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The nonlinear gyrokinetic equations are frequently used as a basis for simulations of small-scale
turbulence in magnetized toroidal plasmas. In this context, field-aligned coordinates are usually
employed in order to minimize the number of necessary grid points. The present work proposes a
system of Clebsch-type coordinates which does not depend on the existence of flux surfaces. The
construction and use of these coordinates is explained, and the corresponding formulation of the
nonlinear gyrokinetic equations is accomplished. This setup paves the way toward the investigation
of nonaxisymmetric toroidal geometries, also in the region of magnetic islands as well as inside the
ergodic layer where flux surfaces cease to exist. For testing purposes, in the axisymmetric, large
aspect ratio case, the well-known ŝ-� expressions are recovered for closed flux surfaces. Moreover,
geometric data for a specific stellarator configuration are computed and discussed.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2338818�
I. INTRODUCTION

One of the key challenges in modern fusion research is
to theoretically understand and predict the properties of
small-scale turbulence in magnetized toroidal plasmas. Espe-
cially since the advent of large supercomputers, significant
progress could be achieved in this area of research by means
of massively parallel codes based on the nonlinear gyroki-
netic equations.1–4 Such computations are often performed in
field-line following coordinates using toroidal flux tubes5–7

in order to minimize the number of necessary grid points.
Given the fact that turbulent fluctuations tend to have

parallel correlation lengths which exceed their perpendicular
counterparts by many orders of magnitude,8 it often suffices
�at least in tokamak geometry� to use only about 20 grid
points along the field line to cover an entire connection
length distance of 2�qR. �Here, q and R denote, respectively,
the safety factor and the major radius.� This is in stark con-
trast to the perpendicular directions for which the grid spac-
ing is usually chosen to be of the order of the thermal ion
gyroradius �i. If one would use a grid which does not exploit
the elongated nature of the turbulence, the grid spacing in the
third coordinate direction would also have to be close to �i.
Thus, by using field-aligned coordinates, one can reduce the
computational effort by a factor of about R /�i�102−103.

In the present paper, we introduce, construct, and utilize
a system of Clebsch-type coordinates, without presupposing
the existence of magnetic surfaces. From a purely geometri-
cal viewpoint, this feature is an important prerequisite for the
investigation of general magnetic topologies, including is-
lands and the ergodic region. Of course, one should addition-
ally take into account the physical implications imposed by
this generalization, in terms of the relevant gyrokinetic or-

derings. Another nontrivial point is the determination of
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background conditions, as expressed by the density and tem-
perature gradients. A thorough discussion of these issues,
based on realistic magnetic configurations, will appear in a
forthcoming work.

The remainder of this paper is structured as follows. In
Sec. II, we explain the construction and use of Clebsch-type
coordinates in generic magnetic field topologies. In particu-
lar, we will show how to compute the metric elements and
the Jacobian, starting from a simple cylindrical coordinate
system. In Sec. III, we then derive the form of various dif-
ferential operators occurring in nonlinear gyrokinetics. In
this context, we use a normalized version of the gyrokinetic
equations which also forms the basis for the gyrokinetic tur-
bulence code GENE �Refs. 9 and 10�. Next, in Sec. IV, it will
be shown that in the axisymmetric, large aspect ratio case,
the well-known ŝ-� expressions are recovered. Moreover,
geometric data for the W7-X stellarator configuration are
computed and discussed. Finally, we draw some conclusions
and provide an outlook in Sec. V.

II. CLEBSCH-TYPE COORDINATES

As is widely known, turbulence computations benefit
greatly from the use of field-aligned coordinate systems.
�We just note in passing that the same is also true for
Braginskii-like systems dealing with large anisotropies, see,
e.g., Ref. 11.� Since the turbulent fluctuations tend to have
parallel correlation lengths which exceed their perpendicular
counterparts by many orders of magnitude, the number of
necessary grid points can thus be minimized. In the present
section, we will introduce a system of Clebsch-type coordi-
nates. These are generated through a transformation from the
usual cylindrical system �r ,z ,�� �here, � denotes the toroi-

dal angle� to the system
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�v1,v2,�� �1�

via field-line tracing. In this context, v1 and v2 are Clebsch-
type coordinates with dimension of length and � is an angle-
like coordinate following the field line.

By construction, for the contravariant components of the
magnetic field, we have

B1 = B2 = 0 �2�

and, as will be explained shortly,

B� = B�. �3�

Subsequently, the magnetic field can be expressed as

B = JB� � v1 � �v2, �4�

where J is the Jacobian of the system, defined by J−1=�v1

��v2 ·��. Obviously, Eq. �4� is consistent with Eqs. �2� and
�3�. This coordinate system bears the following special prop-
erties:

�1� It does not presuppose the existence of magnetic sur-
faces, thus allowing for the investigation of ergodic
regions, present in both tokamak �e.g., Tore Supra,12 To-
kamak EXperiment for Technology Oriented
Research13� and stellarator �e.g., Wendelstein 7-X �Ref.
14�� configurations.

�2� The quantity JB� is a stream function �i.e., a constant
along the field line�, but, in principle, its value may vary
from one field line to another �in contrast, for standard
flux coordinates, this quantity characterizes a magnetic
surface�.

After this brief introduction, we will now discuss the con-
struction of �v1 ,v2 ,�� coordinates in more detail.

A. Construction of the coordinate system

We aim at setting up coordinates �v1 ,v2 ,��, which are
aligned to an arbitrary magnetic field configuration. To
achieve this, we follow a constructive method which identi-
fies v1 and v2 as Clebsch-type coordinates. In other words,
these two coordinates determine a certain field line, while the
third coordinate � locates the position along the field line. In
this way, three-dimensional space is appropriately param-
etrized.

Clebsch-type coordinates v1 and v2 can be defined by
means of a well-known constructive method which is ex-
plained, e.g., in Ref. 15. For concreteness, we consider the
poloidal surface �=�0 on which the r=const and z=const
curves generate a Cartesian grid. Now, each point �r ,z� in a
certain region of interest can be viewed as the starting point
of a magnetic field line, and thus the isolines of r and z in the
�=�0 plane turn into two-dimensional “magnetic surfaces”
�not necessarily in the sense of flux surfaces�. The surfaces
containing the point �r ,z�= �ri ,zj� shall be described by the
equations v1�R�=0 and v2�R�=0, respectively, where R de-
notes the spatial position vector. The magnetic field line
passing through the grid point �ri ,zj ,�0� can then be envis-
aged as the intersection of these two surfaces. At this point, it

should be noted, however, that the above choice of Clebsch-
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type coordinates v1and v2 is not unique. One can also define
other families of “magnetic surfaces” which might be more
suitable. For example, in the presence of flux surfaces, it is
usually advantageous to choose one of the two Clebsch co-
ordinates to be a flux-surface label. This particular aspect is
discussed in more detail later in the text as well as in the
Appendix.

In order to complete the parametrization of the field line,
we introduce a third coordinate with the property that the
corresponding covariant vector is tangent to the field line. In
the standard Clebsch setup, this coordinate is the arc length
�. In our case, however, we select another coordinate,
namely �, which is related to the arc length through the ex-
pression

����� =
B

B� , �5�

meaning that � is not a physical parameter for the represen-
tation of the field line. The reason for this specific choice is
attributed to the fact that � is an angle-like coordinate, which
has a very close connection to the toroidal angle �. Indeed,
from the equation for the field line with respect to the cylin-
drical coordinates, one gets

d�

d�
=

B�

B
, �6�

which, combined with �5�, yields d�=d�. Using ��0�=�0 as
initial condition and integrating, we end up with the simple
expression �=�−�0.

In conclusion, the coordinate system �v1 ,v2 ,�� con-
structed this way satisfies Eq. �2�, i.e., the vector e� is paral-
lel to B, as well as Eq. �3�, since it holds

B� = B · �� = B · �� = B�. �7�

B. Calculation of the metric elements

The coordinate system �v1 ,v2 ,�� is characterized, in
large part, by its metric elements. In the following, we
present a method for computing these quantities, which can
be considered as a generalization of Ref. 16, in the sense that
we no longer presuppose the existence of magnetic surfaces.

For convenience, we introduce the notation �y1 ,y2 ,y3�
= �r ,z ,�� and v3=�. The goal, then, is to determine the de-
rivatives

Cj
l �

�vl

�yj �j,l = 1,2,3� , �8�

so that we can proceed with the transformation

gkl = �
i,j=1

3

gc
ijCi

kCj
l, where gc = diag�1,1,r−2	 . �9�

The first step toward this goal consists of rewriting Eq. �2� as

B · �vl = 0 �l = 1,2� �10�
or
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�
k=1

3

Bc
kCk

l = 0 �l = 1,2� , �11�

where Bc
k�k=1,2 ,3� are the contravariant cylindrical compo-

nents. Now, we differentiate Eq. �11� with respect to
yj�j=1,2 ,3� and obtain

�
k=1

3

Bc
k�Cj

l

�yk = − �
k=1

3

Ck
l �Bc

k

�yj �l = 1,2� . �12�

Here, we have tacitly used the relation

�Ck
l

�yj =
�Cj

l

�yk , �13�

which acts as a smoothing constraint, namely vl�C2

�l=1,2�.
At this stage, we will transform the system of partial

differential equations �12� to a corresponding system of or-
dinary differential equations by employing the field-line
equation in cylindrical coordinates. In terms of the coordi-
nate �, this equation reads

dyk

d�
= �����

Bc
k

B
�k = 1,2,3� . �14�

Thus, combining Eqs. �12� and �14�, we obtain

d

d�
Cj

l = − ������
k=1

3
Ck

l

B

�Bc
k

�yj �l = 1,2; j = 1,2,3� �15�

and, in view of Eq. �5�, Eq. �15� takes the final form

d

d�
Cj

l = − �
k=1

3
Ck

l

B�

�Bc
k

�yj �l = 1,2; j = 1,2,3� . �16�

In addition, we have

C1
3 = C2

3 = 0 and C3
3 = 1. �17�

The initial conditions for this system of equations on the
surface �=�0 are deduced from the assumption that the
Clebsch coordinate lines v1=const and v2=const at the start-
ing point are tangential to the isolines of the cylindrical co-
ordinates r and z, so that

Cn
m�� = 0� = �n

m �m,n = 1,2� . �18�

The remaining initial conditions can be prescribed only im-
plicitly by means of Eq. �11�,

C3
1�� = 0� = −

Br

B� , C3
2�� = 0� = −

Bz

B� . �19�

The quantities Cj
i�i , j=1,2 ,3� can thus be computed by solv-

ing the system of Eqs. �16�–�19� numerically, employing,
e.g., a higher-order Runge-Kutta scheme. Using Eq. �9�, one
then obtains the metric elements gkl associated with the con-
structed coordinate system.

As a final remark, we note that, in the case of nested flux
surfaces, it is always possible to build up a flux coordinate
system from the presented algorithm, in the sense that one of
the coordinates is a flux-surface label. However, this is not

guaranteed by the initial conditions �19�. In fact, it turns out
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that, even for the simple geometry of circular flux surfaces,
these conditions fail to construct a flux coordinate system.
Nevertheless, there is one exception to this general rule;
namely, if the tracing procedure starts in the symmetry plane
�see Appendix for analytical proof�. There, it holds Br=0 and
the initial conditions �19� take the special form

C3
1�� = 0� = 0, C3

2�� = 0� = −
Bz

B� , �20�

so that the coordinate v1 becomes a flux-surface label. In
fact, it is through this procedure that we generate a flux co-
ordinate system for the circular tokamak case presented later.

C. Calculation of the Jacobian

Another important piece of geometrical information is
contained in the Jacobian of the coordinate system. The latter
is numerically determined via application of the chain rule

J = Jc
 ��y1,y2,y3�
��v1,v2,��


 = r
 ��y1,y2,y3�
��v1,v2,��


 , �21�

where Jc denotes the Jacobian for the cylindrical system. To
compute the determinant, we need to solve a system of ordi-
nary differential equations similar to Eqs. �16�–�19�. Specifi-
cally, setting

Dj
i �

�yi

�v j �i, j = 1,2,3� , �22�

we notice that

�
k=1

3

Dk
l Cm

k = �m
l . �23�

Now, differentiating with respect to � and using Eq. �16�, we
readily obtain

d

d�
Dj

l = �
k=1

3
Dj

k

B�

�Bc
l

�yk �l, j = 1,2� . �24�

In addition, we have

D1
3 = D2

3 = 0, D3
3 = 1, D3

1 =
Br

B� , D3
2 =

Bz

B� . �25�

In the same spirit as before, we employ as initial conditions
on the �=�0 surface

Dn
m�� = 0� = �n

m �m,n = 1,2� . �26�

D. The stream function

We would like to close the present section by demon-
strating that, in the context of our coordinates, the quantity
JB� is constant on each field line, while its value may change
from one field line to another. We begin with rewriting Eq.
�10� in the equivalent form

B = K � v1 � �v2, �27�

where K=K�v1 ,v2 ,��. By imposing that the magnetic field
be divergence free, the dependence of K on � can be re-

moved. Indeed,
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0 = � · B = �v1 � �v2 · �K = K−1B · �K , �28�

which implies that

d

d�
K = 0. �29�

Furthermore, recalling that B�=B� and J−1=�v1��v2 ·��,
we obtain the expression K=JB�. Thus, we have

d

d�
JB� = 0. �30�

Integrating this relation, it follows immediately that the
quantity JB� is actually a stream function, with its value
dictated by the initial condition on the surface �=�0. A nu-
merical example is shown in Fig. 1.

III. APPLICATION TO NONLINEAR GYROKINETICS

In this section, we will derive the form of various differ-
ential operators occurring in nonlinear gyrokinetics. In this
context, we use a normalized version of the gyrokinetic
equations which is used in the gyrokinetic turbulence code
GENE �Refs. 9 and 10�. We thus specify in which way the
geometrical information enters the problem, when using the
above constructed coordinates for an arbitrary toroidal mag-
netic field.

A. The gyrokinetic Vlasov equation

The independent and dependent variables are normal-
ized, respectively, according to Tables I and II �as velocity
space coordinates, we employ the parallel velocity v� and the
magnetic moment ��. Here, we have used the ion sound
scale �s=cs /	i, the ion Larmor frequency 	i=eBref /mic,
the ion sound speed cs=�Te0 /mi, the thermal velocity
vTj

=�2Tj0 /mj of species j�j=e, i�, the safety factor q, a typi-
cal perpendicular equilibrium scale length L�, and a charac-
teristic length Rref. The latter is set usually equal to the major
radius, but, in principle, it can be chosen arbitrarily, as long
as it is used consistently everywhere. The normalization for
the potentials 
 and A� is a direct consequence of the typical
gyrokinetic ordering �see, also, Refs. 17 and 18�

FIG. 1. The stream function JB� along a magnetic field line. The numerical
noise merely reflects the small deviation from � ·B=0 in the equilibrium
data.

TABLE I. Normalization of the independent variables.

t �� �� v� �

L� /cs �s qRref vTj
Tj0 /Bref
ownloaded 10 Sep 2007 to 130.183.100.177. Redistribution subject to
e


Te0
�

A�

�sBref
= O �s

L�

� .

Notice that the equilibrium magnetic field is normalized with
respect to Bref, to be specified later.

In vector form, the �normalized� gyrokinetic Vlasov
equation for the perturbed part Fj1 of the distribution func-
tion Fj then reads

�gj

�t
− �n + �Tj

v�
2 + �B −

3

2
��Fj0 · b �

�� j

B

+ b �
�� j

B
· �Gj +

1

� j
��B + 2v�

2�b �
�B

B2 · �Gj

+ � jv���Gj −
� j

2
���B

�Fj

�v�

= 0, �31�

where we have used the definitions �gyroaveraged quantities
are denoted by overbars�

gj = Fj1 + � j� jv�Fj0̂�eĀ1�, Gj = gj + � j� jFj0,

� j = 
̄1 − � jv�̂�eĀ1� ,

as well as

� j =
ej

e

Te0

Tj0
, � j =

vTj

cs

L�

qRref
, ̂ = qRref

L�

�2

,

�e =
4�n0Te0

Bref
2 ,

�n = �bb − I� ·
�n

n
, �Tj

= �bb − I� ·
�Tj

Tj
.

The gyroaveraging procedure for species j is performed, as
usual, via the Bessel function J0�� j�, where the �square of
the� argument � j, with respect to the Clebsch system, is de-
fined later. As equilibrium distribution we take a Maxwellian
which reads

Fj0�v�,�� = �−3/2e−�v�
2+�B�

in normalized units.
In most existing works, Eq. �31� is expressed in Boozer-

type coordinate systems, based on flux surfaces, with the
additional assumption of axisymmetry. The simple ŝ-�
model19 for axisymmetric toroidal equilibria is covered, e.g.,
in Ref. 10. Here, we attempt to provide a generic form in-
stead, which is also suitable for nonaxisymmetric toroidal
devices and situations without nested flux surfaces. To this
aim, we express the �normalized� differential operators oc-
curring in Eq. �31� in the �v1 ,v2 ,�� coordinate system. For

TABLE II. Normalization of the dependent variables.

Fj0 Fj1 
 A�

n0 /vTj

3 �n0 /vTj

3 ��s /L� �Te0 /e��s /L� �qRref�sBref�e /L���s /L�
any quantities A and G, we have
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b � �A · �G = Jb3��g11g22 − �g12�2���1A,�2G	

+ �g11g23 − g12g13���1A,�3G	

+ �g12g23 − g22g13���2A,�3G	� �32�

in terms of the commutator bracket

��iA,� jG	 = �iA� jG − � jA�iG �i, j = 1,2,3� �33�

and b3=b ·��=B� /B. Here, J and b3 have the dimensions of
length and inverse length, respectively, while the metric ele-
ments g11, g12, and g22 are dimensionless quantities. In view
of the usual ordering k��k�, Eq. �32� can be simplified by
ignoring all terms that contain parallel gradients of fluctuat-
ing quantities. The same applies to the terms involving the
parallel gradient of the magnetic field. However, for complex
geometries, it is good practice to justify numerically this ap-
proximation. Furthermore, � is replaced by qz, where q is the
safety factor and z turns into the poloidal angle � for simple
geometries. Hence, z now plays the role of the parallel coor-
dinate and the �normalized� parallel derivative takes the form

�� = qRrefb
3 �

��
= Rrefb

3 �

�z
. �34�

Consequently, in �v1 ,v2 ,z� coordinates, the gyrokinetic
Vlasov equation reads

�gj

�t
+

Mb̂3

B
 �� j

�v1

�Gj

�v2 −
�� j

�v2

�Gj

�v1 �
+

Mb̂3

B
Fj0�n,1 + �Tj,1v�

2 + �B −
3

2
�� �� j

�v2

−
Mb̂3

B
Fj0�n,2 + �Tj,2v�

2 + �B −
3

2
�� ��j

�v1

+
1

2� j
��B + 2v�

2�K1
�Gj

�v1 + K2
�Gj

�v2 �
+ � jv�b̂3�Gj

�z
−

� j

2
�b̂3�B

�z

�Fj

�v�

= 0, �35�

where

M = Ĵ�g11g22 − �g12�2�, Ĵ = J/Rref, b̂3 = Rrefb
3 �36�

and

�n,k = −
L�

n

�n

�vk , �Tj,k
= −

L�

Tj

�Tj

�vk , �k = 1,2� . �37�

In addition, the curvature operators read

K1 = − cv

Mb̂3

B

Rref

B

�B

�v2 , K2 = cv

Mb̂3

B

Rref

B

�B

�v1 , cv =
2L�

Rref
.

�38�

Note that in Eqs. �37� and �38�, v1 and v2 are not normalized,
and therefore the prefactors L� and Rref enter the equations.
This is in contrast to Eq. �35�, where v1 and v2 are dimen-

sionless.
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In the above equations, the expression Mb̂3 /B occurs
several times and shall be examined a little further here.
Using the representation �4� �also true for the normalized
equilibrium magnetic field�, we obtain

B2 = �JB��2�g11g22 − �g12�2� , �39�

which is equivalent to

Mb̂3

B
=

Bref

JB� = const �40�

due to Eq. �30�. Thus we can eliminate the term Mb̂3 /B
from Eqs. �35� and �38� by postulating

Bref = JB�. �41�

In this case, we then have

b̂3 =
1

ĴB
. �42�

Having completed the derivation of the Vlasov equation,
the following remarks are in place:

• The form of Eq. �35� is invariant with respect to the
interchange of the coordinates v1 and v2. This results
from the fact that the coordinate system �v2 ,v1 ,z� is
left-handed, and therefore the corresponding Jacobian
�hidden in M� becomes negative.

• The form of Eq. �35� is invariant with respect to the
choice of Clebsch-type coordinates. Indeed, for a spe-
cific magnetic line, two different systems differ only in
the value of the stream function JB�, which is absorbed
by the normalization procedure by setting it equal to
Bref. However, for each coordinate system, the expres-
sions for the gradients �n,k ,�Tj,k

will have to be modi-
fied accordingly. Thus, for a coordinate system in the
presence of nested surfaces, with v1 �or v2� as a flux-
surface label, the fourth �or third� term is suppressed. In
a different situation, e.g., in an ergodic region, both
contributions should be retained.

In summary, the magnetic geometry enters the gyroki-
netic Vlasov equation essentially in three ways—through the
magnetic field strength B, through the Jacobian J, and
through the magnetic curvature terms K1 and K2. In the
framework of a flux tube approach, all of these quantities are
solely functions of the parallel coordinate z.

B. The gyrokinetic field equations

The self-consistent electromagnetic field is determined
via the gyrokinetic Poisson equation

�
j

ej� j�1 − �0�bj��
 = �
j

�ejB� d�dv�J0�� j�gj �43�
and the gyrokinetic Ampère’s law
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��
2 −

1

2
̂�e�

j

� j� j
2ej

e
�0�bj��A�

= − �
j

�� j
ej

e
B� d�dv�J0�� j�v�gj . �44�

Here, the Bessel function J0 and the function �0�bj�
=e−bjI0�bj� �where I0 is the modified Bessel function� have
been introduced. The arguments � j and bj are defined, re-
spectively, as

bj = −
Tj

Te

mj

mi

e2

ej
2

1

B2��
2 , � j

2 = 2�Bbj . �45�

The magnetic geometry enters these equations through the
perpendicular Laplacian which is defined as

��
2 A =

1

J
�
i,j=1

2

�i�Jgij� jA� . �46�

For a flux tube simulation, the Jacobian and the metric ele-
ments are functions of the parallel coordinate only, and there-
fore this expression reduces to

��
2 A = �

i,j=1

2

gij�i� jA . �47�

In summary, the magnetic geometry enters the gyroki-
netic field equations through the magnetic field strength B
and through the elements g11, g12, and g22 of the metric
tensor.

IV. TWO TEST CASES

In this section, we examine two test cases. First, it is
demonstrated that our coordinate approach reproduces the
well-known ŝ-� model results for a tokamak with large as-
pect ratio. Next, we generate the geometrical data for the
stellarator device W7-X and compare it to the tokamak case.

A. Large aspect ratio, circular tokamak

In order to test our concept of coordinates as previously
described, we first want to apply it to a regime in which the
numerical results can be directly compared with analytical
ones. Therefore, we study the case of a large aspect ratio
tokamak with circular cross section and no Shafranov shift
��=0�. Here, the metric elements and the curvature terms are
given by the expressions7,19

g11�z� = 1, g12�z� = ŝz, g22�z� = 1 + �ŝz�2 �48�

and

K1�z� = − sin z, K2�z� = − �cos z + ŝz sin z� , �49�

where ŝ��r /q��dq /dr� characterizes the magnetic shear, and
the curvature parameter cv=2L� /Rref is set to unity �thus
defining L��.

These analytical results are now to be compared to nu-
merical results obtained from a magnetohydrodynamic equi-
librium via our coordinate approach. As an example, we ex-

amine the metric elements and the curvature terms for a
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tokamak with a major radius of R=3.0 m and a minor radius
of a=0.25 m for a magnetic surface with � /a=0.2,q=2.55,
and ŝ=0.187. The traced field line starts in the outboard mid-
plane, i.e., at r0=3.05 m �and z0=�0=0�, and we choose
Rref=r0. As can be seen in Figs. 2 and 3, the agreement with
Eqs. �48� and �49� is excellent. �Actually, the respective
curves are practically identical.� Here, the cylindrical coordi-
nate r describes the distance from the symmetry axis and, in
the present case, is given by r�z�=R+� cos z.

Since the analytical expressions �48� and �49� are based
on a Boozer-type system, the presented results speak for the
validity of the aforementioned remark in Sec. II B about the
construction of a flux coordinate system. In fact, this conclu-
sion can also be inferred by the fact ��v1=n ·�v1=1 �see
Fig. 2�, where n is the unit vector normal to the surface. In
combination with ��v1 � =�g11=1, it is evident that v1 is in-
deed a flux-surface label.

Using the approximation

Btor � B � r−1, �50�

which is well satisfied for most tokamaks, two interesting
conclusions can be drawn. First, the Jacobian obeys the re-
lation

FIG. 2. Distance r �in m� from the symmetry axis and metric elements
g11 , g12, and g22 as computed numerically from a magnetohydrodynamic
equilibrium via our coordinate approach. It is also demonstrated that the
Clebsch-type system corresponds, in this case, to a flux coordinate system.

FIG. 3. Curvature terms K1 and K2 as computed numerically from a mag-

netohydrodynamic equilibrium via our coordinate approach.
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J � B−2, �51�

since we have J�1/B��r /Btor�r /B�B−2. Second, one
finds that

g33 = r−2 � g13,g23, �52�

which stems from the relation �39�. From this, successively,
we get

det�grs� = J−2 = �B�/B�2�g11g22 − �g12�2�

= Btor

rB
�2

�g11g12 − �g12�2�

� r−2�g11g22 − �g12�2�

= g33�g11g22 − �g12�2� , �53�

which proves our claim. The validity of Eqs. �51� and �52�,
which holds for any tokamak �independent of its aspect ratio
and cross section� satisfying Eq. �50�, is confirmed in Fig. 4.

In conclusion, for a large aspect ratio, circular tokamak,
the ŝ-� results are recovered by the coordinate approach de-
scribed in the last two sections. Next, we will focus on a
rather different magnetic geometry, namely that of the stel-
larator W7-X.

B. The stellarator W7-X

Next, we would like to study a vacuum field of the stel-
larator experiment W7-X, which has a major radius of
R=5.5 m and a mirror of a=0.53 m. Despite the complicated
three-dimensional structure of this configuration, the pre-
sented method of constructing the Clebsch-type coordinate
system works equally well here. In order to demonstrate this,
we compute the resulting geometrical information and com-

FIG. 4. Normalized Jacobian and magnetic field, as well as metric elements
for a tokamak with Btor�B. One finds that J�B−2 and g33=r−2�g13 ,g23. In
particular, B�z�=r0 /r�z� and J�z�= �r�z� /r0�2, as expected.
pare it to that of the simple tokamak case presented in Sec.
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IV A. For the results shown below, we trace a field line start-
ing in the outboard midplane �r0 ,z0�= �6.0,0� on the poloidal
surface �0=0 for a distance of one toroidal turn.

We start this comparison by noting that the approxima-
tion �50� fails for W7-X. Here, the poloidal field components
are of the same order as the toroidal ones. Therefore, one
should expect that Eqs. �51� and �52�, describing the behav-
ior of the Jacobian and the metric elements, no longer hold.
The results displayed in Fig. 5 support this claim. To begin
with, the metric elements g13 and g23 are not small anymore
with respect to g33, a characteristic which reveals the three
dimensionality of the magnetic field. Furthermore, the quan-
tity JB2 is no longer constant, but rather a fluctuating func-
tion of the parallel coordinate which reflects the fivefold
symmetry of the device.

As shown in Figs. 6 and 7, the parallel structure of the
metric elements g11, g12, and g22, as well as that of the cur-
vature terms K1 and K2, deviates substantially from the re-
spective tokamak results that have been presented in Figs. 2
and 3. The strongest differences between W7-X and the
simple tokamak are observed for these three metric elements
which enter the gyrokinetic field equations. They actually
exhibit relatively small-scale fluctuations of order unity. This
feature imposes the requirement for much better numerical
resolution in the parallel direction in gyrokinetic simulations,
thus increasing considerably the computational effort. In-
stead of using some 20 parallel grid points, as is often done
for typical tokamak equilibria, we find that about 100 paral-
lel grid points are usually necessary in W7-X geometry. Re-
sults from linear and nonlinear gyrokinetic simulations based
on the Clebsch-type coordinate approach put forward in this

FIG. 5. Normalized Jacobian, magnetic field, as well as metric elements for
the stellarator W7-X. The fivefold symmetry is clearly depicted. The Jaco-
bian is no longer inversely proportional to B2. Moreover, the relationship
g33�g13 ,g23 does not hold anymore.
paper will be presented in future publications.
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V. CONCLUSIONS AND OUTLOOK

In the context of computational studies of small-scale
turbulence in magnetized toroidal plasmas, the nonlinear gy-
rokinetic equations are frequently used as a starting point.
Here, it turns out to be of great importance to employ field-
aligned coordinates in order to minimize the number of nec-
essary grid points. Usually, one assumes that the magnetic
configuration consists of a set of nested flux surfaces, and
one chooses Clebsch-type coordinates, one of which is a
flux-surface label. However, deviations from this standard
scenario can occur. For example, it has long been known that
stellarators tend to exhibit fairly large ergodic regions which
can affect the plasma turbulence in a significant fashion.
Moreover, there is a large number of tokamak experiments in
which ergodicity also plays an important role. Under such
conditions, the usual procedure breaks down and one has to
come up with a new way of defining useful—and ideally still
field-aligned—coordinate systems. This was the goal of the
present work.

In this paper, we introduced a method for setting up
Clebsch-type coordinates which has the advantage that it is
not dependent on the existence of flux surfaces. Thus, in
principle, it also applies to magnetic fields which may be
characterized as ergodic or chaotic, at least in a static regime.
The construction and use of these coordinates was explained
in detail, and expressions for certain differential operators
occurring in the nonlinear gyrokinetic equations were de-
rived explicitly. For testing purposes, we then computed the

FIG. 6. Distance r �in m� from the symmetry axis and metric elements
g11 , g12, and g22 as computed numerically from a magnetohydrodynamic
equilibrium via our coordinate approach. Notice that the values of the metric
elements at �=0 correspond to the cylindrical ones, as dictated by the
algorithm.

FIG. 7. Curvature terms K1 and K2 for W7-X, as computed numerically

from a magnetohydrodynamic equilibrium via our coordinate approach.
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respective geometrical data for a large aspect ratio tokamak
with circular flux surfaces and no Shafranov shift. We found
that the numerical results agree very well with the known
analytical expressions. This fact demonstrates that the ap-
proach proposed in the present paper is merely a generaliza-
tion of the usual ways of constructing field-aligned coordi-
nates. In the presence of flux surfaces, the two approaches
coincide, provided that the initial conditions for the field-line
tracing are chosen appropriately.

Besides that, geometric data for the stellarator configu-
ration W7-X were computed and discussed. Here, the most
significant deviations from the tokamak case were found for
the three metric elements which enter the gyrokinetic field
equations. They actually exhibit relatively small-scale fluc-
tuations in the field-line following coordinate of order unity.
This very feature necessitates much better numerical resolu-
tion in the parallel direction �compared to a typical tokamak
case� if one wants to perform gyrokinetic studies of micro-
instabilities and microturbulence in a configuration like
W7-X. More concretely, the computational effort is higher
by roughly an order of magnitude of more. �Here, one has to
take into account that smaller parallel grid spacings also tend
to demand smaller time steps �in light of the parallel Courant
condition�.� Results from linear and nonlinear gyrokinetic
simulations based on the Clebsch-type coordinate approach
put forward in this paper will be presented in future publica-
tions. The same is true for applications to islands and ergodic
regions, which require a detailed discussion with connection
to the validity of the underlying physical model.
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APPENDIX: CLEBSCH-TYPE COORDINATES
FOR A STRAIGHT CYLINDER

Here, we present an analytical realization of the
Clebsch-type coordinates introduced in the main text for the
case of magnetic surfaces with circular cross section, using
standard results from the theory of differentiable curves. Par-
ticularly, we concentrate on the construction of two sets of
Clebsch coordinates which provide exactly the same repre-
sentation for the magnetic line. However, these sets differ in
a quite important point; namely that the first one, �Ffl

1 ,Ffl
2 �, is

a flux coordinate system �i.e., the first coordinate is a flux-
surface label�, whereas the second one �Fnf

1 ,Fnf
2 � is not �i.e.,

none of the two coordinates is a flux-surface label�.
Of course, the existence of two such systems is not a

paradox, since the Clebsch representation is not unique. And
as will be shown below, the two pairs of contravariant vec-
tors are related merely through a plane rotation which pre-
serves this representation. Now, in terms of the construction
of �the gradients of� these coordinates, as discussed in Sec.
II, the algorithm “selects” one particular coordinate system

via the prescribed initial conditions. In the present case, it
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turns out that for the standard initial conditions, Eq. �19�, the
resulting coordinate system is �Fnf

1 ,Fnf
2 �. The circular system

is simple enough to be able to show that this flux coordinate
system results if �and only if� the field-line tracing is started
in the symmetry plane.

In the following, we consider a straight cylindrical sys-
tem consisting of nested flux surfaces �e.g., a screw pinch� in
order to prove the claims made above. We concentrate on a
magnetic field line lying on a cylindrical flux surface of ra-
dius a and choose a Cartesian coordinate system such that its
z axis coincides with the �straight� magnetic axis. Then the
field line, seen as a circular helix, will have the representa-
tion

R��� = �a cos �,a sin �,s�� , �A1�

where � is the poloidal angle and s is the pitch of the helix.
�s is given in units of m, and the sign of s prescribes the
orientation of the helix; for s�0, it is right-handed.� Now,
we deduce the expressions for the �unit� vectors which con-
stitute the Frenet moving trihedron. In particular, the tangent
vector t=B /B, the normal n �radial direction�, and the binor-
mal b �diamagnetic direction� read

t = −
a

d
sin �,

a

d
cos �,

s

d
� ,

n = �− cos �,− sin �,0� , �A2�

b =  s

d
sin �,−

s

d
cos �,

a

d
� ,

where d��a2+s2.
Alternatively, it is possible to describe a field line

through a set of equations

Fi�R� = 0 �i = 1,2� , �A3�

where each equation represents a surface and, therefore, the
curve results from the intersection of two surfaces. Then, the
field line will have the representation

t = K � F1 � �F2, �A4�

where K is a stream function, i.e., it has a constant value
along the field line. As mentioned before, we intend to study
two particular sets of coordinates in the following.

In the first case, we choose the first coordinate to be a
flux-surface label,

Ffl
1 � �x2 + y2 − a, Ffl

2 �
a

s
�s arctan�y/x� − z� . �A5�

The scaling factor in the second coordinate will be justified
below. Now, the relevant gradients �contravariant vectors�
become

�Ffl
1 = − n, � Ffl

2 = −
d

s
b , �A6�

which confirms that Ffl
1 is a flux-surface label. Therefore, the
tangent vector can be written as
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t =
s

d
� Ffl

1 � �Ffl
2 . �A7�

Notice that the two representations �A7� and �A4� are
equivalent, since the Jacobian is not zero,

J = 
 ��x,y�
��Ffl

1,Ffl
2�

 = 1. �A8�

In fact, K=s /d=Jt3, which is the equivalent of JB� in the
representation �4� for the magnetic field.

In the second case, we will obtain the same results, but
this time for the surfaces

Fnf
1 � x − a cos�z/s�, Fnf

2 � y − a sin�z/s� . �A9�

The Jacobian of this transformation is again equal to unity.
Now, the contravariant vectors read

�Fnf
1 = 1,0,a

s
sin �� = 1,0,−

t1

t3
� ,

�A10�

�Fnf
2 = 0,1,−

a

s
cos �� = 0,1,−

t2

t3
� ,

and the representation for the field line becomes

t =
s

d
� Fnf

1 � �Fnf
2 , �A11�

which is identical to Eq. �A7�. �This result justifies the scal-
ing factor we introduced in Ffl

2 beforehand.� The pair of con-
travariant vectors ��Fnf

1 ,�nf
2 � is related to the pair ��Fnf

1 ,�nf
2 �

through a plane rotation, since it holds

�Fnf
1 = cos � � Ffl

1 − sin � � Ffl
2 ,

�A12�
�Fnf

2 = sin � � Ffl
1 − cos � � Ffl

2 .

This implies that neither of the coordinates Fnf
1 and Fnf

2 is a
flux-surface label, i.e., always directed along n.

If Eq. �A10� is chosen as an initial condition for Eq.
�16�, the coordinate approach discussed in this paper will
yield �Fnf

1 ,Fnf
2 �. If the initial conditions are chosen according

to Eq. �A6�, on the other hand, the flux coordinate system
�Ffl

1 ,Ffl
2� will be retrieved. For complicated geometries, this

practice becomes cumbersome, however, since the Frenet
vectors have to be determined at the starting point of the
tracing. A way of bypassing this inconvenience is to notice
that in the symmetry plane, Eq. �A12� reduces to

�Fnf
1 �� = 0� = �Ffl

1�� = 0� = �1,0,0� ,

�A13�

�Fnf
2 �� = 0� = �Ffl

2�� = 0� = 0,1 −
t2

t3
� .

In the context of the construction algorithm, this result states
that, at least for the case of circular surfaces, if the tracing
procedure starts in the midplane, where the condition Br=0
holds �implying that �r is normal to the surface�, then the
modified initial conditions �20� provide as an exact solution

1 2
the flux coordinate system �Ffl ,Ffl�.
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As a final point, we would like to put Eq. �A13� in a
more general context. Starting from the flux coordinate sys-
tem �Ffl

1 ,Ffl
2�, one can set up an infinite family of systems

which preserves the Clebsch representation, defined as

G1 � Ffl
1 + g�Ffl

2�, G2 � Ffl
2 , �A14�

where g is an arbitrary function. The coordinate G1 is no
longer a flux-surface label since it contains a dependence on
the poloidal angle �. Considering the way these coordinates
are constructed, the particular form of the function g is pre-
scribed by the initial condition for the gradient �G1. There-
fore we end up with a unique set of coordinates. Since we
aim at the generation of a flux coordinate system—given the
existence of nested magnetic surfaces—these initial condi-
tions should suppress the dependence of G1 on the second
coordinate, by reducing the function g to zero �or, more gen-
erally, to a constant�. Therefore, at the starting point, the
contravariant vector should satisfy �G1=�Ffl

1 =−n, i.e., it
should be normal to the flux surface.
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