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Fast magnetic reconnection, believed to be a mechanism for rearranging the magnetic topology and

creating energetic particles in many astrophysical and laboratory plasmas, is investigated with the

nonlinear gyrokinetic code GENE. After some code-code benchmarking, extensive linear studies are

presented, covering all relevant parameter dependencies of two-dimensional slab reconnection.

The results are used to ascertain the validity of a fluid model and understand for which parameters

it fails to describe the physics correctly. The nonlinear phase is studied for two scenarios: decaying

and driven turbulence. In the former case, the initially injected energy is cascading towards the

largest scales of the system, whereas a fully turbulent, quasi-stationary state develops if the system

is driven through a Krook-type term in the gyrokinetic Vlasov equation. VC 2011 American Institute
of Physics. [doi:10.1063/1.3656965]

I. INTRODUCTION

Fast magnetic reconnection—a process relevant for a

number of both astrophysical and laboratory plasma effects—

provides an efficient mechanism for releasing magnetic

energy. Unlike Sweet–Parker1,2 reconnection, its underlying

physics involves collisionless effects and its characteristic

time scale is the Alfvén time. For more information on these

reconnection regimes, see Ref. 3 and references therein.

While elaborate work has been performed with fluid-

based models (see, e.g., Refs. 4–8 for some more recent publi-

cations), kinetic aspects of fast reconnection require independ-

ent confirmation of the results obtained through such

approaches. Thus, kinetic or gyrokinetic simulations are neces-

sary to confirm the validity of reduced descriptions and expand

upon them where such descriptions break down. A moderate

number of gyrokinetic studies have been published.9–12 The

present work aims to cover all relevant parameter dependen-

cies where the (linear) reconnection rate is concerned and to

present examples of (nonlinear) reconnection turbulence while

focusing on particle acceleration and magnetic structure

formation.

The paper is organized as follows. First, a brief description

of the reduced gyrokinetic equations is provided, as well as of

the GENE code which was used to obtain the numerical results

in this work. As it constitutes the physical driving mechanism,

the current sheet initial condition is detailed, and successful

benchmarking with a previous publication is demonstrated.

Linear simulation results are then compared to analytical

theory, followed by nonlinear investigations for both decaying

and driven turbulence. Lastly, the findings are summarized.

II. NUMERICAL APPROACH

A. The gyrokinetic equations

Gyrokinetic theory13–15 reduces the six-dimensional

phase space by one dimension through elimination of the

fast gyrating motion of particles about magnetic field lines.

As a consequence, its applicability is limited to strong guide

fields and physical time scales slower than the gyration time.

In particular, effects like light waves and compressional

Alfvén waves are not captured, while many aspects relevant

to fast magnetic reconnection are included in this descrip-

tion. A typical formulation16,17 of the local gyrokinetic Vla-

sov equation for the perturbed particle distribution function fj
of species j reads
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with the modified distribution function gj ¼ fj � ½qj=ðmjcÞ�
�A1k@Fj0=@vk; the generalized potential vj ¼ �/� ðvk=cÞ �A1k
þðl=qjÞ �B1k, where bars denote gyroaverages; the background

magnetic field B0, with B�0k ¼ B0 þ B02pmjvTj=ðqjB
2
0Þvkj0k;

and the curvature coefficients (defined via the metric g):

jk¼ (g1kg23 – g2kg13)/(g11g22 – g21g12). Furthermore, t denotes

time, Bref the reference magnetic field, Fj0 the background dis-

tribution function, c the speed of light, e the elementary

charge, qj, mj, nj0, Tj0, and Xj the charge, mass, background

density, background temperature, and gyration frequency of

species j, respectively, J the Jacobian, and pj0 the background

pressure. Ln and LTj are the background gradient lengths of

nj0 and Tj0, respectively. The quantities Cjk are defined to

be @kgj � ½ðqj=mjvkÞ�@kvj@vkFj0 þ ½ðqj=mjcÞ� �A1k@k@vkFj0. The
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symbols x, y, z, vk, and l denote the radial, binormal, parallel,

parallel velocity, and magnetic moment coordinate,

respectively.

The electromagnetic fields U, Ak, and Bk are evaluated

self-consistently through the field equations, of which the

equations for U and Bk constitute a coupled set.
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2
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where Ck¼ Ik(b) e�b is defined through the modified Bessel

function Ik of argument b ¼ v2
Tjk

2
?=ð2X2

j Þ ¼ Tj0k2
?=ðmjX

2
j Þ;

k? is the perpendicular wave vector and Jk is the Bessel func-

tion of argument ð2lB0=mjÞ1=2k?=Xj.

Below, the Vlasov equation is reduced to the two-

dimensional slab geometry employed in this work and nor-

malized to GENE units.

B. The GENE code

The above equations are solved with the GENE code.17 In

its radially local version—which is used throughout this

work—it operates on Fourier space in the perpendicular

directions x and y, while for the purpose of investigating

two-dimensional spatial domains, the coordinate z parallel to

the guide field is not resolved. The velocity space uses equi-

distant grid points in vk and a weighed Gauss-Legendre grid

in l. Here, it is run in nonlinear initial value solving mode

and slab geometry, with the collision16,17 and vk hyperdiffu-

sion18 terms turned on where specified.

The parallel dynamics are now neglected—i.e., @zf¼ 0

for any physical quantity f—and a homogeneous background

field B0 is assumed. Additionally, an option for reconnection

drive is added through a Krook-type term which forces the

system toward the initial state with an unstable current sheet.

With these modifications, the normalized gyrokinetic Vlasov

equation as employed throughout this work becomes16,17
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with the modified distribution function gj ¼ fj þ 2qjvk �AkjFj0=
ðmjvTjÞ, the background distribution Fj0 ¼ p�3=2 expð�v2

k
�lB0Þ, the generalized potential v ¼ �/j � vTjvk �Akj
þðTj0=qjÞl �Bkj, and the normalized gradients xk¼ Lref/Lk

defined relative to the macroscopic reference length Lref. The

quantities xKr and �vk denote, respectively, the Krook drive

strength and the vk hyperdiffusion coefficient. Note that the

Krook term is similar to what can be found in Ref. 19, only in

the present paper, the pseudo-equilibrium is simply the initial

condition gj,ky¼0(t¼ 0). Thus, the term constantly forces the

system towards that initial condition, re-injecting energy that

is lost through dissipative processes, e.g., hyperdiffusion or

collisions.

The normalized field equations read

U ¼ C3M00 � C2M01

C1C3 � C2
2

; (11)

Bk ¼
C1M01 � C2M00

C1C3 � C2
2

; (12)

Ak ¼
X

j

1

2
qjnj0vTjbpB0

ð
vkJ0gjdvkdl

 !

� k2
? þ

X
j

q2
j nj0

mj
bpB0

ð
v2
kJ

2
0Fj0dvkdl

 !�1

; (13)

M00 ¼
X

j

qjnj0pB0

ð
J0gjdvkdl; (14)

M01 ¼
X

j

qjnj0pB
3=2
0

vTj

k?

ð
l1=2J1gjdvkdl; (15)

C1 ¼ k2
?k2

D þ
X

j

q2
j nj0

Tj0
ð1� C0Þ; (16)

C2 ¼ �
X

j

qjnj0

B0

ðC0 � C1Þ; (17)

C3 ¼ �
2

b
�
X

j

2nj0Tj0

B2
0

ðC0 � C1Þ; (18)

where b¼be¼8pne0Te0=B2
ref and kD¼Bref=ð4pc2ne0miÞ�1=2

.

In cases where the gradient drive, Krook, hyperdiffu-

sion, and collision terms are turned off, this system is pre-

serving energy to machine precision,20 a fact that becomes

relevant for cases of decaying turbulence discussed later. It

should also be noted that GENE is a massively parallel code, a
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necessity for running the type of simulations shown in the

present work where runs were performed on up to 4096

cores.

For the linear simulation results, extensive convergence

tests were performed to ensure physicality of the growth rate.

Typical resolutions were 48–96 points resolving jvkj � 3vTj

and 8–16 points resolving l � 9v2
Tj, where vTj¼ (2Tj/mj)

1/2,

with the radial resolution strongly depending on the set of

physical parameters, ranging from Nx¼ 96–16384. The

numerically challenging nature of the turbulence simulations,

however, makes such encompassing tests unfeasible, which is

why convergence checks were performed only in the spatial

domain—i.e., Nx,y and Lx,y—for those cases.

C. Current sheet implementation

Through the initial condition, free energy is injected

into the system. In cases with the Krook term turned off, this

happens only at the beginning of the simulation, while an

active Krook term continuously provides energy which is

eventually dissipated through vk hyperdiffusion.

The current sheet initial condition in GENE works as fol-

lows. First, a homogeneous density is set up, with a small per-

turbation of equal amplitude and random phase added to all

finite ky modes. Then, the velocity space is added, based on

one of three options in x� vk space (see Fig. 1): by default, the

Maxwellian distribution is shifted by �vshift cosðkxxNxpÞ, with

the number of sinusoidal periods in the x direction Nxp usually

set to one (exception: turbulence simulations); alternatively, the

shift profile may be composed of two Gaussians with opposite

sign, with a small offset subtracted to ensure continuity at

x¼6 Lx/2, 0 (where the Gaussians have fallen off to

<2� 10�3); or, by contrast, vk sinðkxxÞ is simply multiplied

onto an unshifted Maxwellian. The last option is identical21 to

the setup of the initial condition in Ref. 11. It needs to be

stressed that, in the first two cases, where vshift is a free parame-

ter, its value determines the resulting growth rate c. By normal-

izing c to the inverse Alfvén time cA / Byðt ¼ 0Þ / vshift, this

dependency is eliminated, however.

It is to be noted that all these profiles are periodic—with

the consequence that there are always an even number of

current sheets in the system. While in many previous investi-

gations, Harris sheets22 have been studied, periodic profiles

are a popular alternative and prove to be a more convenient

setup in GENE.

D. Benchmarking

In Ref. 11, linear ky spectra for fast reconnection have

been calculated and were later corrected23 as a result of a

fruitful collaboration between the authors of Ref. 11 and the

present paper. Here, both data from that publication—

obtained with the GS2/AstroGK code24—and GENE results

are shown for four different parameter sets. Throughout this

work, the normalization

c! ccA ¼ c
kxBy0;maxffiffiffiffiffiffiffiffiffiffiffi

ne0mi
p

ffiffiffi
2

b

s
(19)

is employed.

The growth rate spectra in Fig. 2 correspond to a case

with kx¼ 0.2, reduced mass ratio me/mi¼ 0.01, and plasma

pressure b¼ 0.2, with results shown for temperature ratios

Ti/Te¼ 2� 10�4 and Ti/Te¼ 5. A slightly different case is

shown in Fig. 3, where me/mi¼ 0.04 and plasma pressure

FIG. 1. (Color online) From top to bottom, the three initial conditions

f(t¼ 0) are illustrated in the x� vk plane (see the text): the default vk-shifted

Maxwellian, a vk-multiplied Maxwellian, and a Gaussian-shifted Maxwel-

lian. The red dashed lines indicate the ridge of maxima for the shifted cases;

only for the second setup does f include negative values.

FIG. 2. (Color online) Linear benchmark between GENE (black crosses and

diamonds) and GS2/AGK (red triangles and squares) for two different tem-

perature ratios, with the value for the latter taken from Refs. 11 and 23. For

the case shown here, b¼ 0.2 and me/mi¼ 0.01. The two dashed lines corre-

spond to fluid model limits, with the assumption Ti¼ 0 made to achieve

agreement (see also Sec. III B 4 in the text).
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b¼ 0.3. The temperature ratios are essentially identical to

those in Fig. 2. Clearly, there is excellent quantitative agree-

ment between the codes, with relative deviations of the

growth rate never exceeding four percent.

Using these encouraging benchmark results as a starting

point, linear studies were performed with the above parame-

ters as a base case: me/mi¼ 0.04, b¼ 0.3, and kx¼ 0.2;

choosing a default ion temperature setting of Ti¼Te. Below,

the results of these investigations are presented, as are com-

parisons with a standard analytical model.

III. LINEAR PHYSICS

A. Analytical fluid model

Ref. 25 contains an analytical fluid model, along with

solutions of the dispersion relation, which has since been

used as a kind of standard model in various studies. For

small gyroradii, an adiabatic equation of state for the elec-

trons is used, while in the large gyroradii case—which is of

relevance to the present work—an isothermal limit is

assumed and use is made of the Padé approximation. More

recently, the model has been adapted in Ref. 11, yielding

expressions for the normalized linear growth rates in the fol-

lowing limits:
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In terms of the stability parameter26 D0 ¼ 2ðk2
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yÞ
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� tan½ð1� k2
y=k2

xÞ
1=2p=2�, these limits correspond to D0 ! 1

and D0 ! 0, respectively.

The validity of those expressions requires, however, that

the following limits are fulfilled (here, btot¼beþbi is the

total plasma pressure):
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with the sound speed gyroradius qs � qse and the electron

skin depth de, corresponding to a region where the electrons

behave isothermally rather than adiabatically;25 and
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where qe is the electron gyroradius, and the last substitution

can be made by making use of the small-ky limit in Eq. (20).

This second condition is a combination of two prerequisites,

where both the electron polarization drift and finite Larmor

radius (FLR) effects may be neglected (see Ref. 11).

In combination, the above limits set a range of applic-

ability for btot through the choice of mass ratio. For the pa-

rameters used in Sec. II D—which constitute a standard set

throughout this work—they are only marginally fulfilled.

The remainder of this work contains multiple instances

where small changes to those parameters quickly lead to the

fluid model becoming inapplicable.

With the model equations in mind, the focus is now

turned to direct gyrokinetic simulation results, where the

applicability and limitations of said equations can be tested.

B. Simulation results

1. Radial wave number

The radial wave number kx enters the model equations

only in combination with ky. A major aspect of its influence

on the growth rate spectra is that the range of unstable ky is

given by [0, kx]. As can be seen in Fig. 4 (where the abscissa

employs a rescaled �ky ¼ kyð0:2=kxÞ, stretching curves for dif-

ferent kx values to the same width), this behavior is reflected

by the simulation results. Moreover, up to the point where

k?& 1, there is excellent agreement between fluid theory

and the gyrokinetic growth rates. The deviation at high k? is

to be expected, as finite Larmor radius effects start to

FIG. 3. (Color online) Linear benchmark between Gene (black crosses and

diamonds) and GS2/AGK (red triangles and squares) for two different tem-

perature ratios, with the value for the latter taken from Refs. 11 and 23. For

the case shown here, b¼ 0.3 and me/mi¼ 0.04. The dashed lines correspond

to two fluid model limits, with the assumption Ti¼ 0 made to achieve agree-

ment (see also Sec. III B 4 in the text).

FIG. 4. (Color online) Linear scan of the radial wavenumber kx. Since the

unstable ky range varies with kx, the abscissa is rescaled, with
�ky ¼ kyð0:2=kxÞ. Comparison of the solid lines (simulation data) with the

dashed lines (fluid model) reveals that only at very high kx does the model

start to break down. Note that qse ¼ ðTe=miÞ1=2=Xi.
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become important which are captured by gyrokinetics but

not by the fluid model.

2. Current profile

As there is a lot freedom with regard to the current sheet

setup, a variety of different settings were studied to assess

the universality of the results obtained with the standard con-

figuration. It was found that—apart from the different nor-

malization factor due to By0;max / vshift—the (normalized)

growth rates are independent of the current amplitude, as is

to be expected. At higher vshift, the parallel velocity space

needs to be extended, however, impacting numerical require-

ments (with the highest value investigated being 3 in units of

the thermal velocity).

Another degree of freedom stems from the fact that the

current may be carried by either the electrons, the ions, or

both species. Due to the different masses, a given (normal-

ized) velocity shift will result in a different By0,max depending

on the species properties, but the normalized reconnection rate

is not influenced by these choices.

As mentioned previously in Sec. II C, using another si-

nusoidal current sheet implementation where vksinðkxxÞ is

multiplied onto the Maxwellian also gives the same results

as the standard configuration.

Fig. 5 compares growth rate spectra of those standard

results with numbers obtained for a bi-Gaussian current pro-

file, while all other parameters remained unchanged.

Although there exist clear qualitative differences between

the curves, they can be attributed to higher kx components of

the profile, see also the kx investigation in Sec. III B 1—

higher kx contributions result in a spectral shift to higher ky.

3. Mass ratio and b

As evidenced by Figs. 6 and 7, both the mass ratio de-

pendence and the impact of b are captured relatively well by

the model for the present parameter choices. Deviations are

found only in Fig. 7 for small ky, where Eq. (22) starts to fail

once the b value is changed. To ensure that this is indeed the

reason for the deviation—rather than a ky that may still be

too large for the small-ky limit to apply—additional points at

very low ky are shown in the b¼ 1 case, which clearly do not

agree with the model predictions.

Since the fluid model puts certain constraints, namely

Eqs. (22) and (23), on the total plasma btot rather than the

electron b alone, a closer look at the ion temperature depend-

ence will be taken next—note that for Ti � Te, the relation

btot / Ti holds. There, it will be indicated that, to a certain

degree, the agreement shown here is coincidental; and that

the model does not, in general, predict the growth rates cor-

rectly, once its prerequisite limits are not fulfilled fairly

exactly anymore.

4. Ion temperature

Previously, it has been conjectured that fluid theory and

gyrokinetic reconnection rates disagree fundamentally with

regard to the ion temperature dependence.11 This intuition

appears to be corroborated by a Ti scan (see Fig. 8) where

clearly, the analytical curves show strong dependencies

whereas the simulation data varies little with Ti.

With the findings of the previous b scan, however, addi-

tional parameter points were selected with significantly

larger mi/me to extend the btot range where fluid theory is

FIG. 5. (Color online) The curve marked by black stars is identical to the

benchmark case (with kx¼ 0.2, black crosses in Fig. 3), while red squares

denote growth rates obtained with a bi-Gaussian current profile. Due to con-

tributions of higher kx, the latter stretches to higher ky and also exhibits

higher c.

FIG. 6. (Color online) Linear scan over mass ratios. The numerical growth

rates (Ti¼Te, solid lines) agree fairly well with the model predictions

(dashed lines), however, only if the ions are assumed to be cold (see also

Sec. III B 4 on the ion temperature and Ref. 11).

FIG. 7. (Color online) Linear growth rates for different values of the nor-

malized plasma pressure b¼be (solid curves). While in the limit of ky! kx,

the values agree reasonably well with the model predictions (dashed lines),

deviations for both small and large b in the ky! 0 limit indicate that for the

present parameters, the model is not fully applicable anymore.
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applicable. The need for large mass ratios is a consequence

of Eq. (22); for reduced and even hydrogen mass ratios, the

applicability range with respect to the b and Ti values can be

fairly narrow or even virtually nonexistent.

As shown in Fig. 9, the apparent disagreement between

the fluid and the gyrokinetic model is thus resolved. The nec-

essary mass ratios, however, stress the need for either

extended theory or reliance on numerical simulations

throughout wide ranges of the physical parameters b, Ti, and

mi/me, as not fulfilling condition (22) rather rigorously

causes significant deviations when comparing theoretical

predictions and simulation results.

5. Collisions

All above results were obtained in the collisionless limit.

While one may generally be interested in studying fully col-

lisional reconnection with different tools, the aim of this sec-

tion is to look at the enhancement of the reconnection rate

due to low but finite collisionality. As the results in Fig. 10

suggest, given a sufficiently low collision frequency (in

Gaussian units),

�coll ¼
p logc e4n0Lref

23=2T2
e

; (24)

the nature of the reconnection does not change qualitatively.

It should be noted that the presence of collisions will,

over time, erode the driving current sheet. As this typically

leads to the drive being diminished significantly (i.e., by

about 10%) during the time that the growth rate is averaged

over, it becomes necessary to correct for this effect through

taking By0,max¼By0,max(t).
At even higher �coll& 10�2, the growth rates become

very large (one to two orders of magnitude larger than the

values shown here), accompanied by drastic changes to the

growth rate spectra, hinting at new, collisional modes being

destabilized. A proper investigation of these modes is left to

future work. This still leaves a relatively large range of colli-

sionalities—which overlaps with typical collisionalities in

fusion plasmas—where one may safely assume moderate

collisional enhancement of collisionless reconnection to be

applicable.

Reference 25 predicts the collisional relative enhance-

ment of the growth rate in two limits

large qi : c ¼ c0 1þ �ei

2c

� �1=6

(25)

and

small qi : c ¼ c0 1þ �ei

2c

� �1=2

: (26)

Here, �ei is the electron-ion collision frequency and c0 is the

collisionless growth rate. It can be assumed, however, that

including additional collision physics beyond ion-electron col-

lisions—as done in GENE, where a Boltzmann operator (pre-

serving particle number, energy, and momentum) with all

types of binary collisions is used16,17—does not alter these

results dramatically. Thus, for the purpose of this work, �ei is

FIG. 8. (Color online) Study of the ion temperature dependence of the

reconnection rate. The solid lines (simulations) show little variation over a

large range of Ti, whereas a finite ion temperature quickly causes the dashed

lines (model) to rise. The cause for this differing behavior lies in the viola-

tion of conditions involving btot¼btot(Ti) (see Eqs. (22) and (23) in the

text).

FIG. 9. (Color online) Additional ion temperature growth rates from simula-

tions (solid lines) with adjusted parameters: Fe (diamonds) and Li (crosses)

mass ratio results are shown and b is taken to be 0.001. With decreasing

electron mass, the b range where the model (dashed curves) predicts the

reconnection rate correctly is expanded. Note that, as the low-ky range

appears to be more sensitive with regard to differences between simulations

and the model predictions in Eqs. (20) and (21)—see Fig. 7—only the

ky! 0 limit is shown here.

FIG. 10. (Color online) Reconnection rates in the presence of (low) colli-

sionalities—for the definition of �coll, see the text. The destabilizing effect

of collisions becomes clearly visible. Note that the growth rates have been

rescaled to account for collision-borne changes to the driving current sheet,

By0,max¼By0,max(t).
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used interchangeably with the collision frequency �coll in

GENE. Note that the exponents (1/6 and 1/2) in the above equa-

tions are henceforth denoted by the symbol a�.
In the derivation of the model, use was made of an

approximation q2
s � d2

e , see Eq. (22). Thus, an exponent

a�¼ 1/6 should be expected to apply for ky ! 0. However,

since the physical parameters have been shown not to fulfill

this condition very rigorously, one may expect to see devia-

tions from the predicted scaling.

In order to facilitate direct comparisons, �coll is renor-

malized to the same units as the linear growth rate,

�coll ! �coll

ne

T2
e

mi

me

� �1=2 cs

Lref

: (27)

Here, cs¼ (Te/mi)
1/2 is the normalized sound speed. Since the

model predicts the relative enhancement of the growth rate,

it is applied to the numerical results obtained for �coll¼ 0.

As shown in Fig. 11, the simulation data is well-

described by a scaling exponent of a�¼ 1/2 for ky ! kx;

whereas, in the limit of small ky, it seems to follow an expo-

nent of a�¼ 1/3 rather than the model prediction 1/6. This

may be the consequence of small-qi effects playing a role for

the present choice of parameters.

With a�(ky! 0) 
 a�(ky! kx), only a small shift of the

spectral peak of the reconnection rate is expected. The

curves in Fig. 10 illustrate this feature.

6. Pressure gradients

The work published in Ref. 27 is based on fluid model

investigations of the influence of (radial) background density

gradients on the reconnection rate. It is generally found that

such gradients induce drifts which, in turn, suppress recon-

nection modes. More specifically, Ref. 27 predicts the real

frequency and growth rate modification, respectively, as

x 
 x�e
2

1� Ti

Te

� �
; (28)

c2 
 c2
0 �

x�e
2

1� Ti

Te

� �� �2

; (29)

with x*e/(cs/Lref)¼�kyxn. Their calculation is based on Ref.

25, and therefore, the same conditions set by Eqs. (22) and

(23) apply.

Thus, for Ti¼Te, there should be no change in the

growth rate. In the gyrokinetic results shown in Fig. 12, how-

ever, moderate density gradients lead to a small increase of

the reconnection rate. The relative enhancement of the

growth rate appears to be largely independent of ky and thus

x*e—moreover, the growth rate increase is observed to be

independent of the ion temperature (not shown here).

Again, simulations with a slightly more realistic mass

ratio were performed, with me/mi¼ 0.01 and b¼ btot¼ 0.1,

at Ti=Te 	 1, to fulfill Eqs. (22) and (23) more accurately.

Here, according to Eq. (29), c2
0 � c2 ¼ 2:5� 10�5 for

ky¼ 0.08, whereas the simulation yields a value of

1.6� 10�5. These moderate deviations are in line with quan-

titatively similar differences between the model and the fluid

simulation results reported in Ref. 27 where they are attrib-

uted to the limitations of the theory. In particular, the sign is

the same, corresponding to gradient-induced stabilization. It

is expected that for even smaller mass ratios and ky ! 0,

even better agreement will be achieved.

FIG. 11. (Color online) Growth rate enhancement due to collisions (dashed

lines), along with scaling exponents a� (solid and dotted lines). While for

ky ! kx (upper), the scaling exponent a�¼ 1/2 holds very precisely (red

squares), the a�¼ 1/6 prediction for small ky (lower, red stars) fails to repro-

duce the simulation data. Instead, a value of a�¼ 1/3 (red diamonds) appears

to describe the scaling rather well.

FIG. 12. (Color online) Linear growth rates in the presence of background

pressure gradients. Both density gradients xn and temperature gradients

xTe¼xTi can be seen to have a destabilizing effect for the standard parame-

ter set, whereas fluid theory predicts no influence of xn.
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Again, the xn dependencies underscore the need for

direct gyrokinetic simulations in regimes where model

assumptions are not fulfilled very strictly.

At higher xn, the simulations yield growth rates larger

by about an order of magnitude, as evidenced by the missing

points at low ky in Fig. 12. They are a consequence of the

onset of fast, gradient-driven modes, which typically have a

critical gradient threshold. While some of their properties

survive when vshift¼ 0, they are influenced by the current

sheet. In either case, however, their growth rate spectra fall

off continuously with ky over the range plotted here.

Also shown in Fig. 12 are results for finite background

temperature gradients (with xTi¼xTe) are found to be nearly

identical in their impact on the reconnection rate to the den-

sity gradient.

Having covered a wide range of linear physics, attention

is now focused on the nonlinear, turbulent phase of recon-

nection simulations.

IV. NONLINEAR PHYSICS

In the present work, the “linear” drive acts through the

Vlasov nonlinearity. This section, however, focuses on the

phase of the simulations when these modes have saturated.

Here, field amplitudes and magnetic topology are of primary

interest, rather than typical nonlinear observables such as

heat and particle fluxes.

While in the linear section of this work, growth rates

were normalized to cA / By0;max, nonlinear perturbed quanti-

ties in GENE normalization contain a factor of qs/Lref. It can

be replaced by

qs

Lref

¼ vA

cs

b
2

� �1=2 ffiffiffiffiffiffiffiffiffiffiffi
ne0mi
p

By0;max

; (30)

in order to scale amplitudes with the drive strength. Here, vA

is the Alfvén velocity.

In the following, results of both decaying and driven tur-

bulence are presented.

A. Decaying turbulence

In the case of decaying turbulence, the energy injected

into the system through the current sheet initial condition is

simply redistributed: all terms in the Vlasov equation are

turned off except for the nonlinearity, and thus no physical

or numerical sinks or sources are present in the system.

An exemplary time evolution of decaying reconnection

turbulence is shown in Fig. 13, where the two field compo-

nents Bx,y derived from Ak are evolving through the linear,

nonlinear, and final stage.

The simulations in this section employ the standard

physical parameters from the linear studies, with Ti¼ Te and

Nxp¼ 10; while the numerical settings are chosen as follows

for the data presented here: Lx,y¼ 100p, Nx¼ 1024, and

Ny¼ 128.

In Fig. 14, contours of Ak show the temporal dynamics of

the magnetic structure: the initial condition (top left) creates

an instability (top right) which then leads to a brief turbulent

phase (bottom left) that ultimately—once jAkj2 has cascaded

inversely to the largest scales—ends up in a quiescent state

(bottom right). It should be noted that the precise structure of

the final state depends on numerical settings like the box size

and also resolution (as resolution may change linear growth

rates). Thus, the only physical aspect to be gleaned from it is

the fact that jAkj2 cascades to the largest scales, regardless of

whether the final picture exhibits horizontal or vertical

structures.

During the entire turbulent and quiescent periods, the

spectra of Ak and U were found to change very little. More

specifically, while—in accordance with the structural

changes in Fig. 14—the large-k? end undergoes some adjust-

ment, the range kx,y
 0.1–1 is described very well by the

following scalings: jAkj2 / k�11=3
x;y and jUj2 / k�10=3

x;y . An

extension of the work published in Ref. 28 to electromag-

netic turbulence should be able to recover these exponents.

The distribution function evolves from the initial sinu-

soidal perturbation to a more complex structure, as evi-

denced in Fig. 15. This structure still contains significant

velocity space inhomogeneity, and while it is relatively sta-

ble in the context of a gyrokinetic simulation, it may be sus-

ceptible to other, fully kinetic instabilities such as the two-

stream mechanism29 that are not captured by the physical

model employed in this work.

One of the foremost reasons why magnetic reconnection

is receiving attention in the context of astrophysical phenom-

ena lies in the fact that through the creation of strong electric

fields, reconnection can provide an efficient mechanism for

particle acceleration. Therefore, it is important to quantify

this property for the present cases. As these simulations

involve strong parallel magnetic guide fields, the primary

candidate for particle acceleration is the parallel electric

field.

In GENE units, Ek becomes

Ek ! Ek
qs

L2
ref

Te

e
: (31)

Here, a hat denotes a normalized quantity. Eliminating Lref,

the parallel electric field normalization can be written as

FIG. 13. (Color online) Magnetic field amplitudes for decaying turbulence:

Bx (black solid line), By (red dotted line), and Bk (blue dashed line). For a

description of the different phases, see the text.
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Ek ! Ek
n̂im̂i

B̂2
y0;max

be

2

v2
A

c2
s qs

Te

e
; (32)

where Te is normalized to electron volts.

Since the parallel coordinate was eliminated by assum-

ing parallel derivatives to be small, there exists no electro-

static component Ees
k ¼ @U=@z ¼ 0. The electromagnetic

component, however, consists of two contributions

Eem
k ¼ Efl

k þ Eind
k ¼

1

B0

B? � E? �
@Ak
@t

; (33)

which can be identified as a flutter and an inductive term.

The former is a result of the perturbed field directing part of

the perpendicular electric field along the guide field. Plotting

the components of Ek ¼ Eem
k , one finds that while both the

flutter and the inductive part contribute to the overall field,

Efl
k is responsible for the lion’s share, see Fig. 16. Total

amplitudes range up to values of 
30, with typical value

during the turbulent phase lying around 10–20 (note that

By0,max¼ 2.70 in normalized units).

Looking at the field in more detail, Fig. 17 reveals that

throughout the turbulent phase, filament-like structures form,

again as a consequence of the flutter term. These ribbons ex-

hibit large amplitudes of Ek, albeit without any preferential

sign when averaging over sufficiently large time windows.

From the findings in this section, it can be concluded

that even the undriven gyrokinetic dissipation of a current

sheet is able to produce reasonably large parallel electric

fields before dying down and ending up in a non-turbulent

final state.

B. Driven turbulence

With the properties of decaying turbulence in mind, sim-

ulations are performed where the drive through the initial

condition is maintained through the Krook-type term in the

Vlasov equation. The energy injected this way is then

FIG. 14. (Color online) Contours of the parallel component of the magnetic potential. From the top left to the bottom right plot, the time evolution (at values

t¼ 0, 310, 500, and 2659 Lref/cs) from the initial condition to the final, quiescent state is visible.
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dissipated at small scales in vk space through the correspond-

ing hyperdiffusion term, which essentially mimics the effect

of collisions, but is more computationally efficient. With the

energetics now involving sources and sinks, this setup allows

for studying quasi-stationary turbulence and the associated

saturation levels of various quantities of interest. At the same

time, it makes interpretation of the results more complicated,

however, by introducing two additional free parameters: a

drive frequency xKr and a dissipation coefficient �vk.
Differing in its numerical requirements from the decay-

ing case, the simulations shown in this section resolve each

radial cosine period with typically Nx/Nxp¼ 128 and the y
space with Ny¼ 128, with a box Lx¼ 20p and Ly¼ 50p. As

two cases, Nxp¼ 2 and Nxp¼ 4 are investigated, the base kx

of the current sheet is 0.2 and 0.4, respectively. It turns out

that these cases differ not in the structures forming but rather

in the amplitudes: contrary to the linear expectations, the

higher kx results in lower amplitudes (of the quantities B and

Ek) by a factor of about 2.5–5, while By0,max is lower by a

factor of only about 2 for the higher kx case.

The hyperdiffusion ranges from �vk ¼ 0:001 to 0.02; its

precise value shows relatively little impact on the turbu-

lence—only at large times, it can play an important role,

when the energy from the Krook term may not be dissipated

at a sufficient rate. Such long-term behavior can, therefore,

be unphysical for certain parameter settings.

As can be seen in Figs. 18 and 19, it is primarily the sour-

ces and sinks that are governing the dynamics of the system:

increasing xKr by an order of magnitude causes the large-

scale structures to disappear while only small islands remain,

focusing the magnetic energy into relatively confined regions.

This change is accompanied by an increase of Bk and Ek by a

factor of 5 (for the latter, see Fig. 20); whereas Bx,y show

more complicated behavior. In the initial turbulent phase at

FIG. 15. (Color online) Contours of the squared perturbed part of the distri-

bution function (above: electrons and below: ions) in the x� vk plane. The

remaining dimensions have been averaged over. For the above plots, the dis-

tribution data at the end of the simulation (t¼ 2659 Lref/cs) was used.

FIG. 16. (Color online) Time evolution of the parallel electric field: from left to right, the minimal (blue) and maximal (red) values of Etot
k , Efl

k , and Eind
k are

shown, respectively. In all cases, the minimal and maximal values are of very similar amplitude, suggesting there is, on average, no preferential direction of

particle acceleration.
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FIG. 17. (Color online) Contours of Efl
k (left) and Eind

k (right) at time t¼ 500 Lref/cs—i.e., during the turbulent phase—in the case of decaying turbulence.

FIG. 18. (Color online) Magnetic field amplitudes for driven turbulence (left: weak drive, xKr¼ 0.01 and right: strong drive, xKr¼ 0.1). The black solid line

corresponds to Bx, the red dotted line to By, and the blue dashed line to Bk.

FIG. 19. (Color online) Contours of Ak and Bk for the weak (above) and strong (below) drive cases. In the former, large structures form during the quasi-

stationary state, whereas the latter exhibits small islands.
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high xKr, their amplitude is comparable with that of Bk,
whereas later—when the island formation is complete—they

drop off by nearly an order of magnitude. Conversely, at low

drive, they saturate at roughly twice the Bk value. Note that in

both cases, Bx and By achieve near-equipartition throughout

the respective turbulent phases, as is illustrated in Fig. 18.

One simulation was performed with b reduced from the

standard value of 0.3 to 0.1. It was observed that this change

caused Bx,y to drop by nearly an order of magnitude, while

Bk and Ek were reduced by factors of around 3 and 15,

respectively (with By0,max reduced by a factor of 3); not

unlike in the previous case where modifying the perturbation

FIG. 20. (Color online) Time evolution

of the parallel electric field: the minimal

(blue) and maximal (red) values of Etot
k

are shown for the weak (left) and strong

(right) drive cases. As with decaying tur-

bulence, no preferential direction of par-

ticle acceleration is found when

averaging over time.

FIG. 21. (Color online) Parallel electric field contours

(left: weak drive and right: strong drive) during the sat-

urated phase (t¼ 293 and 184, respectively). The Ek
structures reflect those of the magnetic potential Ak, see

Fig. 19.
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kx led to significant amplitude changes but virtually no quali-

tative changes in the topologies, reducing b had little impact

on the island structures.

As in the decaying turbulence case, Ek is found to ex-

hibit no preferential direction: the minimal and maximal val-

ues shown in Fig. 20 oscillate about the same mean; also, the

flutter component Efl
k is again responsible for most of the

total Ek. This is in accordance with the corresponding Ek
contours in Fig. 21 which illustrate how the parallel electric

field is indeed reliant on Ak as shown in Fig. 19. The ampli-

tudes of the parallel electric field depend significantly on the

physical parameters such as b, kx,pert, and xKr. Typical val-

ues exceed those found for the decaying case by up to an

order of magnitude (at comparable By0,max).

While the amplitude spectra of the direct quantities U
and Ak for the simulations presented here fall off very well,

it should be noted that, in particular, Ex;y 
 kx;yU have very

flat spectra for k?& 1; more specifically, the spectral slopes

of k?jUj2 and k?jAkj2 for the driven case agree rather well

with the simulation results in Ref. 30. This highlights a

somewhat problematic property of the parallel electric field:

as the (dominant) flutter component of the latter depends on

Ex,y, it can become difficult to resolve Ek down to the small-

est scales. In cases where significant contributions to Ek stem

from the high-k? regime, simulations can be very expensive,

as very high resolutions in the perpendicular plane are neces-

sary to sufficiently resolve all features.

V. CONCLUSIONS

The gyrokinetic reconnection studies presented in this

work have covered the entire relevant parameter space line-

arly, and distinguished two nonlinear scenarios: decaying

and driven reconnection turbulence. The linear results show

that many dependencies are captured correctly by a standard

fluid model; exceptions to this rule are the growth rate

enhancement due to collisions and high-k? scenarios where

FLR effects become important. Contrary to previous find-

ings, the model describes the influence of finite ion tempera-

ture correctly, but only if mass ratio and btot obey the model

assumptions in Eqs. (22) and (23) very strictly. Thus, in

many realistic situations, numerical simulations are required

to obtain correct reconnection rates.

Nonlinearly, a magnetic inverse cascade causes isotrop-

ization in the case of decaying turbulence, where only the

initial energy from the current sheet is available to cause

(quasi-) turbulent behavior. Still, significant parallel electric

fields can be created through this mechanism. Even higher

fields—at least by an order of magnitude—may be obtained,

however, through driven reconnection. In this scenario, with

a Krook term driving the turbulence, structures and islands

form, with their properties depending significantly on the

drive strength.

The numerically challenging nature of nonlinear gyroki-

netic reconnection simulations currently makes wide-ranging

multi-dimensional parameter studies of reconnection turbu-

lence impossible. Therefore, additional investigations cover-

ing larger areas of parameter space will have to be

undertaken once they become feasible. Independently,

attempts should be made to extend the validity range of ana-

lytical models in order to be able to describe the physics of

systems like the solar corona more accurately.
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