate �r2/�t by the fraction of
locally trapped particles ε

1/2
h (taking εeff ∼ εh). In stellarators

that have been optimized for low neoclassical transport, the
trapped particles have reduced radial drift velocities, and the
parameter εeff in equation (2) is substantially smaller than
the fraction of trapped particles, see figure 3.

If the collisionality is so low that the step size �r becomes
comparable to the radial scale length, the transport is no longer
radially local [30]. This is a qualitative difference to the
tokamak, where the neoclassical random-walk step size is
always limited from above by the banana width, so that, as
long as the latter is thinner than the gradient length scale, the
transport is always local in nature.

The diffusion coefficient (2) is much larger for ions than
for electrons and would therefore violate ambipolarity. An
inward-pointing radial electric field therefore arises and serves
to confine the ions and reduce their transport to the electron
level (whilst increasing the electron transport somewhat). The

 0.001

 0.01

 0.1

 1

 0  0.2  0.4  0.6  0.8  1

r/a

εeff

LHD
W7-X
HSX

NCSX
TJ-II

Figure 3. Neoclassical confinement quality parameter εeff versus
minor radius in various stellarators: TJ-II, LHD (R0 = 3.60 m
configuration), W7-X (standard configuration), NCSX and HSX.

way this happens is that the electric field gives rise to a
poloidal E × B drift that prevents the locally trapped ion
orbits from drifting all the way to the wall. Instead, the
radial excursion of the bounce-averaged ion orbits becomes
of order �r ∼ vd/�E , where �E ∼ Er/rB is the frequency
of the poloidal drift. In the absence of collisions, these orbits
are thus confined (if �r < r), but will undergo a random
walk with the step size �r when collisions are present and
scatter the particles in and out of the local trapping regions.
The effective collision frequency for such scattering depends
quadratically on the distance �ξ (in terms of pitch angle)
to the trapping boundary in velocity space, νeff ∼ ν/�ξ 2.
Multiplying νeff�r2 by the fraction of participating particles
(∼�ξ ) gives the diffusion coefficient estimate

Di ∼ ν

�ξ

(
vd

�E

)2

,

which diverges as �ξ → 0, indicating that the most important
role is played by particles close to the trapping boundary. The
width of this boundary layer is limited from below by the
requirement νeff � �E , which implies �ξ � (ν/�E)1/2 and
results in the diffusion coefficient

Di ∼ ν1/2v2
d

�
3/2
E

in what is, accordingly, called the
√

ν-regime.
When a shallowly trapped ion orbit is convected poloidally

by the E × B drift into a region of lower magnetic mirror
ratio, it will undergo collisionless detrapping, and when it is
convected back into the region with higher mirror ratio, it will
again ultimately become trapped. The collisional scattering
of ions with such orbits results in a random walk with a
diffusion coefficient proportional to the collision frequency,
so that the

√
ν-regime metamorphoses into a ν-regime at low

collisionality.
This situation, with a negative radial electric field, the

electrons in the 1/ν-regime (2) and the ions in the
√

ν-regime
(or ν-regime), is typical but does not always apply. The
ambipolarity equation (electron flux = ion flux) determining

4
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Figure 4. The so-called ‘mono-energetic’ diffusion coefficient
(see [29] for details) versus collisionality, ν∗ = νR/ιv, where ν is
the mono-energetic pitch-angle-scattering frequency, R is the major
radius and v is the speed of the particles, in the standard
configuration of W7-X (bold) and a tokamak (dashed) with similar
aspect ratio (r/R = 0.255/5.527) and an elongation of 1.5. The
asymptotic regimes are indicated by dotted straight lines. In the
order of increasing collisionality: the

√
ν-regime, the 1/ν-regime,

the plateau regime and the Pfirsch–Schlüter regime. At very low
collisionality (below the range shown) the transport again becomes
proportional to ν. The diffusivity has been normalized to the plateau
value in a circular tokamak, and the radial electric field has been
chosen as Er/vB = 3 × 10−5, where B is the magnetic-field
strength.

the radial electric field is highly nonlinear and generally has
three roots for the electric field. The ‘ion root’ corresponds to
the scenario just described, one root is always unstable, and
the ‘electron root’, with Er > 0, is typically realized when the
electrons are subject to strong and localized heating. Finally,
it should be mentioned that there are also other collisionality
regimes, and that the different regimes are not always well
separated from each other. In practice, therefore, it is usually
necessary to calculate the neoclassical transport numerically
[29]. Figure 4 shows the typical result of such a calculation,
with the different regimes indicated by straight lines.

4.2. Plasma rotation

All of this is very different from axisymmetric devices, where
the neoclassical transport is usually small and intrinsically
ambipolar in lowest order. The physics of plasma rotation is
therefore qualitatively different in tokamaks and stellarators.
An axisymmetric plasma is essentially free to rotate as it
pleases. The angular momentum is a conserved quantity,
just like mass and energy, and can only change because it
is transported radially. The rotation profile is determined
by this transport and by the sources (NBI) and sinks
(friction against neutral atoms) of angular momentum, and
the relaxation towards a steady-state rotation profile occurs
on the confinement time scale. The toroidal rotation velocity
frequently reaches a considerable fraction of the ion thermal
speed, vTi , even in the absence of deliberate momentum
sources.

In stellarators, however, it follows immediately from
the drift-kinetic equation that such fast rotation is generally
impossible [31]. In fact, this conclusion is reached already

in zeroth order of the gyroradius expansion and is therefore
independent of any turbulent fluctuations, regardless of their
nature, as long as they are small. Moreover, plasma rotation
turns out to be impeded even in quasisymmetric stellarators
[32, 33].

Proceeding to the next order in ρ∗ = ρi/L, where ρi

is the ion gyroradius and L is the macroscopic length, one
may ask what governs plasma rotation comparable to the
diamagnetic velocity V ∼ ρ∗vTi . Again, the situation is very
different in stellarators and in tokamaks. In stellarators, the
rotation is set by the requirement that the transport should be
ambipolar. Because the turbulent transport is automatically
ambipolar in the gyrokinetic approximation [34], regardless
of the magnetic geometry and of whether the transport is
electrostatic or electromagnetic, it is the neoclassical transport
that determines the radial electric field on length scales
exceeding the gyroradius [35]. Zonal flows are still possible,
but have qualitatively different characteristics from those in
tokamaks [36, 37]. In tokamaks, the neoclassical transport
is automatically ambipolar, so one must proceed yet one
order higher in the ρ∗-expansion, where the rotation is set by
neoclassical and turbulent momentum transport. An exception
occurs if the axisymmetry is broken by error fields. The
neoclassical transport then becomes non-ambipolar and sets
the rotation—a phenomenon somewhat misleadingly referred
to as neoclassical toroidal viscosity.

4.3. Quasisymmetric and quasi-isodynamic stellarators

Nearly all the differences between stellarators and tokamaks
concerning neoclassical transport disappear in one important
limit, namely, when the stellarator is exactly quasi-
axisymmetric [38] or quasi-helically symmetric [39, 40].
There are a number of equivalent mathematical definitions of
these concepts, e.g.

• B(ψ, θ, ϕ) = |B| should be expressible as a function
of the flux-surface label ψ and a single helicity angle,
mθ − nϕ, where m and n are integers, and (θ, ϕ) are
Boozer or Hamada angles;

• [(B × ∇ψ) · ∇B]/(B · ∇B) should depend only on ψ ;
• B · ∇B should be a function only of ψ and B;
• B should be a periodic function of the arc length on each

flux surface, B(ψ, l + L(ψ)) = B(ψ, l).

Each of these statements is equivalent to all the others if
the rotational transform is irrational and the flow is small,
V ∼ ρ∗vTi , and they all then imply that the usual drift-
kinetic equation is isomorphic to that in a tokamak [41].
The neoclassical transport properties are therefore similar to
lowest order in ρ∗. Thus, in the exactly quasisymmetric
limit, there are no regimes of 1/ν- or

√
ν-transport, and

the neoclassical transport is intrinsically ambipolar. The
transport coefficients are numerically different from those in a
tokamak—the bootstrap current can for instance be negative—
but they do not need to be calculated anew; there is a
simple recipe for converting them between axisymmetric and
quasisymmetric configurations [41, 43]. However, it is not
possible to achieve exact quasisymmetry [42], and a small
violation of the symmetry can sometimes lead to substantially

5
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enhanced transport. For instance, all stellarator designs have
a clear 1/ν-regime, even those that have been optimized to be
quasisymmetric, but the coefficient in front of this scaling can
be made to be much smaller than in a classical stellarator [29].

Unlike quasi-axisymmetry and quasi-helical symmetry,
it is not possible to achieve quasi-poloidal symmetry to any
particularly high degree of approximation, at least not in the
vicinity of the magnetic axis, where the pressure gradient
vanishes in the expression

κ = µ0∇p

B2
+

∇⊥B

B
,

implying that the magnetic-field strength increases in the
direction of the curvature vector κ and therefore cannot be
independent of the poloidal angle θ .

Whilst quasisymmetry makes a stellarator as similar as
possible to a tokamak, in some sense, it is not a necessary
condition for achieving good neoclassical confinement.
Mathematically, what is required is that the parallel adiabatic
invariant,

J =
∫

mv‖ dl,

should be (approximately) constant on flux surfaces for all
trapped orbits, where the integral is taken along the field
between two consecutive bounce points. Differentiation of
J at constant energy and magnetic moment gives the bounce-
averaged drift

ψ̇ = 1

Zeτb

∂J

∂α
, (3)

α̇ = − 1

Zeτb

∂J

∂ψ
, (4)

where τb is the bounce time, Ze is the charge, the magnetic field
has been written as B = ∇ψ ×∇α, and an overbar denotes the
bounce average. Here ψ measures the toroidal flux and α =
θ − ιϕ labels the different field lines on each flux surface. A
configuration with vanishing bounce-averaged drift, ∂J/∂α =
0, is called omnigenous [44], and if the contours of constant
magnetic-field strength are poloidally, but not toroidally,
closed one speaks of quasi-isodynamic configurations [45, 46].
W7-X is the first stellarator to approach quasi-isodynamicity
(close to the axis at high beta) but substantially more quasi-
isodynamic designs have been found in recent years [47],
although exact quasi-isodynamicity is impossible to achieve
[48]. Whereas the neoclassical transport coefficients generally
have to be calculated numerically in most stellarators, the
exactly omnigenous or quasi-isodynamic limit is amenable to
analytical treatment [49].

The bootstrap current is positive in quasi-axisymmetric
stellarators, negative in quasi-helically symmetric ones, and
is close to zero in quasi-isodynamic devices [29, 50, 51]. The
latter have the additional property that the Pfirsch–Schlüter
current closes within each period of the configuration [47].
This property follows from the fact that the streamlines of
the current are tangential to the level curves of maximum
magnetic-field strength, and therefore close poloidally. Quasi-
isodynamic stellarators therefore have small Shafranov shift.

4.4. Particle transport

When stellarators are optimized for low neoclassical transport
the goal is, of course, to bring it down to a level comparable
to (or below) that expected from the turbulence. Because of
the strong temperature scaling in the 1/ν-regime, neoclassical
transport tends to dominate in the centre of the plasma, and
sometimes in almost the entire plasma volume [52]. But even
if the magnitude of the neoclassical transport has been reduced
to an acceptable level, it may nevertheless cause problems
concerning particle confinement.

The neoclassical particle flux of each species a is of the
form

〈Γa · ∇r〉 = −na

∑
b

[
Dab

1

(
d ln nb

dr
+

eb

Tb

dφ

dr

)
+ Dab

2
d ln Tb

dr

]
,

(5)

where r is an arbitrary flux-surface label and the sum is taken
over all the species b present in the plasma. The terms with
b �= a are due to the friction along B between the different
species and are in stellarators negligible in comparison with the
b = a term at low collisionality. In contrast to tokamaks, the
radial electric field, Er = −dφ/dr , enters as a thermodynamic
force. As already mentioned, Er is determined by the
requirement of ambipolarity and is negative under the usual
ion-root conditions. For heavy impurities, whose charge
ea = Ze is large, the electric field thus tends to cause impurity
accumulation. This is a stronger effect than neoclassical
impurity accumulation in tokamaks, which is caused by the
friction force between bulk ions and impurities and leads to an
inward flux of the latter at a rate proportional to the density
and temperature gradients of the former [53].

The second potential problem caused by neoclassical
particle transport has to do with the fact that, in all stellarator
collisionality regimes, Dab

2 is positive, so that the temperature
gradient in equation (5) causes outward particle flux and thus
tends to create a hollow density profile [54]. Such profiles have
been observed on LHD and may necessitate central particle
fuelling in a reactor.

It may be possible to solve both these problems by making
the magnetic field approximately quasi-isodynamic, so that the
outward thermodiffusion and the radial electric field are very
small [55]. Very good collisionless particle-orbit confinement
is also necessary for confining fast ions. W7-X enjoys good
fast-particle confinement only at high beta and close to the
magnetic axis.

5. Microinstabilities and turbulence

5.1. Analytical considerations

Although the neoclassical transport is much larger than in
tokamaks, turbulence also contributes significantly to the
transport in stellarators, particularly in cooler parts of the
plasma, where 1/ν-transport does not occur. The study of
stellarator microinstabilities is, however, still in its infancy,
and there is not much in the way of analytical theory in the
literature. In a generic stellarator, one expects broadly the
same microinstabilities to be present as in a tokamak, but
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their strength can be different, and the freedom to design the
magnetic field appropriately may make it possible to reduce
their growth rates [56].

To keep the discussion as simple as possible, we restrict
our attention to collisionless instabilities in the electrostatic
approximation. (For a general background to the mathematical
apparatus in the tokamak context, see, e.g. [57]). We adopt the
ballooning representation [22], writing for each perturbation

φ(ψ, θ, ϕ) =
∞∑

k=−∞
φ̃(ψ, θ − 2πk, ϕ), (6)

which automatically ensures periodicity in θ , whatever the
choice of the function φ̃, and we write

φ̃(ψ, θ, ϕ) = φ̂(ψ, θ, ϕ)eiS(ψ,α), (7)

where φ̂ varies slowly in all directions and S is constant
along the magnetic field but varies rapidly across it. The
functions φ̂(ψ, θ, ϕ) and eiS(ψ,α) = eiS(ψ,θ−ιϕ) need not be
periodic in θ but are supposed to be 2π -periodic in ϕ, so that
φ(ψ, θ, ϕ) also acquires this periodicity. The wave vector is
k⊥ = kψ∇ψ + kα∇α, where kψ = ∂S/∂ψ and kα = ∂S/∂α.

The gyrokinetic equation for the non-adiabatic part of the
distribution function of each species, ga = fa1 + (eaφ/Ta)fa0,
now becomes

iv‖∇‖ĝa + (ω − ωda)ĝa = eaφ̂

Ta

J0(k⊥v⊥/�a)
(
ω − ωT

∗a

)
fa0,

where ωda = k⊥ · vda denotes the drift frequency and ωT
∗a =

ω∗a[1 + ηa(x
2 − 3/2)], with ω∗a = (Takα/naea)dna/dψ ,

ηa = d ln Ta/d ln na , �a = eaB/ma and x2 = mav
2/2Ta .

The system is closed by the quasineutrality condition

∑
a

nae
2
a

Ta

φ̂ =
∑

a

ea

∫
ĝaJ0d3v. (8)

In the usual drift-wave ordering,

k‖vTi � ω � k‖vTe , (9)

k⊥ρe � k⊥ρi ∼ O(1),

it is straightforward to solve the gyrokinetic equation for ions
and trapped electrons, respectively,

ĝi = ω − ωT
∗i

ω − ωdi

eJ0φ̂

Ti
fi0, (10)

ĝtr
e = −ω − ωT

∗e

ω − ωde

eφ̂

Te
fe0, (11)

where an overbar again denotes the bounce average. For
circulating electrons the non-adiabatic response is a factor
ω/k‖vTe smaller than ĝtr

e and will be neglected.
The purely curvature-driven ion-temperature-gradient

(ITG) mode results from making these approximations and,
additionally, neglecting the non-adiabatic electron response
altogether, i.e. setting ge = 0. The dispersion relation obtained

from equations (8) and (10) is then identical to that in a tokamak
with the same local drift frequency ωdi, and has been treated,
e.g., in [58]. Because of the locality assumption, k‖vTi � ω,
there is no difference between a tokamak and a stellarator
with the same local radius of curvature of the magnetic field.
However, the validity of the approximation is more restricted
in stellarators, because the connection length along B between
regions with different physical conditions tends to be shorter.
In the tokamak, this length is of order qR = R/ι whereas in
stellarators it is rather the toroidal extent of one period of the
device. One therefore expects ITG modes to be less curvature-
driven and more slab-like—an expectation that is indeed borne
out in numerical simulations.

Collisionless trapped-electron modes (TEMs) are obtained
by retaining the response (11), in particular the resonance in the
denominator. The simplest description is obtained by treating
the trapped-particle fraction as small and neglecting the mag-
netic drift frequency by taking ωdi/ω � 1 [59]. Thus, in
leading order inserting

ĝi =
(

1 − ωT
∗i

ω

)
eJ0φ̂

Ti
fi0,

and ge = 0 in equation (8) gives the drift-wave dispersion
relation

ω

ω∗e
= �0 + ηi(�1 − �0)

τ (1 − �0) + 1
, (12)

where τ = Te/Ti, �n = In(b)e−b, In is a modified Bessel
function and b = k2

⊥Ti/(mi�
2
i ). The asymptotic forms are [60]

ω � ω∗e, b � 1,

ω

ω∗e
� 1 − ηi/2

(1 + τ)
√

2πb
, b � 1,

and one finds numerically from equation (12) that ω/ω∗e is
always positive if 0 < ηi < 1.64, so that the drift wave
then propagates in the electron diamagnetic direction for all
wave numbers. Its stability is determined in the next order
of our expansion in the number of trapped particles, where
the denominator in the electron response (11) provides the
possibility of a resonant drive. But this resonance, ω = ωde,
only exists if ω∗eωde > 0 (assuming ηi < 1.64), so that
the electrons precess in the same direction that drift waves
propagate. For modes with kψ = 0, or in omnigenous
configurations, where according to equation (4)

ωde = kαvde · ∇α = kα

eτb

∂J

∂ψ
,

this requires

ω∗eωde = − k2
αTe

nee2τb

∂J

∂ψ

dne

dψ
> 0.

In maximum-J configurations, i.e. where ∂J/∂ψ < 0, one does
thus not expect collisionless TEMs, at least not in their usual
guise. (Any instability would have to be driven by a resonance
with the ions or subthermal electrons with v‖ ∼ ω/k‖ �
vTe .) Physically, the requirement ∂J/∂ψ < 0 means that
the bounce-averaged curvature is favourable, which according
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to equation (4) leads to reversal of the precessional drift. In
tokamaks, this requirement is met by trapped particles whose
bounce points lie sufficiently far into the inboard side of the
torus that the particles spend most of their time in the good-
curvature region. But deeply trapped particles have positive
∂J/∂ψ in a typical tokamak, reflecting the circumstance that
the bad-curvature region coincides with the trapping region.
This need not be the case in stellarators, and, indeed, perfectly
quasi-isodynamic stellarators are maximum-J devices. As we
have just seen, the simplest form of the TEM is not present
in such configurations, and in [61] it is shown from basic
energy considerations that any particle species with k‖vT a � ω

and 0 < ηa < 2/3 exerts a stabilizing influence on arbitrary
electrostatic, collisionless instabilities. Physically, the point is
that, because J is an adiabatic invariant, if an instability with
ωτb � 1 results in the radial movement �ψ of a particle, then

�J = ∂J

∂ψ
�ψ +

∂J

∂E
�E = 0,

where E is the kinetic energy and ∂J/∂E > 0. The particle
must therefore gain an amount of energy equal to

�E = −∂J/∂ψ

∂J/∂E
�ψ,

at the expense of the instability in question. The condition
∂J/∂ψ < 0 thus promotes stability if dn/dψ < 0.

We are thus led to the conclusion that density-gradient-
driven TEMs should be stable within the usual ordering (9),
whose limitations should, however, not be forgotten. Since
ω ∼ ω∗e ∼ k⊥ρivTi/Ln, where Ln is the length scale of the
radial density profile, we have

ω

k‖vTe

∼ k⊥ρi

k‖Ln

√
me

mi
.

If the density gradient or the parallel wavelength is sufficiently
large, this quantity will not be much smaller than unity and the
ordering (9) will be violated.

5.2. Gyrokinetic simulations

Only relatively recently have gyrokinetic codes for stellarator
geometry become available [62–66], and not enough informa-
tion has accumulated from these to say anything definite about
the turbulence properties of various configurations. Most of the
codes operate in flux-tube geometry or have only very recently
become able to treat an entire flux surface, and others only
solve the linear gyrokinetic equation. Nearly all the simula-
tions have been made in the electrostatic approximation, most
of them with adiabatic electrons, and none have (to our knowl-
edge) included collisions. Nevertheless, from those simula-
tions that have been carried out, some important differences
between stellarators and tokamaks appear to be emerging.

The EUTERPE code [62] has in recent months performed
the first global and electromagnetic, but linear, gyrokinetic
simulations of a stellarator, and preliminary results are shown
in figure 5. These simulations treat both the ions and
the electrons kinetically, with the correct mass ratio, and
the geometry is that of the high-mirror configuration of

0 1 2 3 4 5
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Figure 5. Growth rate of the fastest-growing mode versus 〈β〉 in
Wendelstein 7-X, calculated by the global, electromagnetic,
gyrokinetic code EUTERPE. Unlike the typical situation in a
tokamak, there is no sign of rapidly growing kinetic ballooning
modes at high 〈β〉.

Wendelstein 7-X, with constant density, electron temperature
Te = 8.2 keV, and an ion temperature profile given by

ln
Ti(s)

Ti(s0)
= − κT

1 − sech2 s0
w

×
[
w tanh

(
s − s0

w

)
− (s − s0)sech2 s0

w

]
,

where s ∈ [0, 1] is the normalized toroidal flux, κT = 3.5, s0 =
0.5, w = 0.3, and Ti(s0) = 8.2 keV. The code solves an
initial-value problem, and figure 5 shows the growth rate of
the resulting fastest-growing linear mode in the system. As in
tokamaks, the growth rate is seen to drop with increasing beta,
but unlike the situation in a typical tokamak this trend continues
all the way to 〈β〉 = 5% and is not interrupted by the growth
of kinetic ballooning modes, presumably because the device
has been optimized for good ideal-MHD stability and the
ideal-MHD ballooning threshold is considerably higher than
in most tokamaks. As 〈β〉 increases, the equilibrium changes
because of plasma diamagnetism in the direction of becoming
more quasi-isodynamic, which would have a stabilizing effect
on microinstability even if the electromagnetic terms were
ignored in the gyrokinetic equation.

The GENE and GS2 codes were both originally developed
to operate in tokamak flux-tube geometry, but have later been
extended to be able to treat stellarator flux tubes [64, 66].
GS2 found the linear threshold for ITG modes with adiabatic
electrons in NSCX to be a/LTi � 1–2, where a is the
minor radius and LTi the ITG scale length, and electrostatic
simulations with kinetic electrons also found density-gradient-
driven TEMs, in agreement with earlier simulations using the
FULL code [63].

The stellarator version of GENE has now been developed
a step further so that it can make simulations of an entire
flux surface (or, more commonly, of one period thereof) but
still makes a local approximation in the radial direction. The
Japanese GKV code has undergone a similar extension [67],
which appears necessary since, in stellarators, different flux
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tubes (of finite length) on the same flux surface can have
different microinstability properties. The most unstable flux
tube in a stellarator is usually the one that crosses the outboard
midplane in one of the up–down symmetric poloidal cross
sections, in W7-X and NCSX in the bean-shaped cross section.
From the full-surface version of GENE, it appears that the flux
surface as a whole is somewhat more stable than the most
unstable flux tube: the latter may support a locally growing
mode even though the flux surface as a whole is linearly
stable. On the other hand, from nonlinear simulations of
ITG modes with adiabatic electrons it appears that turbulence
may still be present in such situations. That is, stellarator-
specific ‘subcritical’ turbulence may be present if the gradients
are chosen in the interval where some flux tubes are locally
unstable but the flux surface as a whole is not.

The mode structure of microinstabilities depends on the
magnetic-field geometry and is thus different in tokamaks and
stellarators [68–70]. In both types of devices, the curvature
is usually most unfavourable on the outboard side of the
device, and the turbulent fluctuations are observed to peak
there, see figure 6. However, the local magnetic shear tends
to be much larger in stellarators and serves to localize the
fluctuations; in fluid simulations of W7-X a sudden drop
in fluctuation amplitude is observed where a magnetic field
line crosses the ‘helical edge’ [71]. In the context of a

Figure 6. Root-mean-squared electrostatic potential on a W7-X flux
surface in GENE simulations of ITGs with adiabatic electrons in
W7-X. The turbulence peaks on the outboard side, where the
magnetic-field curvature is unfavourable, and the fluctuations extend
for about one period along the magnetic field.

Figure 7. The same quantity as in figure 6 as a function of the toroidal and poloidal Boozer angles. Also plotted (in black) are level curves
of |∇α|2, from which it appears that the turbulence does not penetrate into regions where this quantity is large.

GENE simulation with adiabatic electrons, this effect is further
illustrated by figure 7, which shows level curves of root-mean-
squared potential fluctuations as functions of the poloidal and
toroidal Boozer angles. These structures are elongated along
the magnetic field, but substantially less so than in a typical
tokamak. Instead of extending all the way around the torus,
each one of them is limited to about one period of the device.
In the figure, level curves of |∇α|2 are also shown, and it
appears that the turbulence shuns regions where this quantity
is large, i.e. where the flux tubes are strongly compressed in
the direction of ∇α.

Most stellarators have negative (or very small) global
magnetic shear according to the tokamak definition, q ′ =
−ι′/ι2 < 0, which tends to be stabilizing for curvature-
driven modes. That this is the case also in stellarators was
observed in nonlinear fluid turbulence simulations by Kleiber
and Scott [71]. Antonsen et al [72] suggested a physical
mechanism based on the poloidal tilting of turbulent eddies
induced by the magnetic shear, and figure 8 shows evidence
of this phenomenon. As seen in the figure, the eddies are
horizontal at α = 0, which corresponds to the outboard
midplane in the bean-shaped cross section and ‘fan out’ from
this region in the manner envisaged by Antonsen et al. Similar
observations have been made in simulations of tokamaks with
negative magnetic shear [73].

In summary, it is too early to say whether gyrokinetic
turbulence is more benign in stellarators than in tokamaks.
It appears that stellarators should benefit from their negative
global magnetic shear, their large local shear (which assumes
both positive and negative values, and peaks where the flux
surface is strongly bent), and the fact that trapping regions do
not necessarily overlap with regions of bad curvature. On the
other hand, they suffer from a larger area-to-volume ratio and
from zonal-flow damping through electron collisions because
of non-ambipolar neoclassical transport.

6. Edge and divertor physics

The differences between tokamak and stellarator divertor
physics have recently been reviewed by Feng et al [74], and will
therefore only be outlined briefly here. Only two stellarators,
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W7-AS and LHD, have operated with proper divertors, and
these are geometrically very different from each other. LHD
has a helical divertor with a partially stochastic magnetic field,
whereas W7-AS used the naturally occurring chain of magnetic
islands beyond the last closed flux surface to divert the escaping
plasma to divertor plates, see figure 9. W7-X is also being built
with an island divertor based on this concept, which makes the
connection length to the target an order of magnitude longer
than in similarly shaped tokamaks. In the latter, the magnetic
field is diverted by a poloidal field of comparable magnitude
to that produced by the plasma current, Bθ/B ∼ 0.1. In
contrast, an island divertor uses a small but resonant radial
magnetic field, Br/B ∼ 10−3, to produce the chain of magnetic
islands used for the divertor. In LHD, the connection length
varies widely from field line to field line, but is also very long
for most of the stochastic edge. This circumstance makes
the perpendicular transport much more important than in the
tokamak scrape-off layer. Whereas in tokamaks most of the
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Figure 8. Snapshot of potential fluctuations in GENE simulations
with adiabatic electrons of W7-X, as a function of the local radial
coordinate x = r − r0 and Clebsch-angle y = α = θ − ιϕ.

Figure 9. The island divertor of W7-AS.

heat flux across the scrape-off layer is carried to the targets
by parallel heat conduction, especially in the electron channel,
the perpendicular transport can in stellarators either be more
or less important than the parallel one.

The greater importance of cross-field transport could be
beneficial for impurity retention in the divertor [74]. Coulomb
collisions between heavy impurity ions (Z) and bulk plasma
ions (i) lead to two forces on the former: a friction force
proportional to the velocity difference Vi‖ − VZ‖, which tends
to flush the impurities towards the target, and a thermal force
proportional to the bulk-ion temperature gradient ∇‖Ti, which
drives the impurities towards the hot core plasma. In tokamaks,
the latter force tends to be stronger, but in stellarators
numerical modelling suggests that a friction-dominated regime
is accessible in LHD as well as in W7-AS and W7-X [75].

Another obvious difference between the poloidal divertor
in a tokamak and the island divertor in a stellarator is that
the latter have many more X-points, which, in contrast to
the tokamak, are not axisymmetric but are wound around the
torus. Regions of strong plasma radiation tend to be located
in the vicinity of such points, perhaps because the wider flux-
surface separation reduces the cross-field heat flux, and the
larger number of X-points thus help to spread the radiation
more evenly over the first wall. On the other hand, the very
fact that stellarators are non-axisymmetric of course makes the
radiation pattern, as well as the divertor heat flux, toroidally
non-uniform.

Numerical simulations [76] suggest that about 3/4 of
the power in W7-AS could be radiated away by carbon
impurities outside the separatrix, and even higher radiative
fractions were recorded experimentally [11]. This is in
stark contrast to tokamaks, where such strong radiative
losses are associated with MARFE formation resulting in
highly localized deposition, and where much of the radiation
originates from inside the separatrix.
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The edge magnetic structure in helical devices is
determined by the rotational transform in the edge region.
Because of the low shear in W7-X, a resonant field of order
δB/B ∼ 10−4–10−3 can generate divertor-relevant islands.
Any additional perturbation field of the same order, either from
error fields or from plasma currents, can modify the island
structure significantly. In addition, the radial location of the
resonance on which the divertor island resides is sensitive to the
net toroidal plasma current, and thus to the bootstrap current.
Thus, error-field compensation and plasma current control are
essential for the island divertor, whereas a divertor with larger
shear and a stronger, richer intrinsic field spectrum like the
LHD divertor should be more robust against variations in the
plasma current.

A final difference between tokamak and stellarator
divertors is that the geometry of the plasma flow is more
complex in the latter, making it more likely that counter-
streaming plasma flows come close to each other, whereas
in the tokamak the flows to the inner and outer targets are
well separated. Because of the momentum exchange between
such counter-streaming flows, the (thermal + kinetic) pressure
need not be constant along the field. This is believed to
explain why no high-recycling regime is observed in LHD
or W7-AS. In W7-X, however, the islands are larger and the
plasma flows around them sufficiently well separated that a
high-recycling regime is predicted [74]. In contrast, one does
not expect that an increase in size would sufficiently separate
counter-streaming flows in a helical divertor of the LHD type.
Because of the large magnetic shear, multiple island chains
exist and overlap to form a stochastic zone. Overlapping
islands with different mode numbers have different poloidal
phases, and counter-streaming flows on neighbouring island
chains approach each other radially at poloidal positions where
they are oppositely phased.

7. Conclusions

The stellarator has both advantages and disadvantages
compared with the tokamak. Intrinsic steady state and
freedom from disruptions are great advantages, technical
complexity a disadvantage. Macroscopic stability is better
than in the tokamak, neoclassical confinement is worse,
whereas turbulence and edge plasma performance are probably
comparable and perhaps better. But above all, stellarator
plasma physics is less well understood, and the number of
possible configurations is much larger than for tokamaks.
Boozer has estimated the number of degrees of freedom
to be about 4 for axisymmetric systems and ∼50 for non-
axisymmetric ones [77]. So far, this freedom has mainly been
used to improve MHD stability and neoclassical confinement.
If the remaining freedom can be exploited to reduce turbulence
and optimize edge behaviour, stellarators would become even
more attractive for fusion power production.
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