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Zonal flows, widely accepted to be the secondary instability process leading to the nonlinear

saturation of ion temperature gradient modes, are shown to grow at higher rates relative to the

linear mode amplitude as the plasma pressure b is increased—thus, confirming that zonal flows

become increasingly important in the turbulent dynamics at higher b. At the next level of nonlinear

excitation, radial corrugations of the distribution function (zonal flow, zonal density, and zonal

temperature) are demonstrated to modify linear growth rates moderately through perturbed-field,

self-consistent gradients: on smaller scales, growth rates are reduced below the linear rate. In

particular, excitation of kinetic ballooning modes well below their usual threshold is not to be

expected under normal conditions. These findings strengthen the theory of the non-zonal transition

[M. J. Pueschel et al., Phys. Rev. Lett. 110, 155005 (2013)]. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4825227]

I. INTRODUCTION

Magnetic confinement fusion devices require large pres-

sures if practical and scientific goals like high reaction rates

or continuous operation (via a large bootstrap fraction) are to

be achieved. Associated with large values of the (normal-

ized) plasma pressure are magnetic fluctuations, which are

excited self-consistently by linear instabilities and the corre-

sponding turbulence. It is thus intuitive that thorough theo-

retical understanding of the physics connected with magnetic

fluctuations be a focus of attention.

In the context of gyrokinetic simulations, the normalized

electron plasma pressure b and related effects have been the

subject of various avenues of study in recent years: codes

agree on electromagnetic transport values,1–5 nonlinear stabi-

lization of ion-temperature-gradient-driven (ITG) turbulence

has been found to be related to an enhancement6 of the usual

nonlinear upshift of the critical gradient,7 and advances have

been made regarding microtearing turbulence8,9 as well as

nonlinearly excited subdominant microtearing (SMT).10,11 In

addition to radially local gyrokinetic simulations—on which

the aforementioned studies are based—strides have been

made in operating gyrokinetic codes with global profiles

electromagnetically.12–16 There are, however, still many

unanswered questions that can be addressed within the local

limit, two of which the present paper focuses on.

First, zonal flow physics17 (where the term zonal flow

refers to the electrostatic potential at both toroidal and poloi-

dal mode number zero), which have been studied in great

detail electrostatically,1,18–23 can see important modifications

in their behavior at finite values of b.24–26 Physically,

Maxwell and Reynolds stress are competing, and the shear-

ing rate is diminished as b is increased. To understand the

zonal flow dynamics quantitatively, however, both their

drive and their depletion mechanisms have to be considered.

The latter, in the form of nonlinear mode interaction27–29 or

the action of magnetic perturbations on the residual

flow,5,30,31 is counteracted by the former: the energy transfer

from the linear mode to the zonal mode via sidebands—a

process often referred to as secondary instability, as zonal

flows saturate the linear mode at the onset of turbulence. The

growth rate of the secondary instability gives valuable

insights into the zonal flow picture, and its dependence on b
is one of the primary subjects of this paper.

Once the zonal mode has reached a sufficiently large

amplitude, its components—the ky¼ 0 mode of the density

n, the ion (electron) temperature TiðeÞ, or the electrostatic

potential U—can in turn excite new or influence existing lin-

ear modes. Here, ky is the binormal wavenumber, normalized

to the inverse ion sound gyroradius q�1
s . This latter process

becomes possible since the zonal mode aligns with the back-

ground (equilibrium) quantities, thus effectively modifying

the density gradient xn ! xn þ ~xn or the ion (electron)

temperature gradient xTiðeÞ ! xTiðeÞ þ ~xTiðeÞ, and introduc-

ing E�B shear flow layers. The convention used throughout

this paper is to use the term tertiary instability for linear

growth based on profiles altered by the perturbations of the

distribution function as measured in fully turbulent simula-

tions. Another term—technically more accurate but rather

cumbersome—for this process would be tertiary modifica-
tion of linear instability.

Considering the potential impact of both tertiary and

secondary instability on the physics of the non-zonal transi-

tion (NZT),5,30 particular focus is put on the behavior near

the NZT threshold bNZT
crit . First described in Ref. 30, the NZT

can cause the heat fluxes in ITG turbulence to grow to

extremely large values as a consequence of the depleting

action of magnetic fluctuations on zonal flows. In that refer-

ence, it was mentioned that secondary and tertiary instability

effects were found not to contribute to the transition, a state-

ment that was based on the studies detailed in the present

paper.
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While all relevant information on this subject can be

found in Refs. 5 and 30, a brief overview of the NZT physics

is given here for convenience. At sufficiently large ampli-

tudes of the magnetic fluctuation level—and, by extension,

at sufficiently large b—field lines start to decorrelate from

the magnetic potential, bringing about a sudden increase in

field line diffusivity. As radial diffusive electron motion

depletes zonal flows at a rate proportional to b, the latter are

unable, above a certain threshold, to balance the linear ITG

drive and saturate the turbulence. Therefore, after some tran-

sient saturation, the linear mode starts to grow again, ulti-

mately reaching very large heat fluxes (if the driving

gradients are held constant, as is the case in radially local

simulations). Note that this potentially catastrophic effect of

b on the zonal flow is not in contradiction with nonlinear (or

linear) b stabilization as described in Refs. 3 and 6.

In the following, a brief overview of the numerical tools

and parameter settings used in this work is given. Then, after

a brief interlude to illustrate that mere linear physics do not

provide any explanation for the NZT, secondary instability

and the physics of zonal flow drive are discussed in Sec. III.

Tertiary effects are detailed in Sec. IV, where previous work

is reproduced and extended to reflect the turbulent situation

at the NZT threshold more accurately. Last, the results are

summarized.

II. NUMERICAL FRAMEWORK

In gyrokinetic theory,32 the time scale of particle gyra-

tion about magnetic field lines is ordered out, retaining all

relevant physics of low-frequency, low-collisionality plas-

mas. This mathematical transformation reduces the Vlasov

and Maxwell equations by one dimension through elimina-

tion of the quickly oscillating gyrophase, in the process sig-

nificantly improving computational efficiency.

For the numerical evaluation of the gyrokinetic equa-

tions, the GENE code33,34 was used in its flux tube mode of

operation. Results obtained from GENE have been shown to

agree well with those from other gyrokinetic codes;35–38 in

particular, for the parameters used here, the turbulent trans-

port levels—and, by extension, the quantitative description

of effects such as secondary and tertiary instability—agree

well with data from other codes. See Ref. 5 for a nonlinear

code-code comparison at finite-b Cyclone Base Case (CBC)7

parameters, on which the present work is based. These pa-

rameters are: safety factor q0¼ 1.4, magnetic shear ŝ ¼ 0:79,

inverse aspect ratio �t ¼ 0:18 of the flux surface under inves-

tigation, density gradient xn ¼ 2:2, and temperature gradient

xT ¼ 6:9 (for both ions and electrons), with both gradients

defined as the major radius R0 divided by the respective gra-

dient scale length. Both ions and electrons (at hydrogen mass

ratio) have equal background temperatures. Note that finite-b
and electromagnetic can be used interchangeably, as b
directly regulates the magnetic fluctuation strength.

Numerical convergence was ensured; for the secondary

instability investigation, resolutions were used as described

in Ref. 5 unless mentioned differently in Sec. III, whereas

the (linear) runs performed to ascertain tertiary effects

required resolutions identical to those for linear simulations

in Ref. 3. It should be pointed out, however, that the conclu-

sions, in particular, those regarding the NZT, are valid even

at somewhat reduced resolutions.

In Sec. IV, code-code comparisons were performed with

a slightly modified version of the ŝ-a equilibrium model,39

whereas all other studies employed the usual GENE imple-

mentation. More specifically, the latter involves curvature-

related expressions of the form

KðxjyÞ /
1

B0

@ðyjxÞB0 þ
gxðxjyÞgyz � gyðxjyÞgxz

gxxgyy � gyxgxy
@zB0

 !
(1)

in the Vlasov equation, whereas in the other version, the

factor 1=B0 / 1� �t cos z � 1 is dropped (there exists no

single standard regarding the treatment of Oð�tÞ terms)—it

is to be stressed in this context that the role of the ŝ-a
equilibrium has historically been that of a convenient

benchmark point rather than the most accurate numerical

implementation of a particular physical magnetic geometry.

In the above expressions, B0 is the background magnetic

field magnitude (which varies along z, the coordinate paral-

lel to the background field), x and y denote the radial and

binormal coordinates, respectively, and g is the metric. The

modified version—which corresponds to the one described

in Ref. 21—yields small quantitative changes and improves

code-code agreement, but all physics-related conclusions

can be expected to be valid in either framework.

The reader’s attention is now focused on the description

of physical results from a study of the secondary instability

situation at finite b.

III. SECONDARY INSTABILITY ANALYSIS

The excitation of zonal flows by the linear ITG mode is

a well-known process through which the linear mode can sat-

urate (see Ref. 17, and references therein). It is intuitive to

ask what impact b has on this secondary instability mecha-

nism; however, to reiterate, the zonal flow drive alone does

not adequately describe the zonal flow dynamics, which are

also influenced by other processes.

After a brief summary on why linear effects are ruled

out in explaining the NZT, the standard setup for zonal flow

studies is extended to include multi-kx modes and sidebands,

which—while more complex to interpret quantitatively, mir-

rors the NZT-relevant scenario more closely.

In the context of the NZT, linear simulations just below

and above b � bNZT
crit yield very smoothly and continuously

varying growth rates, frequencies, and linear mode struc-

tures. This holds true for both the unstable modes (of ITG

and trapped-electron-mode (TEM) type for CBC parame-

ters), as well as the stable mode spectrum. Fig. 1 shows the

mode spectrum (6144 linear modes were treated in this anal-

ysis). Neither does the complex frequency of the stable

modes change much near bNZT
crit (the only clearly visible dif-

ference appears to be the somewhat shifted dominant ITG

mode) nor are there important qualitative differences with

respect to the relative nonlinear excitation of modes and the

resulting heat fluxes—in the figure, logjQes
i j is plotted, with

the colors covering the range of linear eigenmodes 2 to 6144

102308-2 Pueschel et al. Phys. Plasmas 20, 102308 (2013)
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(some modes lie outside the plot window). Here, Qes
i is the

ion electrostatic heat flux associated with a given linear

eigenmode; it is obtained by projecting the nonlinear fluctua-

tions onto a subset of orthogonalized linear eigenmodes (a

similar analysis, along with more details on the nonlinear ex-

citation of linear modes, can be found in Ref. 40). For

b¼ 0.9%, these fluxes were measured not during the initial

transient saturation stage but at very large heat fluxes,

explaining the difference in the absolute values. The most

unstable mode in either plot, in both cases of ITG type, is

marked by a black cross; the logarithmic amplitudes of these

modes are 1.31 (for b¼ 0.7%) and 1.79 (for b¼ 0.9%).

More details on the energetics near bNZT
crit can be found in

Ref. 5.

As the linear physics do not exhibit any discontinuities

or other modifications in their behavior near bNZT
crit , the focus

is shifted to whether the zonal flow drive (which is facilitated

through the Vlasov nonlinearity) experiences any sudden

changes at this point.

Many studies exist41–45 that focus on the growth of sec-

ondary instabilities (in the case of ITG as the primary mode:

zonal flows) as the saturation mechanism for a particular

type of turbulence. Typically, a linear ITG mode streamer

(kx¼ 0 and ky 6¼ 0) is held constant in time, while the zonal

flow (at ky¼ 0) grows exponentially through three-wave

coupling with a sideband. More specifically, the associated

growth rate cZF depends on the amplitude of the frozen

streamer, and one can define zonal flow growth (with the

zonal flow electrostatic potential UZF) via the relation

UZFðtÞ ¼ UZFðt0ÞecZFðt�t0Þ � UZFðt0ÞeĉZFUITGðt�t0Þ ; (2)

where t0 is the point in time when the linear ITG mode is fro-

zen and the nonlinearity is turned on. ĉZF is independent of

the linear mode’s amplitude UITG (at kx¼ 0). In the present

paper, time units of R0/cs are used for normalization, and U
is normalized to Teqs=ðeR0Þ, with the ion sound speed cs, the

electron background temperature Te, and the elementary

charge e.

The standard procedure for numerical studies—i.e., con-

fining the linear mode to kx¼ 0—is insufficient for the pres-

ent purpose: while perfectly suitable to scenarios without

background magnetic shear (and thus no parallel coupling to

higher kx), for the present, more complex case, this restric-

tion alters (or rather, under-resolves) the linear physics to an

extent where NZT-relevant effects may be pushed into the

linear TEM regime which appears at b values only slightly

above the NZT threshold. Consequently, a somewhat differ-

ent approach is indicated, where the linear mode includes a

number of radially connected modes in order to resolve the

linear physics more accurately. To this end, simulations are

performed with a total of 17 complex modes in kx, centered

around kx¼ 0, at ky¼ 0.3 which corresponds to the strongest

linear growth. jkx;minj is chosen to be 0.74, whereas the first

kx mode connected to kx¼ 0 through the parallel boundary

condition

aði; j;þpÞ ¼ ð�1ÞjN aðiþ jN ; j;�pÞ (3)

(here, a is some quantity like a potential or distribution func-

tion, i and j are the kx and ky mode numbers, and N is an in-

teger multiplier determining the size of the radial box), is

kx¼ 1.48—like ky, the radial wavenumber is normalized to

q�1
s . In other words, only every second radial mode is part of

the extended structure of the linear ITG mode. With this

setup, one effectively models two extended modes, the linear

mode and a sideband, each of which consist of multiple con-

nected kx. In addition to the aforementioned advantage of

this approach, the zonal-flow-related energetics now also

mirror those of the fully turbulent system more closely both

in terms of their physical nature and nonlinear simulation

properties. Note, however, that like the standard approach,

this concept constitutes a simplified model which clearly

does not contain all mode couplings present in the full

turbulence.

Now, after the ITG mode has converged in a linear sim-

ulation, not only kx¼ 0 is frozen, but so are all modes paral-

lelly connected to it (at ky¼ 0.3); while all modes at ky¼ 0 as

well as the modes not connected to kx¼ 0 at ky¼ 0.3 are left

free to evolve in time. As this pertains to the distribution

function, U and the magnetic potential Aparallel (for finite b)

are both treated in this fashion.

The resulting zonal flow growth rates are shown in Fig. 2

as a function of b—note that UITG ¼ jUðkx ¼ 0; ky ¼ 0:3Þj is

FIG. 1. Linear mode spectrum at ky¼ 0.2 for b¼ 0.7% (upper) and 0.9%

(lower). While the most unstable (ITG) mode is marked by a black cross, the

other colors logarithmically indicate the magnitude of the ion electrostatic

heat flux contribution of a given mode to the turbulence (see the text). No

significant qualitative changes with respect to linear eigenvalues or relative

nonlinear excitation are observed as bNZT
crit is crossed.
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the linear streamer amplitude; alternatively, one could use

the kx-averaged U of the linear mode, but both methods

result in qualitatively equivalent ĉZF curves. The points in

this plot were obtained by fitting linear slopes to the loga-

rithmic zonal flow data at kx ¼ kx;min; similar results are

obtained for higher kx (among those values not connected

to kx¼ 0). From the figure, it is straightforward to see that

no sudden changes occur near bNZT
crit , and that as this value is

approached, the zonal flows actually grow more strongly,

contrary to what one would expect if modifications to the

zonal flow growth rate were responsible for the NZT. Note,

however, that the absolute values shown in Fig. 2, along

with the definition in Eq. (2), do not allow for a straightfor-

ward direct comparison with a linear growth rate, and are

only meant to illustrate the relative change of the secondary

growth rate with b.

The behavior of the zonal flows in Fig. 2 is consistent

with the findings of Refs. 3 and 6, where zonal flows are

found to increase in strength relative to the linear c as b is

increased. More specifically, in these papers, the shearing

rate xs ¼ hk2
xUfsi—a standard measure of the zonal flow

strength—is shown to vary continuously and rather slowly

near bNZT
crit . Here, the index fs denotes a flux surface average,

and h…i symbolizes averaging over the spatial simulation

domain. Moreover, it is possible that the enhanced Dimits

shift observed at higher b in Ref. 6, as well as the improved

ion energy confinement reported in Ref. 46, may, at least in

part, be related to this ĉZF effect—a more detailed investiga-

tion will be necessary to elucidate the exact causes.

Instead using the standard approach of describing a lin-

ear mode and its sideband at one kx, each will result in ĉZF

decreasing with b (and linear mode regimes shifting with

respect to the fully resolved case), in part since the parallel

mode structure changes shape as b is varied (see Fig. 3 for a

measure of how finite-kx contributions become more impor-

tant with larger b), an effect not properly resolved with this

method. However, even there, no significant change (qualita-

tive or quantitative) of ĉZF is observed as the NZT threshold

is crossed. The qualitatively different behavior observed in

this simple approach can, at least partially, be explained as

follows. A relative increase of ĉZF with b—as found in

Fig. 2—is consistent with the fact that zonal flows grow

faster at higher kx: As the extended ballooning structure of

the ITG mode broadens with b, its amplitude slowly and

continuously moves to higher kx, in the process shifting

sideband activity and coupling to the zonal modes to higher

kx. Therefore, the effective growth rate of the coupled zonal

system is enhanced.

It can thus be concluded that changes in the drive of the

zonal flows, which is not to be confused with the impact of

the zonal flows on the turbulence, are of minimal conse-

quence in the context of the NZT. With these findings in

mind, the attention is now shifted to the next level of nonlin-

ear excitation, tertiary instability.

IV. TERTIARY INSTABILITY AND PROFILE
CORRUGATIONS

It has been demonstrated that zonal-type modes at ky¼ 0

can, in turn, excite finite- ky modes,42 a process also referred

to as tertiary instability. The tertiary modes found here

indeed bear similarities with those in Ref. 42 while also

exhibiting important differences; among the latter are differ-

ent responses to changes in the phase between pressure and

electrostatic potential corrugations, as well as different

assumptions with regard to the strength of the flow shear. A

study of the precise relation of these modes will have to be

undertaken as a separate effort, however.

In this section, previous results are first reproduced

before demonstrating that the conclusions drawn from them

are no longer applicable to the NZT threshold once more rel-

evant input data and more encompassing analysis techniques

are used. Specifically, the amplitude of profile corrugations,

their radial scale, the impact of the zonal flow, and effects

FIG. 2. Zonal flow growth as a function of b; here, the growth rate is renor-

malized in order to be independent of the linear mode amplitude (at

kx,y¼ (0,0.3)). As b is increased, ĉZF grows continuously, in line with the ob-

servation in Refs. 3 and 6 that due to zonal flow activity, nonlinear transport

is stabilized more efficiently by finite-b suppression than is the linear growth

rate (not shown here). In addition, no deterioration of zonal flow excitation

is observed at b¼ 0.9% just above the NZT threshold.

FIG. 3. Plotted here is the kx-weighted integrated linear mode structure as

function of b. Here, Unorm
lin indicates the linear mode centered about kx¼ 0

with all its radial connections. This function is normalized such that its total,

unweighted ballooning structure integrates to 1. It is then weighted by the ra-

dial wavenumber (a measure for the sideband growth) and integrated over kx

and z, corresponding to an integral over the ballooning angle. The resulting

value increases with b, indicating that mode structure broadening is at least

partially responsible for the shortcomings of the simple model which consid-

ers a linear mode only at kx¼ 0.
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from the full distribution corrugations are brought into the

picture consecutively.

In the context of high-b simulations and the NZT, it has

been proposed that kinetic ballooning modes (KBMs) may

thus be destabilized nonlinearly47 at a subcritical

b ¼ jbKBM
crit , where j may be significantly smaller than one;

specifically, to explain the NZT threshold, one would require

j � 2=3 for CBC parameters. Such scenarios rely on so-

called profile corrugations,48 where local radial gradients in

the self-consistent, turbulent perturbations of the density n
and the temperature T can be thought of as enhancements of

the corresponding background gradients xn and xT .

Conversely, a local gradient of the electrostatic potential U
implies a modification of the E�B shear and can thus exert

a stabilizing influence. A quantitative analysis will have to

include the correct values of the self-consistent gradients in

all these quantities (at the correct length scales), as will be

demonstrated below. Note that while the background density

n0 and temperature T0 are much larger than the perturbations,

the radial gradients can be of similar order, keeping in mind

that ðn;TÞ � ðn0;T0Þqs=R0 (here, j indicates particle species):

~xnj ¼ �
R0

n0

@nj

@x
� xn ; (4)

~xTj ¼ �
R0

Tj0

@Tj

@x
� xTj : (5)

These values are measured in the turbulent phase of a nonlin-

ear simulation (averaging over the parallel coordinate and

over time), and then the external gradients xext
n and xext

T , as

well as the external Uext, are turned on at those measured

values for linear simulations. The former two are applied at a

single wavenumber kext
x jp, the latter at kext

x jU, which, in gen-

eral, will be set to a different value. It is important to note

that Uext is assumed to be sufficiently weak with respect to

the unperturbed equilibrium so as not to exert any influence

on the background Maxwellian F0.

To ensure that compatible approaches are used, some

of the results of Ref. 47 are reproduced here. Fig. 4 shows

linear growth rates both from GENE and GYRO simulations

in ŝ-a geometry, where the latter were taken from the afore-

mentioned paper—good agreement is observed between

both codes. This is important in particular as the GENE runs

shown here use only a single kext
x jp, whereas Ref. 47 utilized

a more flexible approach that allows for some deformation

of the sine wave profiles. Clearly, the effect of these defor-

mations is small. It needs to be stressed, however, that the

simulations in this figure do not include corrugations of U,

and that their gradient enhancements are significantly exag-

gerated with respect to those typically observed in nonlinear

simulations. Regardless of these objections, Ref. 47 and

Fig. 4 demonstrate that in principle—i.e., if certain criteria

are met—it may be possible to excite modes subcritically,

in particular, KBMs. Whether this scenario is applicable to

any present-day or future fusion experiments is still an

unanswered question, but the following analyses suggest

that it may be difficult to observe subcritical excitation in

realistic cases.

Reference 47 shows measured radial corrugations of

~xn;T�0:8xn;T (or X�1:8 in their notation) for their standard

case at b¼ 0.3%. Reproducing these values quantitatively

requires the following approach: As b lies just above bNZT
crit ,

to obtain agreement, corrugations had to be measured in the

transient saturated phase around t� 30, see Fig. 5 (upper

plot). This, however, represents a second transient saturated

phase—the first one can be found around t� 15. Note that

only the fluxes during the first phase are consistent with

those at slightly lower b, meaning the second phase is al-

ready part of the NZT process. If profile corrugations and

subcritical mode excitation are to be investigated in the con-

text of the NZT, it is more appropriate to measure corruga-

tions either in the first phase at t� 15—as hypothetical NZT-

causing, subcritical KBMs would have to be excited there in

order for the heat fluxes to ever reach the second, high-flux

phase at t� 30—or in simulations just below bNZT
crit , which

will have much better statistics. As illustrated in Fig. 5

(lower plot), both methods lead to both significantly lower

~xn;T—with ~xn;T�0:3xn;T at b¼ 0.2%—and a kext
x jp of twice

that used to produce the curves shown in Fig. 4. The impact

of these differences will become apparent in the study pre-

sented below.

FIG. 4. Linear growth rates as a function of b in the absence (GENE: black

solid lines; GYRO: red dashed lines) and presence (GENE: blue dotted lines;

GYRO: pink dash-dotted lines) of profile corrugations. The upper plot shows

data for ky¼ 0.15, the lower for ky¼ 0.3. GYRO data points were taken from

Ref. 47 (and Ref. 21 for ky¼ 0.3 without corrugations). The curves show

good code-code agreement, with only small differences in the TEM regimes

(which occur only when no corrugations are included) at b�0:5%; this has

no significant impact on bKBM
crit , however.
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The above results pertain to the GA-std parameter case;

for other parameters, the picture is not complicated by multiple

transient saturation regimes: Turning again to the CBC and the

relevance of profile corrugations to the NZT for these parame-

ters, time-averaged corrugation data from a nonlinear simula-

tion at b¼ 0.7% is shown in Fig. 6. Note that the temperature

corrugations were obtained through T ¼ ðTk þ 2T?Þ=2. These

plots demonstrate that the observed corrugations in n and T
have mostly kext

x jp ¼ 0:74 (corresponding to radial mode num-

ber n¼ 12), with some component at n¼ 4, or kext
x jp ¼ 0:25;

whereas U dominantly lives on the n¼ 1 mode, corresponding

to kext
x jU ¼ 0:062. Not shown is the significant temporal varia-

tion which may pose another difficulty for tertiary modes

which thus see their corrugation drive changing continuously,

and which will be commented on in more detail below.

A tertiary instability analysis based on these values can

be found in Fig. 7. Simulations, regardless of kext
x jp and ky,

retain seven kx connections on each side of kx¼ 0, and use

Nvk ¼ 96; both choices were made to resolve the linear phys-

ical properties fully—the nonlinear case (which, in particu-

lar, has fewer radial connections at higher ky) can be

expected to behave very similarly, however. The plots dem-

onstrate that for large xext
n;T (and no Uext), subcritical

destabilization of KBMs is indeed possible for CBC parame-

ters (the original bKBM
crit lies near 1.3% for both ky shown

here3). However, the enhancement used for that curve was

xext
n;T ¼ 1:5xn;T , with kext

x jp ¼ 0:25. With the measured, lower

values xext
n ¼ 0:5 and xext

n ¼ 3 (which can be inferred as

good estimates from Fig. 6), the growth rate enhancement is

significantly reduced, and no subcritical KBM is visible.

Adding Uext at kext
x jU ¼ 0:062 further reduces c. Finally, U

FIG. 5. Upper plot: ion electrostatic heat flux for the parameters used to

obtain the corrugations in Ref. 47. There are at least two transient saturation

regimes, one at Qes
i � 103 and one at Qes

i � 104, the latter well inside the

NZT. Both phases exhibit different properties in terms of their corrugation

amplitudes and kext
x jp: in the lower plot, the ion density corrugations are

shown for the first (blue dotted line) and second regime (pink dashed-dotted

line). The former is much more similar to the corrugations at slightly lower

b¼ 0.2% (black solid line). The background gradient is shown as a dashed

red line for comparison.

FIG. 6. Radial profile corrugations for CBC parameters, measured at

b¼ 0.7% and averaged over the saturated phase of the simulation. The quan-

tities shown are the self-consistent density gradient ~xne and temperature gra-

dient ~xTe of the electrons (similar properties are found for the ions, at

slightly lower values), as well as the electrostatic potential U. The former

two exhibit spatial oscillations mostly on two scales, Lx/12 and Lx/4, whereas

U varies on a scale of Lx due to zonal flow activity. Dashed red lines indicate

the values of the relevant background gradients.
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corrugations were neglected again, but since the peaks in

Fig. 6 have widths consistent with kext
x jp ¼ 0:74, simulations

were performed with that value and the same realistic xext
n;T

as mentioned above. The results are not shown in the plot for

the simple reason that they almost perfectly coincide with

the data points obtained without any corrugations: the radial

regions of enhanced gradients are too small for tertiary

effects to appear.

To ascertain the role of the phases of the corrugations,

simulations were performed with the phase angle / varied

between / ¼ ð0; p=2; p; 3p=2Þ. Here, /ðnÞ and /ðTÞ were

always set to an identical value. Both the absolute phase and,

in cases with Uext, the relative phase of /ðUÞ, had very little

impact on the resulting growth rates.

Another feature of these simulations is that, not surpris-

ingly, the ITG and TEM regimes are also affected by the cor-

rugations. While for realistic corrugation amplitudes, these

effects are relatively small, such modifications may be inter-

esting to take into account for quasilinear models (see, e.g.,

Refs. 49 and 50)—note, however, that for the most relevant

kext
x jp ¼ 0:74, no enhancement is seen at any b. With regard

to the corrugations present in the simulation of Fig. 5, it can

be conjectured that the different kext
x jp in the second transient

saturation phase (relative to the first) may help boost the ITG

mode at that point, consistent with the picture described in

Ref. 47, even when this process does not bring about the

NZT in the first place.

Next, it is shown that taking into account effects due to

fast temporal variation of the corrugations are unlikely to

change this picture.

The time averages used in this section typically stretch

over windows much longer than a correlation time. In gen-

eral, it is possible that for periods (much) shorter than the

whole average time, bursts of corrugation amplitudes occur,

with subcritical excitation of KBMs during these events.

Thus, it is necessary to take a closer look at time-

resolved corrugations, which are plotted in Fig. 8. ~xTiðx; tÞ
exhibits two important features: First, while the time-

averaged value is generally representative of the resolved

behavior, there are isolated spikes up to ~xTi�xTi, lasting

typically a few time units. Second, the characteristic radial

structure width of Lx/12 that was observed in the time-

averaged plot is very prominent also in the resolved one. The

density and electron temperature corrugations behave simi-

larly (not shown in the figure); albeit with some extremely

short but strong bursts, during which a new mode would not

have enough time to grow much. Uðx; tÞ, however, shows

markedly different features: it is far less bursty, and instead

moves back and forth through the radial box—this means

that the time-averaged value underestimates the

FIG. 7. Growth rates in the presence of profile corrugations for CBC param-

eters at two different ky. Black crosses mark the original c without corruga-

tions, red squares correspond to artificially large xext
n ¼ 3:33 and

xext
T ¼ 10:34, resulting in significant destabilization. The effect is far less

pronounced for realistic values (blue triangles), compare Fig. 6. Further

reduction of the enhancement is observed when adding Uext ¼ 30 (pink dia-

monds). Subcritical KBMs are seen only for artificially large corrugations.

FIG. 8. Self-consistent ion temperature gradient (upper) and U corrugations

(lower) as functions of radial coordinate and time, at b¼ 0.7%. For the for-

mer, clear vertical structures of width Lx/12 can been seen, with only short

bursts (in particular the red regions). The latter meanders back and forth but

is otherwise relatively homogeneous in its structure.
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instantaneous corrugation by more than a factor of two. As

mentioned above, the varying phase of Uðx; tÞ is not

expected to have any bearing on the tertiary growth rates for

the present case.

Based on these findings, one could conjecture that sub-

critical KBMs are excited during one of the ~xTi bursts; while

it is doubtful that the mode would be able to reach system-

relevant amplitudes during that short phase, another tertiary

instability analysis was carried out, this time with values

near the peaks of the bursts, with xext
Ti;e ¼ 6; xext

n ¼ 2, and

Uext ¼ 70, at the proper radial length scales. The results are

not surprising, see Fig. 9: due to the narrow space available

to the pressure corrugations, not much enhancement occurs,

and instead, the larger U corrugations stabilize the linear

mode measurably. Note that the variability in the tertiary

growth rates is a result of extensive beating of competing lin-

ear modes. Even when U corrugations are neglected (blue

diamonds in the plot), the tertiary growth rates do not deviate

very significantly from the linear ones, and again the subcrit-

ical KBM fails to surface.

Time-resolved analysis of the corrugations therefore is

not yielding results supportive of subcritical excitation.

Next, full distribution data from nonlinear simulations are

used for the corrugations, rather than modeled corrugations

in only U and the pressure.

Maximal realism of the analysis is retained when using

corrugation data of the (perturbed) distribution function

directly and studying its impact on tertiary instability. The

distribution was time-averaged during the saturated phase of

a separate nonlinear simulation at b¼ 0.7% (i.e., just below

bNZT
crit ), with the corresponding n, T, and U corrugations being

very similar to those in Fig. 6 quantitatively. Growth was

then measured the same way as in the previous studies, but

with the resolutions of the nonlinear simulation (except only

one finite ky value was included per run), implying both that

higher ky retain fewer radial connections and that sidebands

are included which are not connected to kx¼ 0.

The results of this study are shown in Fig. 10: at small ky,

the tertiary behavior closely follows that of the linear ITG

mode, before the tertiary curve falls below the linear one just

above ky¼ 0.15—coincidentally, the nonlinear heat flux peaks

at that ky. The frequencies seem not to be affected by this sta-

bilization; however, with the latter appearing to be more pro-

nounced for the ITG mode than for the TEM, a regime change

occurs where the TEM becomes the dominant tertiary instabil-

ity. This, however, happens at scales where the heat flux has

already dropped to relatively small values (not shown).

Before turning to the conclusions, one more argument is

presented which is based on the lack of KBM frequency sig-

natures during the NZT: Another indication that subcritical

excitation cannot be responsible for the NZT threshold can

be found in the nonlinear frequencies: both during the run-

away phase and during the (likely unphysical, but numeri-

cally relevant) second saturated phase at extreme heat flux

levels, the frequency signatures match the linear ITG fre-

quencies very well.30 In contrast, the frequencies of the terti-

ary KBMs—which are very similar to those of the linear

KBMs3—are much larger than typical ITG values and would

be easily discernible. Note that the nonlinear frequencies

reported in Ref. 3 for b � 0:8% (which apply to the transient

saturation phase), while not exactly matching the linear ITG

values, are still much lower than KBM frequencies—as

FIG. 9. Tertiary growth rates at ky¼ 0.15 with corrugations mimicking

enhanced conditions during turbulent bursts (red squares), see the text, as a

function of b. Black crosses denote the linear rates for comparison, whereas

blue diamonds correspond to the same setup as the red squares, only without

U corrugations. The larger Uext easily overcomes any destabilizing effect of

the pressure corrugations. In fact, the tertiary points have the ITG mode sta-

bilized so strongly that throughout the entire b range shown here it is either

subdominant or has c values comparable with the TEM (which appears to be

less affected by Uext).

FIG. 10. Tertiary growth rates (upper graph) and frequencies (lower graph)

as functions of ky, obtained with realistic corrugations from the distribution

function (dashed red curves). Crosses indicate dominant ITG growth,

squares TEM. For comparison, the linear growth rates and frequencies are

plotted as black diamonds, with ITG being the dominant instability through-

out the ky range shown here. For large scales (small ky), little modification is

observed tertiarily, whereas larger scales exhibit some stabilization.
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opposed to linearly dominant KBMs which have strong sig-

natures in KBM-driven turbulence.3,6

To further strengthen this point, the frequency analysis

algorithm PMUSIC51 was used on CBC data in order to

obtain better access to subdominant frequencies. For this

technique, the (z-averaged) electrostatic potential at a given

ky was analyzed according to the following prescription: A

data matrix is constructed whose upper half contains the

input data divided into overlapping windows—the lower half

contains the transpose and complex conjugate of the same

data. Using singular value decomposition on the data matrix,

one then selects the less prominent singular values and desig-

nates them as noise components. Finally, one essentially

takes the inverse of the filtered noise eigenvectors—when-

ever the noise level becomes small compared to the signal at

some given frequency, this quantity becomes very large. In

Ref. 52, all necessary details are readily summarized, and

the reader is therefore referred to that publication (note that

in the present paper, no time-dependent frequency signatures

are investigated, however).

For the CBC, the resulting frequency spectrum is found

in Fig. 11, in this case for ky¼ 0.1. The nonlinear frequencies

are compared for the saturated regime of a simulation in the

electrostatic limit (b¼ 0.01%, black curve) as a baseline and

of one that has undergone a NZT (at b¼ 0.9%), meaning the

frequencies are analyzed during the high-flux saturated phase

(red curve). Clearly, the spectra in either case peak far away

from the values one would expect if KBM activity played a

significant role, and neither are any subdominant contributions

visible near the KBM frequency. Note that the latter, marked

with a blue dotted line, is defined as the frequency of the lin-

ear KBM just after it becomes the dominant mode at this par-

ticular ky. These findings underscore the absence of KBM-like

features in the simulations that have experienced a NZT.

Below, the findings of this paper are summarized.

V. SUMMARY

Zonal flows were studied with respect to their growth as

a secondary instability excited by the primary ITG mode—

the renormalized growth rate ĉZF was shown to have

increased roughly three-fold at b � 1% relative to the elec-

trostatic limit. Unlike in previous zonal flow simulations, the

linear mode, the sideband, and the zonal flow were each

resolved by multiple, connected kx, leading to shifting kx

contributions when b was changed—this approach is more

representative of the situation in nonlinear simulations.

While not sufficient by themselves to explain the full zonal

flow dynamics of ITG turbulence, these findings corroborate

the theory that zonal flows play a larger role in the saturation

for higher b. In addition, their drive was found not to exhibit

any qualitative changes—and, in fact, grew stronger—as b
crossed the NZT threshold; supporting the statements in

Refs. 5 and 30 that it is zonal flow decay rather than a change

in zonal flow drive that brings about this transition.

Regarding tertiary instability, here defined to mean the

impact of zonal mode corrugations on linear growth, multi-

ple stages of realism were distinguished. At very large turbu-

lent pressure gradient fluctuations ~xnj and ~xTj on a scale of

1=ðŝky;minÞ, the system is able to enhance linear growth sig-

nificantly and even excite KBMs subcritically. When using

realistic values and scales for the corrugations, these effects

vanish, however; and at higher ky, moderate stabilization is

observed. It is thus concluded that tertiary instability—and,

in particular, subcritical excitation—does not affect the NZT

threshold (this result is expected to hold universally, whereas

the other findings of this paper, such as the enhanced zonal

flow growth at higher b, may apply only to certain parameter

regimes). This differs from the conclusions in Ref. 47 in

large part because their measurement of the profile corruga-

tions was taken at a point during the simulations when the

NZT had already elevated the turbulent amplitudes signifi-

cantly—leading to the subcritical excitation of KBMs in Ref.

47 which are also shown in Fig. 4. Therefore, while subcriti-

cal KBMs may, under certain conditions, play a role in fur-

ther boosting heat fluxes at later times, they are unable to

bring about the NZT in the first place.
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