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Abstract

Microturbulence in tokamaks and stellarators is studied via gyrokinetic simulation and semi-analytical theory.

The focus is on electron temperature gradient (ETG) turbulence and its interactions with fluctuations at longer

wavelengths. In this context, special attention is paid to the physics of edge transport barriers.
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1. Introduction

Plasma turbulence can be driven by a large number of
microinstabilities, including ion temperature gradient (ITG)
modes, trapped electron modes, electron drift waves, and
electron temperature gradient (ETG) modes [1]. While the
first three are associated with perpendicular spatial scales of
roughly 1-50 ion gyroradii, ETG modes exist on smaller
scales of typically 0.1-1 ion gyroradii. So far, almost all effort
in computational and theoretical turbulence studies went into
the investigation of isolated and (sometimes highly) idealized
subsystems. However, with the advent of modern
supercomputers, more comprehensive simulations become
feasible, taking the multi-scale nature of the plasma
turbulence problem seriously. In the present paper, the
character of adiabatic ETG turbulence is reviewed, and the
interactions of ETG turbulence with fluctuations at longer
wavelengths are discussed. In this context, special attention
is paid to the physics of edge transport barriers.

2. The character of adiabatic ETG

turbulence

Neglecting Debye shielding effects, ETG and ITG modes
are perfectly isomorphic in the electrostatic and adiabatic
limit. Under these circumstances, it is therefore permissible
to transfer linear results from the one to the other by simply
interchanging the species labels. Consequently, the space and
time scales of ETG modes are set by the electron gyroradius,
P.» and the inverse linear growth rate, Ly, /v,,. (As will become
clear later in this Section, it is appropriate to use the
temperature scale length L7, as the reference scale, not the
density scale length L, or the minor/major radius of the torus.)
However, even in the electrostatic and adiabatic limit, this
ETG/ITG symmetry is broken in the nonlinear regime due to
a subtle difference in the response of the adiabatic species

[2]. This is due to the zonal flow mode, characterized by
fluctuations of the electrostatic potential with k, = k; = 0,
which does not participate in the parallel dynamics.
Consequently, the electrons are never adiabatic for this mode
and in the ITG case it must be subtracted out of the adiabatic
term in the equation for the electrostatic potential [3]. By
contrast, in the ETG case, the ions are made adiabatic by
gyromotion, which affects every mode in the spectrum. So
for adiabatic ETG turbulence the zonal flow mode is also
adiabatic, forming the principal distinction between the two
basic models.

2.1 High-amplitude streamers

The manifestation of this effect in nonlinear simulations
is that while adiabatic ITG and ETG computations saturate at
similar normalized levels in the sheared slab case (even
consistent with mixing length expectations, y ~ y"“/k} ~
p*v,/L7), toroidal ETG simulations can go to much higher
amplitudes than their ITG counterparts [2]. When this is the
case, they are characterized by a predominance of “streamer”
modes, i.e., radially elongated vortices exhibiting the
morphology shown in Fig. 4 of Ref. [2]. At the same time,
the associated electron heat transport (which is always
predominantly electrostatic, both with and without streamers
[2,4]) is boosted by up to an order of magnitude or more with
respect to mixing length expectations. Streamers have been
observed both in tokamak [2,5,6] and in stellarator [4,7]
geometry if and only if the underlying long-wavelength
instabilities have a clear toroidal (as opposed to slab)
character. For large aspect ratio tokamaks with circular cross
section and small Shafranov shift, this is the case for § = 0.4
and R/Ly, > R/L;:” [2]. Here, § and R are, respectively, the
magnetic shear and the major radius of the torus. Streamer
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aspect ratios computed via the radial/poloidal anisotropy in
the autocorrelation functions of ¢ are typically of the order
of 2 [7]. This value seems somewhat low compared with the
visual impression and indicates that refined measurements are
called for; perhaps those inspired by percolation theory will
prove useful. Nevertheless, we have found the following
corollary to hold: if the correlation length ratio A,/A, 2 2 then
streamers are predominant in the spatial morphology. For
Cyclone Base Case parameters we find the dominant modes
to arise near k,p, = 0.15 [2,6] and to exibit a phase shift of
~ 7/3 between J) and T, both results commensurate to the
corresponding linear streamer [2]. An analysis of the transfer
rates of E X B energy in the nonlinear saturated state [8]
clearly confirms that streamers are driven predominantly by
linear processes and that they may be viewed as residuals of
linear modes. Nonlinear processes like modulational
instabilities need not be invoked to explain streamer
generation.

2.2 Secondary instabilities

Because of their similarity to the underlying linear
modes, the nonlinear saturation of streamers can be
interpreted in the framework of secondary instability theory.
Depending on the importance of slab character of linear
electrostatic ETG/ITG modes (as characterized by the intrinsic
parallel velocity component), one finds that one of two
distinct processes may dominate as nonlinear saturation
mechanism [6]. Perpendicular shear in the parallel flow of
the linear instability drives a (hereafter, “Cowley”’) secondary,
described in detail in Ref. [9]. Importantly, this secondary is
not sensitive to the form of the adiabatic response and thus
leads to the same (mixing-length type) transport level in both
slab cases. Predominantly curvature driven modes, on the
other hand, are broken up by a (hereafter, “Rogers”)
secondary that is driven by the perpendicular shear in the
eigenmode’s perpendicular E X B flow [2,5]. Due to the fact
that the adiabatic ion response for the ETG case affects all
modes, the Rogers secondary is significantly weakened on p,
scales, while on ion scales, it can access the zonal flow mode
in ¢. Because kj = 0 for this mode, it is not affected by the
adiabatic response and so remains free. This is the essential
difference between the nonlinear dynamics of ETG and ITG
modes. Consequently, for the toroidal case in which the
Rogers secondary is more relevant, an ETG mode tends to
saturate at a much higher normalized level than either its ITG
counterpart or the corresponding mixing length expectations.
With this enhancement, associated with the more resilient
high-amplitude streamers, ETG-induced transport can, in
principle, be comparable to electron energy transport induced
by nonadiabatic ITG modes and trapped electron modes.

2.3 Zonal flows and fields

Zonal flows and fields are the E X B velocities and
magnetic fields which result, respectively, from disturbances
in ¢ and A} with a purely radial dependence (k, # 0, k, = k; =
0). (The latter can also be thought of as radial variations in
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the g-profile.) They can be self-generated by the turbulence
and may in turn act as its dominant nonlinear saturation
mechanism [10]. There is much literature on this for ion scale
turbulence, particularly ITG modes with adiabatic electrons
[11,12] as well as edge turbulence [13,14], but much less is
known about their behavior on electron gyroradius scales. For
the stellarator simulation presented in Ref. [7], the time
averaged root-mean-square (RMS) values of the E X B
shearing rate, Q = ¥y, and of the magnetic shear fluctuation,
§= qRE;/B, are given by Q™ = 0.12 v,,/R ~ 0.3 y"* and
§™ = 0.018 where y™* is the maximum linear growth rate.
This is in stark contrast to results from ITG turbulence where
Q can significantly exceed " (e.g., Q"*/y"* ~ 14 in Ref.
[15]). In the ITG case, one obtains the zonal flow saturation
criterion Q™ < y™* only after correcting for the ineffective-
ness of the high frequency component of €. Moreover, the
zonal components of ETG turbulence contribute only 1 % or
so to the total ¢ [7]. This is again in contrast to the findings
in the ITG case where zonal modes with k,p; ~ 0.1 tend to
contribute significantly or even dominate the fluctuation free
energy contained in ¢ (see, e.g., Ref. [15] and references
therein). It is well known that low-amplitude ITG streamers
are broken up by zonal flows. In the ETG case, however, the
self-generated zonal flows are too weak (about 15-20 times
weaker than in the ITG case as we have shown above) to
break up the high-amplitude streamers. This finding is
supported by recent theoretical investigations [16]. Moreover,
since magnetic shear variations primarily affect the linear
growth rates of the ETG modes driving the turbulence [17], a
value of §™ = 0.018 is certainly too small for zonal fields to
play a significant role. Similar zonal flow/field saturation
levels as the ones reported here have also been found in ETG
simulations using tokamak geometry. Thus, we may conclude
that, at least for a significant region in parameter space, zonal
modes on p, scales tend to play a subdominant role in the
turbulent dynamics.

2.4 Semi-analytical transport estimate

Building on these results and insights, a simple
numerical model with a universal fit parameter can be
developed which was shown to agree fairly well with the
results of nonlinear gyrokinetic computations [6]. The basic
idea is to predict the saturation amplitude by balancing
primary (y,) and secondary (%,) growth rates. The latter are
computed numerically by using high-amplitude ETG
streamers as pseudo-equilibria. Since ¥, is proportional to the
amplitude of the primary mode in this regime, the saturation
amplitude can thus be estimated. Furthermore, we take
advantage of the fact that our computational results are all in
the regime of strong turbulence, where y, o ¢. This way we
arrive at numerical transport estimates which exhibit
reasonable agreement with the results from gyrokinetic
computations [6]. Importantly, neither the linear growth rate
nor the maximal value of y/{k}) predicts the variation found
in the nonlinear computations. Rather, it is the variation of
the secondary growth rate as the linear eigenfunction changes
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in response to the equilibrium parameters that correlates with
the difference in the turbulent flux. The secondary growth
rates exhibit a strong dependence on magnetic shear as the
basic character changes from the Rogers (moderate positive
shear) to Cowley (negative shear) type. The good agreement
between the gyrokinetic computation and numerical model
encourages us to persue a semi-analytical treatment of the
balance between long-wavelength primaries and secondaries,
condensing several important pieces of information about the
saturated nonlinear state into simple algebraic formulas. One
finds that for § 2 0.4 and R/L, S R/L;, > R/L{"" (algebraic
expressions for R/Lf™ in tokamaks and the stellarator
Wendelstein 7-AS have been derived in Refs. [18] and [4],
respectively), transport by adiabatic, electrostatic ETG modes
is approximately given by [8]
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Here, v = 0.53 ¢ (k,p,) + max{0.09, 0.19 $2}(qlt,)
(RILy) (kyp,)%, V = vik, = k&), k = 4k$/3, kip, = T2 L (qR)™,
and 7, = T,/T;. The agreement of this formula with fully
nonlinear simulation results is surprisingly good. Note that
another prediction of this semi-analytical model is that the
poloidal length scale of the dominant modes is given by k;‘ .
For Cyclone Base Case parameters (including § = 0.8) we
find k;‘ ~ 0.13, in good agreement to the results of nonlinear
computations, which exhibit k;’ = 0.15 £ 0.05 [2,6]. An
analogous treatment of adiabatic ITG turbulence leads to the
estimate y; = G(q, $,7,)(p?v,/Ly,) which is one order down
in R/L; compared to the ETG case, Eq. (1). A scaling like
this has indeed been observed in nonlinear computations of
adiabatic ITG turbulence [19,20]. Moreover, the model
finding G(g = 1.4, § = 0.8, 7, = 1) ~ 2 is roughly consistent
with the computational results which exhibit a prefactor of
the order of 1.5. It should be kept in mind, however, that in
contrast to the ETG case, adiabatic ITG turbulence can be
controlled by zonal modes, especially near the linear
threshold, an effect which is not accounted for by our model.

3. Interactions between ion and electron

scale turbulence

Having shown that ETG-induced electron heat transport
can be competitive with that from larger scale turbulence —
caused, e.g., by nonadiabatic ITG modes, trapped electron
modes, or electron drift waves — it is very interesting and
important to study the nonlinear interactions between
hyperfine-scale fluctuations at k; p, S 1 < k; p; and fine-scale
fluctuations at k, p; S 1 < k; L. We certainly expect that the
co-existence of these different types of turbulence cannot be
characterized as a simple superposition. In general, there will
be effects of the fine-scale turbulence on the hyperfine scales
and vice versa. In the following, however, we will primarily
assess how the ETG turbulence reacts to the presence of
turbulent fluctuations at longer wavelengths.
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3.1 Living in the tail of a cascade

Obviously, the hyperfine-scale turbulence “feels” both
the quiescient background profiles and their modifications due
to the fine-scale fluctuations. In order to better understand
this effect, let us first discuss some basic properties of
cascades in plasma microturbulence. The strong magnetic
field lends the dynamics a quasi-two-dimensional character,
such that parallels with two-dimensional Navier-Stokes
turbulence can be drawn [21]. In the latter case, it is known
that there exists a dual cascade: while energy is transferred
to larger scales, enstrophy (i.e., mean-square vorticity, ((V x
v;)%) cascades to smaller scales [22]. Denoting the rate of
the enstrophy cascade by &, and the eddy size, lifetime, and
velocity by ¢, 7,, and v, respectively, one can easily establish
the following relations: &~ @,/¢)/1, 7, ~ I, k,~1/0.
From these one can derive Kraichnan’s famous energy
spectrum of two-dimensional turbulence: E (k,) o< €%k, [22].
Furthermore, for a nearly adiabatic plasma one obtains
fy o< @y o< Lv, o< €7k, This result matches fairly well with
nonlinear simulation results (see Ref. [7] and references
therein) which yield exponents of the order of —2.3. Another
consequence is that the eddy turnover time 7, is independent
of the eddy size ¢. The same is true for the shearing rate
associated with arbitrary (not necessarily zonal) E X B flows:
Q o kf(?)(/ ~ const. Assuming that zonal flows behave the
same way, we expect that this result may be extended to
purely radial fluctuations. And indeed, both gyrofluid
simulations of adiabatic ITG turbulence [15] and two-scale
gyrokinetic simulations of co-existing ITG/ETG turbulence
[7] show that the zonal flow shearing rate is (almost) scale-
independent. Thus, the comparison of the cascade properties
in plasma microturbulence and in two-dimensional fluid
turbulence seems to be helpful.

3.2 E x B shearing effects

To judge the importance of E X B shearing of hyperfine-
scale eddies in the cascade induced by the fine-scale
turbulence, three questions must be addressed. First, what is
the amplitude/strength of these flows? It sets the value of Q.
Second, what is the typical time scale of these flows with
respect to that of the modes to be suppressed? It was shown
in Ref. [15] that fast temporal variations of zonal E X B flows
lead to a reduction of their shearing effectiveness. Of course,
these two effects are interdependent, and the latter tends to
weaken the effect of the former as the flow amplitude is
increased. For ETG modes, this weakening is expected to be
small due to time-scale separation. Third, what are the linear
growth rates of the hyperfine-scale modes to be suppressed?
As was shown in Sec. 2, in the case of ETG turbulence, the
relevant linear growth rates are not the ones around the
maximum of the k, spectrum, but the ones near the long-
wavelength cut-off. This certainly enhances the role of E X B
shearing effects. In summary, for the shearing of hyperfine-
scale eddies to be effective, £ only has to exceed the linear
ETG growth rates at long wavelengths. Whether zonal or non-
zonal E x B flows dominate will depend largely on their
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relative amplitude/strength.

3.3 Complex quasi-equilibria

Let us now focus on modifications of the equilibrium
density and temperature profiles by the fine-scale turbulence.
A rough estimate of 7, at long wavelengths is given by the
maximum linear growth rate of the fine-scale modes. Since
the latter is smaller than the respective quantity for ETG
modes by the square root of the electron-to-ion mass ratio,
the scale independence of 7, implies that the action of the
larger scale fluctuations on the ETG turbulence may be
regarded as slowly varying in time. On the other hand, the
spatial structure of the resulting quasi-equilibria may be rather
complex since the local gradients of density and temperature
profiles need not be aligned with the radial direction.
Nevertheless, the most important contributions come from
relatively long wavelengths, such that there is a clear
separation between quasi-equilibrium and fluctuation scales.
This is because the gradients of the disturbances and of the
background are known to be comparable at fine scales while
the fluctuation spectra fall off (at least) like k;2 [7]. The
contributions of the fine-scale gradients to the total gradients
therefore scale like k;'. This means that the effective electron
heat diffusivity for ETG turbulence can be approximated by
a weighted sum over the respective results for all possible
quasi-equilibria. Since ETG turbulence often exhibits a
superlinear increase of y, with R/Ly, (or 1, = L,/Ly, in the
case of steep density profiles), background gradient
fluctuations will lead to a (moderate) enhancement of the
effective thermal diffusivity. Note that this effect is opposed
to the one induced by E X B shearing.

3.4 Back-reaction on fine scales

So far, we have only discussed how the hyperfine scales
are affected by the fine-scale turbulence. However, the
hyperfine-scale turbulence may back-react on the fine scales
via enhanced eddy damping (nonlocal energy transfer in k,
space [23]) or other mechanisms. (Note that indirect back-
reactions via zonal flows [24] may be judged unlikely, given
the weak zonal flow excitation by ETG turbulence [7,16].)
To address all of the above issues quantitatively requires
comprehensive computations which treat the cross-scale
interaction self-consistently. One such example will be
discussed next.

3.5 Turbulence in an edge transport barrier
During the formation of an edge transport barrier, the
turbulent transport within the barrier region is reduced by
about an order of magnitude. This behavior is generally
attributed to equilibrium E X B shear flows, although their
precise origin remains unclear. If the corresponding E X B
shearing rate reaches or exceeds the maximum growth rate of
the fine-scale modes, the latter are suppressed. This raises
questions about the role of hyperfine-scale turbulence in the
H-mode edge. Due to their much smaller spatio-temporal
scales, ETG modes are hardly affected by the above

mechanism and may provide a floor (at least) for the electron
thermal transport. To investigate these issues, we have
performed nonlinear gyrokinetic simulations with the gene
code [2]. Equilibrium E X B flows have been included as
prescribed, sinusoidal variations of vg,, with the amplitudes
and wavelengths chosen in accordance with experimental
findings (typical Mach numbers are in the range of 10 %,
and k,p; 2 0.1). The other physical parameters were R/L,
=40, n,=2,1,=4,9q=24,5=08, =05, T,/T,= 1, and
1/B = m;/m, = 1836. Magnetic fluctuations were taken into
account (B and the normalized pressure gradient o were
chosen consistently), and a §-o geometry was employed. The
time averaged k, spectra of the electron thermal diffusivity y,
for an L-mode case (no equilibrium flows) and an H-mode
case (with equilibrium flows) are shown in Fig. 1. Therein,
one can distinguish contributions from two regions in k,
space: (1) fine-scale fluctuations driven by electron drift
waves (particle trapping is neglected; ITG modes are present
but subdominant for the parameters used here), covering the
range of k,p; S 0.5 with a peak around k,p; ~ 0.2; (2)
hyperfine-scale turbulence at k,p; > 0.5 due to ETG modes,
peaking around k,p; ~ 1.5. Although it might appear surprising
at first that ETG modes can exist at these relatively long
wavelengths, this finding is consistent with the semi-analytical
theory presented in Sec. 2 when applied to a steep gradient
regime. While in the L-mode case, the transport is clearly
dominated by the fine scales (they contribute about 80 % to
the total y,), the situation in the H-mode case is reversed (note
that in this log-log plot, the density of modes increases with
ky). The total transport drops by almost one order of
magnitude — an effect which can be attributed mostly to the
suppression of the fine-scale turbulence, while the turbulent
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Fig. 1T Gyrokinetic simulations of L-mode and H-mode edge
turbulence: time averaged k, spectra of the electron
thermal diffusivity ..
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H-mode

L-mode

Fig. 2 Gyrokinetic simulations of L-mode and H-mode edge turbulence: phase shift between potential and electron temperature

fluctuations as a function of k,.

transport on hyperfine scales remains at L-mode levels.
Nevertheless, one can observe a slight suppression of the
high-k, part of the spectrum in the presence of strong fine-
scale dynamics. This is also reflected in the k, spectra of the
phase shifts between potential and electron temperature
fluctuations shown in Fig. 2. Here, the L-mode case exhibits
more ‘jitter’ at hyperfine scales than its H-mode counterpart,
indicating that the nearly linear ETG modes are disturbed by
the fine-scale turbulence. These results clearly show that
cross-scale coupling mechanisms like the ones described
aboved are active, invalidating a naive superposition approach.
In particular, shearing by E X B flows seems to play an
important role. More details and analyses of these
computations will be published elsewhere.

3.6 Cross-scale coupling and bifurcations

It has been conjectured by S.-I. Itoh et al. [23,25] that
cross-scale coupling mechanisms like the ones described
above may lead to bifurcation transitions. E.g., the following
scenario may be envisioned. Fine scales can suppress the
hyperfine scales via E X B shearing if their amplitude is
sufficiently large. On the other hand, strongly excited
hyperfine scales can suppress the fine scales through enhanced
eddy damping. This competition triggers bifurcations if the
coupling strength between both ranges of scales exceeds a
certain threshold. States in which one set of scales dominates
the other can be shown to result. Moreover, equilibrium shear
flows or other plasma parameters which influence the
turbulence level can act as external control parameters. If such
a scenario is indeed applicable to edge transport barriers is
still under investigation. We note in passing that core transport
barriers might also be subject to such transitions. Here, the
role of electron drift waves would be played by trapped
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electron modes or nonadiabatic ITG modes.

4. Summary

While for many years, plasma microturbulence research
has been solely concerned with phenomena whose spatio-
temporal scales are set by the ions, there is now a growing
awareness that this limitation has to be overcome in search
of more complete models of turbulent transport in fusion
plasmas. Some recent developments along those lines are
presented in this paper.

First, the physics of adiabatic ETG turbulence is
reviewed. Due to a subtle difference in the adiabatic species’
response, the linear symmetry between ETG and ITG modes
is nonlinearly broken. This leads to the emergence of radially
elongated eddies (or streamers) with large fluctuation
amplitudes in certain parameter regimes. These streamers are
identified as residuals of linear modes, and their saturation
level can be estimated by a semi-analytical theory based on
the notion of secondary instabilities. Key features of the
streamer-dominated turbulent state (first and foremost the
associated electron heat diffusivity) may thus be predicted
even quantitatively. An important finding is that ETG-induced
transport is boosted by a factor of R/L;, with respect to mixing
length expectations.

Having shown that the hyperfine-scale dynamics can
compete with that on fine scales, we discuss some dynamical
coupling mechanisms between them. As expected, it is found
that the co-existence of different types of turbulence cannot
be characterized as a simple superposition. The ETG
dynamics mainly perceives the fine-scale turbulence through
E x B shearing and quasistatic modifications of the
background equilibria. The hyperfine scales can in turn back-
react on the longer wavelengths via enhanced eddy diffusivity
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or other mechanisms. These generic findings und discussions
prove useful for a deeper understanding of the physics of
transport barriers. Here, both hyperfine-scale turbulence and
nonlinear cross-scale coupling were observed to play a role.
In particular, gyrokinetic simulations show that ETG
turbulence provides a floor for H-mode edge transport.
Whether the establishment of edge and/or core transport
barriers involves a bifurcation from fine-scale to hyperfine-
scale turbulence will be addressed in future investigations.
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