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Free energy plays an important role in gyrokinetic theory, since it is known to be a nonlinear

invariant. Its evolution equations are derived and analyzed for the case of ion temperature gradient

driven turbulence, using the formalism adopted in the Gene code. In particular, the ion temperature

gradient drive, the collisional dissipation as well as entropy=electrostatic energy transfer channels

represented by linear curvature and parallel terms are analyzed in detail. VC 2011 American Institute
of Physics. [doi:10.1063/1.3632077]

I. INTRODUCTION

Gyrokinetic simulations take advantage of the helical

motion of charged particles in the presence of intense mag-

netic fields to simplify the numerical study of magnetized

plasmas. In particular, in the limit of low frequencies com-

pared to the gyrofrequencies related to this helical motion, a

five dimensional (instead of a six-dimensional) velocity-

position distribution function1 can be used to describe the

plasma. The reduction of the number of phase space dimen-

sions as well as the elimination of small (and irrelevant)

spatio-temporal scales are the major advantages of the gyro-

kinetic formalism in terms of numerical simulations.

As is well known, gyrokinetic theory—although

represented by a quite complex set of nonlinear partial

integro-differential equations—possesses interesting analyti-

cal properties. Indeed, it has been shown that gyrokinetics

has a nonlinear quadratic invariant playing a similar role as

the kinetic energy in the Navier-Stokes turbulence. This

quadratic invariant has been identified as the free-energy

(see Ref. 2 and various references therein). It has been shown

in a recent Letter3 that the free energy dynamics exhibits a

cascade regime4 in which injection in the large scales is due

to imposed mean gradients of temperature or density and dis-

sipation due to collisions is observed in the small scales.

Moreover, a nonlinear conservative interaction has been

shown to transfer free energy from the injection domain to

the dissipation range.

The purpose of this paper is to study further this dynam-

ics by investigating in detail the free energy balance in gyro-

kinetic turbulence. The gyrokinetic equation is briefly

summarized in Sec. II. In Sec. III, the global free energy bal-

ance is discussed from both theoretical and numerical view-

points. In Sec. IV, the energy balance is studied for each

scale by using a Fourier representation that allows for a bet-

ter understanding of the cascade processes, followed by a

summarizing discussion in Sec. V.

II. GYROKINETIC MODEL

The gyrokinetic formalism can be designed for an arbi-

trary number of charged particle species in various geome-

tries. In the present study, however, the analysis is limited to

the simple scenario of a single ion species and adiabatic elec-

trons in the context of a large aspect-ratio, circular cross-

section model equilibrium.5 In this case, the evolution

equation for the ion distribution function fi appropriately

normalized reads (for details, see Ref. 6)

@fi

@t
þ ½xni

þ v2
k þ lB0 �

3

2

� �
xTi
�F0i

@�/1

@y

þ
T0ið2v2

k þ lB0Þ
qiB0

Kx
@hi

@x
þ Ky

@hi
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� �

þ �/1; fi

� �
xy
þ vTi

2
v2
k þ lB0; hi

h i
zvk
¼ D½ fi�: (1)

Here, hi is referred to as the nonadiabatic part of the distribu-

tion function, hi ¼ fi þ qiF0i
�/1=T0i where qi denotes the ion

charge (normalized to the elementary charge e), F0i the back-

ground distribution function, �/1 the gyro-averaged electro-

static potential, vTi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 T0i=mi

p
the ion thermal velocity, T0i

the ion temperature (normalized to the electron temperature),

and mi the ion mass. It is stressed here that, since the elec-

trons are treated adiabatically, all the distribution functions fi
and hi refer to the ions and, to simplify the notations, no sub-

script “i” is added in the following. The equilibrium mag-

netic field is assumed to be expressed by B¼B0Bref where

Bref is the reference magnetic field on the magnetic axis.

D[fi] is a dissipation term defined below. Finally, the Poisson

brackets are defined by [f, g]ab¼ @af @bg� @bf @ag.

For the sake of clarity, Eq. (1) can be expressed formally

as

@t f ¼ L½ f � þ N½ f ; f � þ D½ f � ; (2)

where the linear term can be split into three contributions,

L[ f ]¼LG[ f ]þ LC[ f ]þ Lk[ f ], witha)Electronic mail: abanonna@ulb.ac.be.
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The first linear term LG represents the influence of the fixed

ion density (xni) and temperature (xTi) gradients expressed

in major radius R units, the second linear term LC describes

effects due to magnetic curvature in which Kx and Ky repre-

sent the standard curvature terms,5 and the third linear term

Lk contains the parallel dynamics involving magnetic trap-

ping as well as the linear Landau damping. The nonlinear

term N represents the effect of the self-consistent electric

field in the ~E� ~B drift of charged particles,

N½ f ; f � ¼ � �/1; f
� �

xy
:

In the present study, the numerical analysis of the gyroki-

netic equation (2) is performed using the Gene code.6–8 In

this code, the dissipation term D[f] is given by

D½ f � ¼ � ax @
n
x þ ay @

n
y þ az @

n
z þ avk @

n
vk

� �
f ; (3)

where typically n¼ 4 is used, and the coefficients ax, ay, az,

and avk can be adapted to a specific class of physical prob-

lems (for details, see Ref. 9). In the local version of Gene

used here, the distribution functions f and other quantities

like the electrostatic potential u1 are Fourier transformed in

the radial (x) and poloidal directions (y). The x and y coordi-

nates are thus replaced, respectively, by kx and ky. The sub-

script “k” has been added to label the Fourier modes. The

gyrokinetic Poisson equation used to determine the self-

consistent electrostatic field is usually expressed in terms of

the Fourier modes,

q2
i n0i

T0i
1� C0ðbiÞ½ �/1k þ n0eð/1k � h/1iFSÞ

¼ pqiB0n0i

ð
J0ðkÞfk dvkdl; (4)

where k2 ¼ 2k2
?l=B0, bi ¼ v2

Tik
2
?= 2Xið Þ while n0e and n0i

are, respectively, the equilibrium electron and ion densities.

The functions J0 and C0(bi)¼ exp(�bi)I0(bi) are, respec-

tively, the Bessel and the scaled modified Bessel functions of

order zero. Finally, k\ is the perpendicular wave number and

Xi is the ion cyclotron frequency. The angular brackets

hu1iFS are used to represent the flux surface average of the

electric potential.

III. GLOBAL FREE ENERGY BALANCE

The nonlinear term in Eq. (2) has the property that it

conserves the free energy E.2,10,11 Actually, in the simple

case treated here and represented by the coupled gyrokinetic

(2) and Poisson (4) equations, the free energy can be split

into two parts E ¼ Ef þ E/ that are each conserved by the

nonlinear term. The first part is quadratic in f and can be

understood as the thermodynamic entropy,

Ef ¼
ð

dK
T0i

F0i

f 2

2
: (5)

The evolution equation for Ef is readily obtained from the

gyrokinetic equation for @tf and is simply given by

@Ef

@t
¼
ð

dK
T0i

F0i
f @t f : (6)

In the expressions (5)–(6), the integration over K has to be

understood as a phase-space integration defined by

ð
dH ¼

ð
dz

ð
dvk

ð
dlpB0n0i; (7)

ð
dK ¼

ð
dx

ð
dy

ð
dH: (8)

The gradient term LG in the right hand side of the equation

for @t f thus leads to a term Gf in the equation for @tEf that is

readily expressed as

Gf ¼
ð

dK
T0i

F0i
f LG½ f � : (9)

The contributions to the equation for @tEf from the curvature

term LC;f , the parallel term Lk;f and the dissipation term Df

are defined similarly. The nonlinear term, as already men-

tioned, does not contribute to the equation for @tEf . The sec-

ond term in E is proportional to the product of f and �/1,

E/ ¼
ð

dK qi

�/1 f

2
: (10)

It is usually referred to as the electrostatic energy. It should

be noted that, owing to the Poisson equation (4), this second

term (Eq. (10)) is also formally quadratic in f and it can be

shown that its time derivative is simply expressed by

@E/

@t
¼
ð

dK qi
�/1 @t f : (11)

Again, using the explicit decomposition of @tf in terms of the

linear, nonlinear, and dissipation term, it is easy to define the

expressions for the contribution of these terms to the electro-

static energy evolution equation (G/, LC;/, Lk;/, D/). Again,

the nonlinear term does not contribute to the equation for

@tE/. For instance, the curvature term in the electrostatic

energy equation is given by

LC;/ ¼
ð

dK qi
�/1 LC½ f � : (12)

All these terms have different impact on the balance of Ef

and E/. The parallel Lk linear term can be shown to conserve

the total free energy E but not the entropy and the electro-

static energy individually. Hence, the contributions of these

terms to the balance equations satisfy the constraint

Lk;/ ¼ �Lk; f . The curvature LC presents exactly the same

property and, consequently, LC;/ ¼ �LC; f . The gradient
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terms can be shown to conserve the electrostatic energy

ðG/ ¼ 0Þ but not the entropy ðGf 6¼ 0Þ. Finally, the dissipa-

tion terms Df and D/ are nonzero in both the entropy and

the electrostatic energy equations. Taking into account all

these properties, the entropy and the electrostatic energy bal-

ance equations can be written as

@Ef

@t
¼ Gf þ LC; f þ Lk; f �Df (13)

and

@E/

@t
¼ LC;/ þ Lk;/ �D/ ¼ �LC; f � Lk; f �D/: (14)

The total free energy balance equation is then given by the

sum of these two relations,

@E
@t
¼ G �D; (15)

where D ¼ Df þD/. These properties have been checked

numerically by considering the classical test-case of colli-

sionless ion temperature gradient (ITG) turbulence usually

referred to as the Cyclone Base Case.12 The simulation do-

main is about 125 ion gyroradii wide in the perpendicular

directions, and 128� 64� 16� 32� 8 grid points are used

in (x, y, z, vk, l) space. Before analyzing the free energy bal-

ance equations in details, the numerical accuracy of the code

has been checked by considering two simple tests. First, the

impact of the nonlinear term on the free energy balance N
has been measured. Analytically this term should vanish

exactly for all times. In practice, the ratio N =D can be used

to assess the accuracy of the various algorithms used in Gene

to discretize the gyrokinetic equation, both in the real space

as in the velocity space. Here, D is the time-averaged value

of the dissipation which is very stable. Secondly, the resid-

ual, D ¼ ð@E@t � G � DÞ=D, can be used to assess the accuracy

of the time advancement algorithm used in Gene. As

observed in Fig. 1, both tests show that the algorithms used

in Gene allow to satisfy the general constraints imposed by

the free energy balance very satisfactorily.

The time evolution of the entropy and electrostatic

energy are shown in Fig. 2. It is observed that Ef is system-

atically much greater than E/. It is also noted that both quan-

tities rapidly reach, after a very short transient period, a

statistically stationary state corresponding to saturated

turbulence.

The various contributions to the evolution of Ef and E/

are shown in Fig. 3. It is observed that the dissipation terms

are indeed pumping entropy and electrostatic energy out of

the system while entropy is injected through the gradient

term. The curvature term appears to transform entropy into

electrostatic energy while, on the contrary, the parallel term

is transforming electrostatic energy into entropy at about the

same rate.

The same information is presented schematically in Fig-

ures 4 and 5. The observation that the free energy is largely

dominated by its entropy part can be explained by at least

two reasons. First, the entropy is the only part that is driven

by the gradient term. Second, the almost perfect balance

between the curvature and the parallel terms prevents a

strong flux of free energy from the entropy to the electro-

static energy. As a consequence, the dissipation of electro-

static energy appears to be almost negligible when compared

to the entropy dissipation Df=D/ � 400.

The numerical dissipation terms (Eq. (3)) used in Gene

have been implemented to avoid the use of an expensive col-

lision operator. However, it is also possible to run the code

with a linearized Landau-Boltzmann collision operator. In

order to check that the free energy balance is not too strongly

affected by the dissipation mechanisms, runs have been per-

formed using this collision operator with a collision fre-

quency is �(R=vT)¼ 3.0� 10�3 much lower than the inverse

of the dynamic time scales of the system. Such a choice cor-

responds to the low collisionality regime. The evolution of

Ef and E/ are then unchanged except that the dissipation

terms Df and D/ have to be replaced, respectively, by colli-

sion terms Cf and C/ given by

Cf ¼ �
ð

dK
T0i

F0i
f C½ f �; (16)

C/ ¼ �
ð

dKqi
�/1 C½ f �; (17)

FIG. 1. (a) Plot of the residual D versus time. It appears that the time inte-

gration scheme satisfies the global free energy balance with a relative error

systematically smaller than 5 10�4; (b) Conservation of the free energy bal-

ance by the nonlinear term. The curve shows that the contribution of the

nonlinearity to the free energy time derivative is negligible (amounting to

machine precision).
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where C½ f � is the Landau collision operator. The different

terms entering the evolution equations for Ef and E/ are

shown in Fig. 6.

It is observed that the collision operator for the entropy

Cf plays the same role as Df . However, C/ is now almost

negligible. Since a statistically stationary regime is reached,

the negligible electrostatic energy collision contribution

C/ � 0 implies that the curvature and parallel terms have to

be in balance. Except for this minor difference, there is not a

significant change in the free energy balance for Ef or E/

when a realistic collision operator is used instead of numeri-

cal dissipation. The fact that LC; f � �Lk; f when a colli-

sional operator or dissipation term is used, it supports the

idea that the dissipation term is doing a good job in repre-

senting the collisional effects.

IV. LOCAL FREE ENERGY BALANCE

The global balance equations analyzed in the preceding

section gives the overall picture of the fluxes of entropy and

electrostatic energy in the system. However, no information

is provided on the scales at which these fluxes are the most

active. In order to obtain such a scale by scale information, it

is necessary to introduce the Fourier representation of the

free energy balance given by Eqs. (13) and (14) in the radial

and poloidal directions. Thanks to the Parseval theorem, the

entropy can be rewritten as

FIG. 2. (Color online) Time evolution of Ef and E/.

FIG. 3. (Color online) Different contributions to the time derivatives of Ef

(a) and E/ (b) versus time.

FIG. 4. (Color online) Schematic plot of the different contributions of Ef

and E/, taken from the Gene simulation described in the paper.

FIG. 5. (Color online) Diagram of the overall free energy balance, showing

the dominance of the entropy and the passive role of the electrostatic energy

term.
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Ef ¼
ð

dx dy

ð
dH

T0i

F0i

f 2

2
¼
X

k

ð
dH

T0i

F0i

jfkj2

2
; (18)

where the sum is over all the kx and ky. In the following, the

spectral density of entropy will be noted:

Ek
f ¼

ð
dH

T0i

F0i

jfkj2

2
: (19)

Similarly, a spectral density of electrostatic energy can be

defined. Remarkably, the dissipation, injection, curvature,

and parallel contributions to the balance equations all come

from linear terms in the gyrokinetic equation (2). Their effect

on balance equation can then also be split into spectral den-

sity contribution that will be noted Dk
f , Dk

/, Gk
f , Lk

C;f , and

Lk
k;f . This simple mathematical property has a very important

physical consequence. None of these terms can be responsi-

ble for a transfer of entropy or of electrostatic energy

between different Fourier modes.

The only term that can be responsible for such transfers

is the nonlinear term. Indeed, even if it does not influence

the global free energy balance equations, the nonlinear term

has a non-vanishing contribution on each Fourier mode of

the entropy and electrostatic energy spectral densities. For

instance, its contribution to the evolution of Ek
f is given by

@Ek
f

@t

					
N

¼
ð

dH
T0

F0

f �k Nk ¼
X

k0
T k;k0

f ;

where f �k is the complex conjugate value of fk and Nk is the

Fourier mode of the nonlinear term ð� �/1; f
� �

xy
Þk. Since the

product in the x� y space is expressed by a convolution in

the Fourier space, the following expression is easily derived:

T k;k0

f ¼
ð

dH
T0i

F0i
f �k

�
ðkx � k0xÞ �/1ðk�k0Þ k0y fk0

� ðky � k0yÞ �/1ðk�k0Þ k0x fk0

�
:

This term will be referred to as the transfer term between the

mode fk and the mode fk0 . Its expression comes immediately

from the Poisson bracket in Fourier space. In fact, due to the

Poisson equation, the electric potential �/1ðk�k0Þ is a linear

function of the distribution fk�k0 and the transfer term appears

to be a cubic term in f involving modes fk, fk�k0 , and fk0 . Such

a so-called triadic interactions will be here interpreted as an

exchange of entropy between two modes (fk and fk0) because

of the following important property:

T k;k0

f ¼ �T k0;k
f : (20)

A similar approach can be used for the nonlinear term

appearing in the equation for the electrostatic energy which

is given by

@Ek
/

@t

				
N
¼
ð

dH qi
�/�1k Nk ¼

X
k0
T k;k0

/ ;

where

T k;k0

/ ¼
ð

dH qi
�/�1k

�
k0x

�/1k0 ðky � k0yÞ fk�k0

� k0y
�/1k0 ðkx � k0xÞ fk�k0

�
:

Again, this triadic interaction will be referred to as the elec-

trostatic energy transfer term between the two modes �/1k

and �/1k0 because of the following property:

T k;k0

/ ¼ �T k0;k
/ : (21)

The complete Fourier representation Ek
f and Ek

/ (including all

the linear terms) then reads, respectively, as

@Ek
f

@t
¼
X

k0
Tk;k0

f þ Gk
f þ Lk

C; f þ Lk
k; f �Dk

f (22)

and

@Ek
/

@t
¼
X

k0
Tk;k0

/ þ Lk
C;/ þ Lk

k;/ �Dk
/

¼
X

k0
Tk;k0

/ � Lk
C; f � Lk

k; f �Dk
/:

(23)

The different linear contributions of Ek
f and Ek

/ (averaged

over time during the saturated phase of the simulation) as a

function of ky summed over kx are shown in Fig. 7.

FIG. 6. (Color online) Different contributions of Ef (a) and E/ (b) versus

time with a collision operator.
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The injection of entropy Gk
f appears to be well localized

at low ky. Hence, the imposed temperature gradient directly

affects the largest scales of the system without noticeable

effect in the smallest scales. However, dissipation is active at

all scales. An explanation of this phenomenon may be pro-

vided in terms of the nonlinear coupling to damped eigenmo-

des.13 Hence, the picture is somewhat different from the

fluid turbulence cascade in which the damping term is

peaked in the small scale ranges. However, the dissipation is

clearly not intense enough in the large scale range to com-

pensate exactly the entropy injection. The system has to

transfer entropy towards the small scales in order to dissipate

at the same rate it is injected.

The linear curvature and parallel terms appear to be im-

portant in the forcing range only and are almost always op-

posite to each other. The net effect of these two terms is thus

almost negligible in the entropy equation. However, since

there is no electrostatic energy injection, the small imbalance

between these two terms is the only mechanism that act as a

source of Ek
/.

These curves give the net entropy and electrostatic

energy injection or dissipation rates due to the various terms

appearing in the local balance equations. The impact of these

rates depends of course of the value of the entropy and the

electrostatic energy. For this reason, it is interesting to com-

pute a frequency associated to each term appearing in the

right-hand side of Eqs. (22) and (23) by dividing these rates

by the entropy and electrostatic energy spectral density. For

instance, the entropy injection scale frequency is defined by

�k
Gf
¼
Gk

f

Ek
f

					
					: (24)

Clearly, the dominant term in the equation will be character-

ized by the largest frequency or, equivalently, by the smallest

time scale. Fig. 8 shows these frequencies as function of ky.

According to this criterion, it becomes even clearer that the

entropy injection dominates at low ky, while the entropy dis-

sipation dominates at high ky. The linear curvature and paral-

lel terms appear to be characterized by the smallest

frequencies at all scales in the entropy equation. In the case

of the electrostatic energy equation, there is no energy injec-

tion. The linear and parallel terms appear to be dominant in

the small scales, while the electrostatic energy dissipation

dominates at high ky. Similar figures are easily obtained for

these quantities as function of kx and they show the same

trends.

V. DISCUSSION

In the present paper, we have computed the free energy

balance in a fully five-dimensional gyrokinetic simulation

FIG. 7. (Color online) Different linear contributions of Ef (a) and E/ (b) as

a function of ky summed over kx.
FIG. 8. (Color online) Scale frequency for the different linear contributions

of Ef (a) and E/ (b) as a function of ky summed over kx.
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for a standard case of ITG turbulence. Several interesting

observations can be made from this study.

First, it is observed that the free energy dynamics is

largely dominated by the entropy part, while the electrostatic

energy plays a passive and subdominant role. The reason is

easily found in the global balance equations. Indeed, the

average temperature gradient is acting as an “external”

source of entropy, while the electrostatic energy is only

driven by “internal” exchanges with the entropy.

Second, it is observed that the temperature gradients

inject entropy mostly at the largest scales of the system,

while the dissipation is acting throughout the entire spec-

trum. Moreover, an analysis of the typical frequencies as a

function of the wave vectors shows that the dominant effect

in the entropy balance is clearly the injection in the large

scales while it is the dissipation in the small scales. No

equivalent to the inertial range in Navier-Stokes turbulence

is found here. Indeed, considering the rather limited resolu-

tion, it is not possible to identify a range of scales in which

neither the injection term nor the dissipation term are active.

However, since the injection and the dissipation are domi-

nant in different ranges of wave vectors, the nonlinear term

has to redistribute the entropy in a sort of cascade process.

Also, the role of the artificial dissipation has been

explored. Since the results analyzed here refer to the satu-

rated turbulent regime in which all quantities are fluctuating

with time but reach statistically stationary values, the dissi-

pation has to compensate the injection on average. When the

dissipation is obtained by adding an hyper-diffusion term, its

effect on the electrostatic energy is very small (more than

two orders of magnitude smaller than its effect on entropy).

Such a property for the artificial dissipation used mostly for

improving the speed performances of the code is reassuring.

Indeed, as shown on Fig. 6, a realistic collision operator

barely affects the electrostatic energy and this property is

thus quite well reproduced by the hyper-diffusion term.

Finally, it is also observed that the parallel and curvature

terms do not play a dominant role in the entropy equation,

independently of the wave vector. On the contrary, these two

terms are the only contributions to the electrostatic energy

balance. Although they are of opposite sign, they both appear

to act mostly in the same large scale range. So, a strong cas-

cade process of electrostatic energy cannot be triggered by

these terms.
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