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Subdominant, linearly stable microtearing modes are identified as the main mechanism for the

development of magnetic stochasticity and transport in gyrokinetic simulations of electromagnetic

ion temperature gradient driven plasma microturbulence. The linear eigenmode spectrum is

examined in order to identify and characterize modes with tearing parity. Connections are

demonstrated between microtearing modes and the nonlinear fluctuations that are responsible for

the magnetic stochasticity and electromagnetic transport, and nonlinear coupling with zonal modes

is identified as the salient nonlinear excitation mechanism. A simple model is presented, which

relates the electromagnetic transport to the electrostatic transport. These results may provide a

paradigm for the mechanisms responsible for electromagnetic stochasticity and transport, which

can be examined in a broader range of scenarios and parameter regimes. VC 2013 American Institute
of Physics. [http://dx.doi.org/10.1063/1.4789448]

I. INTRODUCTION

The influence of electromagnetic (EM) effects on con-

finement in fusion plasmas is still an open question. EM

effects allow magnetic fluctuations to evolve self-

consistently with other turbulent fluctuations, providing an

additional transport mechanism: radial heat flux via electrons

streaming along perturbed field lines. EM effects may be

parameterized by b ¼ 8pneTe=B2
ref , which quantifies the

degree to which magnetic fluctuations can participate in

plasma dynamics. Experimentally, the scaling of confine-

ment with b varies widely depending on the device–notably

both ASDEX Upgrade and JT-60U exhibit unfavorable beta

scaling.1 Thus, extrapolation to ITER is uncertain—a critical

gap in our understanding, considering that ITER is expected

to operate at high b. In this study, we use the gyrokinetic

GENE code2 to examine in detail the mechanisms by which

magnetic stochasticity and EM transport arise in turbulent

systems driven by instabilities, which are not intrinsically

electromagnetic (e.g., ion temperature gradient (ITG)3,4

driven and trapped electron mode (TEM)5–7 turbulence).

This paper expands on the results reported in Ref. 8.

In the past decade, several studies have explored EM

effects in the context of gyrokinetic simulations.2,8–18 A se-

ries of these studies8,12–18 has been based on a finite-b varia-

tion of the cyclone base case (CBC)4 parameters. The CBC

is likely the most-studied gyrokinetic turbulence scenario

and has served as a basic paradigm for toroidal turbulent

transport dynamics for over a decade. Thus, studies of an

electromagnetic variation of this case can be considered to

provide intuition into the most fundamental ways in which

EM effects modify basic paradigms of turbulent transport.

Such studies have shown that the growth rate of the ITG

mode decreases gradually as b increases, while the corre-

sponding electrostatic (ES) transport levels decrease some-

what more sharply.14 The EM transport level, in contrast,

increases with a b2 dependence and at moderate to high b
can become comparable to the ES transport channels. The

behavior of this EM transport contrasts sharply with the qua-

silinear expectations derived from the linear ITG mode: the

linear ITG mode defines an inward EM heat flux, which

scales like b, whereas a robustly outward b2 scaling is

observed in the nonlinear simulations. In Refs. 17 and 18,

this transport has been linked to magnetic stochasticity,

which is evident even at very low values of b. This stochas-

ticity is somewhat puzzling in light of the fact that the ITG

mode is characterized by ballooning parity (antisymmetric

Ajj parallel mode structures about the outboard midplane),

and not tearing parity (symmetric Ajj mode structures), and is

thus poorly equipped for breaking magnetic field lines (for a

more nuanced discussion see Sec. II B). Thus, one might

naively expect very limited impact of the magnetic fluctua-

tions from ITG driven turbulence on the field line topology

and EM transport. The present study resolves these contra-

dictions by demonstrating that the magnetic stochasticity and

associated transport are not caused directly by the driving

ITG mode. Rather, the salient mechanism is linearly stable

microtearing modes (MTMs),19–30 which are driven nonli-

nearly and operate at the same perpendicular scales as the

ITG modes. Nonlinear coupling with zonal modes (modes at

ky ¼ 0, a definition broad enough to encompass both zonal

flows and geodesic acoustic modes (GAMs)31) is shown to

be the responsible excitation mechanism. These results pro-

vide an explanation for many of the EM effects observed in

Refs. 12, 14, 15, 17, and 18 and offer a paradigm for EM

transport, which can be explored more extensively through-

out parameter space in future studies.

In order to further place this work in context, we briefly

review two related threads of research. Microtearing

modes—small-scale variants of MHD tearing modes—are

electromagnetic (they exhibit a b threshold and intrinsically

depend on magnetic fluctuations) modes that are driven by

1070-664X/2013/20(1)/012307/12/$30.00 VC 2013 American Institute of Physics20, 012307-1

PHYSICS OF PLASMAS 20, 012307 (2013)

Downloaded 07 Aug 2013 to 130.183.100.98. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pop.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.4789448
http://dx.doi.org/10.1063/1.4789448
http://dx.doi.org/10.1063/1.4789448
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4789448&domain=pdf&date_stamp=2013-01-31


electron temperature gradients (ETGs). Early theoretical pre-

dictions22 suggested that MTMs would be stable in standard-

aspect-ratio tokamaks, leading to the expectation that such

devices would be unaffected by microtearing physics.

Recently, however, it has been shown that MTMs can be lin-

early unstable29,30 and nonlinearly produce experimentally

relevant heat fluxes.24 Here, we show that even when MTMs

are completely stable linearly, they can be excited nonli-

nearly and produce significant levels of transport.

This study also extends and builds upon a body of work

that has explored the role of subdominant eigenmodes in

plasma microturbulence. Subdominant damped modes facili-

tate turbulent saturation by offering an energy sink at the

same scales as the driving instabilities—via inward transport

in fluid models32–34 and collisional dissipation in gyrokinetic

systems.35,36 In another scenario, subdominant unstable
modes have been shown to coexist nonlinearly and compete

with the dominant instabilities in mixed ITG and TEM

regimes.37 In this paper, we illustrate a situation where dif-

ferent transport channels are activated by physically distinct

processes—the ES transport is driven by the dominant ITG

instability, while the electron EM transport is caused by the

nonlinear excitation of subdominant tearing modes.

The remainder of this paper is outlined as follows: In Sec.

II, we describe the numerical and physical parameters used for

the GENE simulations and introduce the parity considerations

for field-following coordinates with relation to magnetic-field-

line-breaking and stochasticity. In Sec. III, we demonstrate

that tearing-parity fluctuations are responsible for the magnetic

stochasticity and transport and eliminate the ITG mode as the

primary mechanism. In Sec. IV, we describe and characterize

the tearing-parity modes in the linear eigenmode spectrum.

Three classes of such modes are identified: tearing-parity var-

iants of ITG and ETG2,38,39 modes, and a subdominant, line-

arly stable MTM. In Sec. V, we compare various aspects of

the nonlinear fluctuations with the linear eigenmodes

described in Sec. IV, and conclude that the MTM is indeed re-

sponsible for the EM effects of interest. In Sec. VI, we demon-

strate that the EM transport is nonlinearly driven and that the

excitation mechanism is nonlinear coupling with zonal modes.

In Sec. VII, we describe a model relating the EM transport to

the ES transport and discuss how EM effects are expected to

be manifest throughout a broader range of parameters. A sum-

mary and conclusions are provided in Sec. VIII.

II. DESCRIPTION OF SIMULATIONS AND PARITY
CONSIDERATIONS

A. Physical and numerical description of simulations

This study uses the GENE code to examine EM gyrokinetic

simulations based on an EM variant of the CBC parameters:

normalized density gradient scale length, R=Ln ¼ 2:22, ion

and electron temperature gradient scale lengths,

R=LTi;e ¼ 6:89, magnetic shear ŝ ¼ 0:79, safety factor

q0 ¼ 1:4, inverse aspect ratio �t ¼ 0:18, and b covering points

from the ES limit (b ¼ 1:0� 10�4) to values approaching the

kinetic ballooning mode (KBM) threshold bcrit (in this case,

bcrit � 0:013). The simulations use an s-a equilibrium (with

a ¼ 0) and the local flux tube approximation, which allows

for a Fourier representation in the radial (x! kx) and binor-

mal (y! ky) directions, which are both perpendicular to the

background magnetic field. The coordinate z along the mag-

netic field corresponds to the poloidal angle. The numerical

grid resolves a z ¼ ½�p; pÞ domain, which is effectively

extended along the field line by applying the flux tube parallel

boundary condition,40 fkx;ky
ðz ¼ pÞ ¼ ð�1ÞDkx=kmin

x fkxþDkx;ky
ðz

¼ �pÞ, where Dkx ¼ 2pŝky and kmin
x is the minimum radial

wave number. The extended parallel structure of the fluctua-

tions can be recovered by connecting all kx modes, which are

linked by this boundary condition. In this paper, we will call

this collection of connected kx modes the extended mode
structure or often simply mode structure and will denote as

kþx all kx modes comprising an extended mode structure. The

two-dimensional gyrokinetic velocity space is covered by the

parallel velocity vjj and the magnetic moment l. The nominal

perpendicular spatial resolution consists of 192 kx modes with

kmin
x qs ¼ 0:062 (covering positive and negative wave num-

bers), and 24 ky modes with kmin
y qs ¼ 0:05 (covering

ky ¼ ½0; kmax
y �, with the negative wave numbers implicitly

determined by the reality constraint). Here, qs is the ion sound

radius. The resolution in the ðz; vjj; lÞ coordinates is

ð24; 48; 8Þ, respectively, with simulations at higher b often

extending to 48 z grid points. Fourth order hyperdiffusion (as

described in Ref. 41) is applied in the kx, z, and vjj coordinates

with coefficients of (0.2, 8.0, and 0.2) respectively. The paral-

lel hyperdiffusivity is often reduced in more recent simula-

tions, which use an Arakawa42 scheme for the parallel spatial

and velocity coordinates.

Much of the data used in this study are taken from the

dataset described in Ref. 14. ITG is the dominant instability

through a large portion of this scan (up to b � 0:01), above

which TEM becomes the dominant linear instability until the

KBM limit is reached. The simulations above b � 0:008 are

only transiently saturated before a delayed transition to

extremely high transport levels, as described in Refs. 16 and

43. Additional parameter regimes, including a TEM b scan15

and a collisionality scan, are also discussed and will be

described below.

B. Parity considerations

Magnetic stochasticity is caused by the overlap of mag-

netic islands, which can form when a magnetic perturbation

aligns with the background magnetic field at a mode-rational

q-surface. In toroidal coordinates, this resonance condition is

well-known: qres ¼ m=n, where m is the poloidal mode num-

ber and n is the toroidal mode number. In the field-aligned

coordinate system used here, the parallel z coordinate labels

the distance along the field line (and corresponds to the

poloidal angle), and the binormal coordinate y ¼ u� qðxÞz
depends on both the toroidal u and poloidal z angles. In this

representation, the resonance condition must be expressed

differently, now as the requirement that the integral along

the field line of the parallel magnetic vector potential be

non-vanishing at a mode-rational flux surface,

Ares
jj ¼

ð
Ajjðx ¼ xresðkyÞ; ky; zÞdz ; (1)
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where the z domain covers the extended mode structure. As

a result of this resonance condition, a mode with ballooning

parity (odd parity about the outboard midplane z¼ 0) can

never be resonant, while a mode with tearing (even) parity

can (and typically will) be resonant. More generally, these

parity considerations can be extended to the underlying dis-

tribution function from which Ajj is derived: considering

only the parallel velocity and parallel coordinate, the condi-

tion gðz; vjjÞ ¼ gð�z;�vjjÞ defines ballooning parity and

produces an even electrostatic potential U mode structure

and an odd Ajj mode structure (as seen in Figs. 1(A) and

1(B)), while the condition gðz; vjjÞ ¼ �gð�z;�vjjÞ defines

tearing parity and produces an odd U mode structure and an

even Ajj mode structure (as seen in Figs. 1(C) and 1(D)).

For an up-down symmetric equilibrium at kx ¼ 0, the gyro-

kinetic equations enforce one or the other of these parities

on all eigen-solutions of the linear operator. The most fa-

miliar microinstabilities (including the ITG mode, TEM,

ETG mode, and KBM) are characterized by ballooning

parity.

At finite radial wave numbers, the parity is no longer

enforced, and the linear eigenmodes can be characterized by

mixed parity. Nevertheless, the natural parity of the mode is

still predominant, as is seen in a representative example for

the ITG mode shown in Figs. 1(E) and 1(F).

Thus, the candidate mechanisms for producing magnetic

stochasticity and the associated transport are (1) the small

tearing component of jkxj > 0 ITG modes, and (2) some

other mode entirely, which is characterized by tearing parity.

In the following sections, we demonstrate that the latter is

the predominant mechanism in the form of linearly stable,

nonlinearly excited MTMs.

III. CONNECTING PARITY, STOCHASTICITY AND
TRANSPORT IN NONLINEAR SIMULATIONS

A. Tearing-ballooning decomposition

In this section, we characterize the Ajj fluctuations that

contribute to the nonlinear dynamics in order to identify what

kinds of fluctuations are responsible for the stochasticity and

transport. To this end, we seek to decompose the magnetic

fluctuations into classes corresponding to the parity considera-

tions described in Sec. II B. In principle, the magnetic field

can be decomposed into an even and an odd component for

every wave number in the system. However, this would not

account for the extended mode structure of the fluctuations

and would fail to distinguish finite kx ITG modes (which have

mixed parity) from legitimate tearing-parity modes. We thus

construct a decomposition, which naturally reflects the inher-

ent structures of the nonlinear fluctuations without externally

enforcing any parity constraints. This is accomplished by con-

structing singular value decompositions (SVDs)44 of the mag-

netic vector potential fluctuations. In this application, SVDs

are constructed from matrices whose columns consist of

extended Ajj mode structures; i.e., each column of the input

matrix is a time point of the nonlinearly evolved Ajj mode

structure. This produces a decomposition of the form

Ajjkþx ;ky
ðz; tÞ ¼

X
n

A
ðnÞ
jjkþx ;ky
ðzÞhðnÞ

kþx ;ky
ðtÞ; (2)

where A
ðnÞ
jj is called the nth SVD mode, and the SVD time

amplitude hðnÞðtÞ defines the time dependent amplitude of the

nth SVD mode such that the superposition exactly reprodu-

ces the nonlinear fluctuations at each moment in time (note

that in this representation, the singular values are subsumed

in the time amplitudes hðnÞðtÞ). Both the spatial and temporal

SVD modes are orthogonal and optimal in the sense that a

truncation of the decomposition rigorously captures the dy-

namics (as quantified by the jAjjj2 fluctuation intensity) better

than any other decomposition of the same rank. Because of

this property, the decomposition can be considered to extract

the most important features of the fluctuations in the fewest

possible number of modes.

When SVDs are constructed from the nonlinear mode

structures, the first two SVD modes almost invariably define

a clear ballooning component and a clear tearing component.

An example is shown in Fig. 2, where the n¼ 1 and n¼ 2

modes are plotted for kyqs ¼ 0:2; kxqs ¼ 0, and b ¼ 0:003.

In the nonlinear fluctuations, these two modes are superim-

posed according to their time amplitudes hðnÞðtÞ such that the

full nonlinear mode structure can exhibit mixed parity and

alternate between periods of dominant tearing parity and

dominant ballooning parity. As will be shown, nearly all of

the important effects of the magnetic fluctuations can be cap-

tured with only these two modes (i.e., the first two SVD

modes for each wave number).

When the kx value is non-zero, the modes may peak at

the corresponding non-zero ballooning angle and also exhibit

some mixing of the parity in a fashion similar to that observed

in the linear modes (as described in Sec. II B). Even in these

cases, there typically remains one mode, which is predomi-

nantly tearing and one which is predominantly ballooning. In

FIG. 1. Extended parallel mode structures representative of ballooning par-

ity ((A) and (B)), tearing parity ((C) and (D)), and mixed parity ((E) and

(F)). The mixed-parity mode is an ITG mode centered at kxqs ¼ 0:124.
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order to automatically distinguish the ballooning components

from the tearing components, a parity factor is defined

P ¼

����
ð

dzAjj

����ð
dz

����Ajj
����
: (3)

The parity factor is zero for pure ballooning parity and may

be as high as one for tearing parity modes. By constructing

SVDs of each (kþx ; ky) and applying this parity factor, a

tearing-ballooning decomposition of the entire Ajj dataset

can be constructed as follows:

Ajjkx ;ky
ðkx; ky; z; tÞ ¼ A

ðballÞ
jjkx ;ky
ðz; tÞ þ A

ðtearÞ
jjkx ;ky
ðz; tÞ þ A

ðresÞ
jjkx ;ky
ðz; tÞ;

(4)

where the ballooning component (ball) is defined as which-

ever of the first two SVD modes has the smaller parity factor,

the tearing component (tear) is whichever of the first two

SVD modes has the larger parity factor, and the rest of the

SVD modes are grouped into the residual (res) category.

Note that the parity factor can distinguish between the

mixed parity modes at jkxj > 0. For example, consider two

modes at the same jkxj > 0 wave number—one which corre-

sponds to the ITG mode and has predominantly ballooning

parity, and another which represents a subdominant tearing

mode and has predominantly tearing parity. Each mode can

be decomposed into an even part and an odd part:

AjjðzÞ ¼ Aeven
jj þ Aodd

jj . If the predominantly ballooning-parity

mode has a high enough relative amplitude, its even (tearing)

component could conceivably dominate that of the predomi-

nantly tearing-parity mode and thus be the mechanism for

the magnetic stochasticity. Using the parity factor described

here, this analysis can distinguish between the fluctuations

associated with the dominant ITG modes and the tearing

modes and group them appropriately.

This analysis procedure can be summarized as follows:

(1) Select a ky wave number and a kþx extended mode struc-

ture from the Ajj fluctuation data. (2) Construct an SVD of

this data set. (3) Select from the first two SVD modes, the

one with the largest parity factor and group it in the tearing

component of the decomposition. (4) Select from the first

two SVD modes the one with the smaller parity factor and

group it in the ballooning component of the decomposition.

(5) Repeat steps (1)–(4) for all extended mode structures in

the dataset. The result is a decomposition (with the form of

Eq. (4)) of the entire Ajjkx ;ky
ðz; tÞ, which defines a dominant

ballooning component, a dominant tearing component, and

all other residual fluctuations.

Now, with this tearing-ballooning decomposition in

hand, we can study the contribution of each component to

the magnetic field fluctuations and transport as will be done

in Sec. III B.

B. Stochasticity and transport from tearing parity
fluctuations

Using the decomposition from Eq. (4), we can study the

structure of the magnetic field produced by the different

modes. In order to do this, a routine is used to follow the tra-

jectory of magnetic field lines and track their deviation from

the equilibrium field. This can be quantified with a magnetic

diffusivity17,45

Dfl ¼ lim
l!1
h½riðlÞ � rið0Þ�2i=l: (5)

Fig. 3 shows the magnetic diffusivities for the different com-

ponents of the magnetic field. The tearing component of Ajj
produces a magnetic diffusivity that is comparable to the dif-

fusivity produced by the total Ajj across the b scan, while the

ballooning and residual components produce comparatively

negligible diffusivities. This demonstrates that the tearing

structures, rather than the finite-kx ITG modes, are responsi-

ble for the stochasticity. What has been quantified by the

magnetic diffusion coefficient can also be seen intuitively by

constructing Poincar�e plots (not shown) of the magnetic field

lines produced by the different classes of magnetic fluctua-

tions; the tearing component is visibly more stochastic than

the ITG and residual components.

The tearing-ballooning decomposition can also be used

to directly calculate the contribution of each parity class to

the electron EM heat transport QEM
e ¼ hqejjBxi=Bref , where

h�i denotes a spatial average, qejj is the parallel electron heat

flux moment, and Bx ¼ ikyAjj is the radial component of the

FIG. 2. The first two parallel mode structures extracted by an SVD decom-

position of Ajj at kyqs ¼ 0:2 and centered at kxqs ¼ 0. The n¼ 1 mode (left)

has ballooning parity, and the n¼ 2 mode (right) has tearing parity.

Reprinted with permission from D. R. Hatch et al., Phys. Rev. Lett. 108,

235002 (2012). Copyright 2012 the American Physical Society.

FIG. 3. The magnetic diffusivity associated with different components (defined

in Eq. (4)) of the magnetic fluctuations. The magnetic diffusivity associated with

the tearing component is comparable to the total magnetic diffusivity, indicating

that tearing-parity modes rather than ITG modes are responsible for the magnetic

stochasticity.
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fluctuating magnetic field. The ky spectra for QEM
e are quite

distinctive (see, e.g., Fig. 6(b) in Ref. 13); they exhibit a dip

in the flux at the same scales where the electrostatic transport

QES peaks (0:1 � kyqs � 0:3). This dip dominates at low b
and becomes less prominent as b increases. The present anal-

ysis shows that this feature is the result of the superposition

of the transport associated with the ITG modes and the trans-

port associated with the subdominant tearing modes, as

described below.

Using the decomposition defined in Eq. (4), one can

define a ballooning component of the flux hqejjB
ball
x i=Bref , a

tearing component hqejjB
tear
x i=Bref , and the residual

hqejjB
res
x i=Bref . Note that in these expressions, Bx has been

decomposed into the different classes of magnetic fluctua-

tions, but the parallel heat flux qejj is the total fluctuating

quantity. The ky flux spectra (at b ¼ 0:003) for the different

components are shown in Fig. 4. The ballooning component

of the flux (green plus signs) defines a heat pinch that peaks

in the low-ky region where the ITG modes dominate. In con-

trast, the tearing component of the transport (red asterisks) is

outward, also peaking at low ky, but additionally extending

with significant amplitude to the higher wave numbers in the

spectrum. The total transport spectrum is a superposition of

these two components. For the b ¼ 0:003 value shown here,

they are similar in magnitude. The ballooning part follows

roughly the quasilinear expectation, scaling like b. The tear-

ing component follows a b2 dependence up to b � 0:008 (a

more detailed discussion of this b dependence is provided in

Sec. VII) and thus dominates as b increases. This b2 depend-

ence can also be seen in Fig. 3.

In order to further elucidate the components of the trans-

port, we express the parallel heat flux in terms of the parallel

temperature gradient along a perturbed field line9

qejj ¼ �ne0vejj
d ~Tejj

dz
þ Bx

Bref

d ~Tejj
dx
þ Bx

Bref

dTe0

dx

 !
; (6)

where ne0 is the electron density, and vejj is the parallel elec-

tron heat conductivity. As described in Ref. 14, the ITG

modes mainly contribute via the first term, which scales like

b, while the third term is closely related to the field line dif-

fusivity Df l and describes the heat transport due to streaming

along stochastic field lines. The latter is produced by the

tearing structures and dominates at high b.

IV. TEARING-PARITY MODES IN THE LINEAR
EIGENMODE SPECTRUM

In Sec. III B, we demonstrated that the magnetic sto-

chasticity and transport are associated with tearing-parity

fluctuations. In this section, we examine and classify modes

with tearing parity in the linear eigenmode spectrum—i.e.,

the candidates in the linear spectrum for explaining the EM

effects described above. To this end, GENE is run as an eigen-

mode solver in order to resolve subdominant tearing-parity

modes. Two solution methods are applied—an iterative

solver (based on the SLEPc46,47 library), which is suitable

for finding several eigenmodes in a targeted portion of the

spectrum, and a direct solver (based on the SCALAPACK

library48), which solves for the entire eigenmode spectrum.

Several of the least-damped eigenmodes can be accessed

with the iterative SLEPc solver (up to several dozen). These

modes range from weakly damped modes to the robustly

unstable ITG mode (or TEMs and KBMs, depending on pa-

rameters). The modes are quite evenly distributed between

the two parity classes, but in all cases observed, the most

unstable mode is characterized by ballooning parity. The

tearing-parity modes can be further classified in two catego-

ries which we call tearing-ITG (TITG) and tearing-ETG

(TETG) modes. These names are used because, with the

exception of the parity, many other relevant mode properties

are identical to the conventional ITG and ETG modes,

respectively; as outlined in Table I, the TITG (TETG) modes

match the ITG (ETG) modes in the drift direction (i.e., the

sign of the frequency), threshold behavior with respect to

temperature gradients, and various electromagnetic proper-

ties. Notably, none of these modes are intrinsically electro-

magnetic, i.e., the modes have extremely weak dependence

on b and are largely unchanged in the b! 0 limit. Repre-

sentative TITG and TETG mode structures are shown in

Fig. 5—notable features include the distinctive extended Ajj
mode structure of the TETG mode (seen in (C) and (D)) and

the lobes of the TITG Ajj mode, which change sign at

approximately z ¼ 6p (seen in (B)). The tearing parity

modes can achieve significant growth rates as seen in the dis-

persion relation shown in Fig. 6, but are always subdominant

to the ballooning-parity modes for the parameter regimes

studied here. Table I also outlines the properties of the

MTM, which is similar to the other electron modes, with the

exception of its electromagnetic properties. The microtearing

properties listed in Table I were identified for parameter

regimes where microtearing is the dominant instability, as

described in Ref. 24. The mode is sensitively dependent on b
and comparatively unchanged in simulations where the elec-

trostatic potential is artificially deleted from the linear opera-

tor. Moreover, it is associated with a large positive

quasilinear electron EM flux component ðQEM
e =jQES

e jÞlinear ,

whereas the other modes are characterized by small (and of-

ten negative) quasilinear magnetic fluxes.

FIG. 4. The ky-spectra of the electron electromagnetic heat flux associated

with different components of the magnetic fluctuations (defined in Eq. (4)).

The flux associated with tearing-parity modes is robustly outward, while the

flux associated with ballooning parity modes (ITG) is inward and limited to

the low-ky region. The superposition reproduces the net spectrum. Reprinted

with permission from D. R. Hatch et al., Phys. Rev. Lett. 108, 235002

(2012). Copyright 2012 the American Physical Society.
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For the CBC parameters considered here, an authentic

MTM can be found deeper (i.e., more strongly damped) in

the eigenmode spectrum. A direct eigenmode solver based

on the SCALAPACK library was used to solve for the entire

set of eigenmodes. The direct solver (which scales like N3,

where N is the total number of grid points) enforces a severe

limit on the resolution, which can be achieved. As a result,

we use a reduced resolution case (with seven kx modes, and

(16, 32, 8) grid points in the ðz; vjj; lÞ coordinates), which is

somewhat under-resolved, but nonetheless offers some

insight into the linear spectrum. The MTM can be identified,

from among the thousands of modes produced by the direct

solver, by its quasilinear EM flux ðQEM
e =jQES

e jÞlinear , which is

orders of magnitude larger than that of any other mode in the

spectrum. For the parameters studied (kyqs ¼ 0:2; b
¼ 0:003), the mode’s Ajj structure is well resolved, but the U
structure cannot be fully resolved with the seven kx modes

(fewer than in the nonlinear simulations), which can be

achieved with the eigenvalue solver. The mode has a fre-

quency x ¼ �0:98cs=R and is robustly damped with a

damping rate c ¼ �0:43cs=R, although these values may

change for better resolved simulations. Additional tests indi-

cate that this mode has properties consistent with MTMs:

The mode is sensitive to changes in the electron temperature

gradient but not the ion temperature gradient, and it is funda-

mentally changed in the electrostatic limit but not when the

electrostatic potential is artificially deleted.

In summary, three types of linear modes with tearing

parity can be identified in the linear eigenmode spectrum:

tearing-parity variants of conventional ITG and ETG modes,

and a stable MTM which has properties consistent with the

unstable MTMs described in the literature. Although the

TITG and TETG modes can be unstable, we demonstrate

below that several properties of the nonlinear tearing fluctua-

tions and the resulting transport cannot be explained by the

TITG and TETG modes, but are closely related to the

authentic MTM. Moreover, we demonstrate that the EM

transport is nonlinearly excited, eliminating the need for a

linear instability mechanism.

V. CONNECTION BETWEEN NONLINEAR DYNAMICS
AND MICROTEARING MODES

A. Comparison of linear modes with SVD modes

Having described the linear eigenmodes with tearing

parity, we now examine in detail the properties of the nonlin-

ear fluctuations, which produce the EM transport, and seek

connections with the linear tearing-parity modes. To this

end, we examine SVDs of the modified gyrocenter distribu-

tion function

gkþx ;ky
ðz; vjj; l; tÞ ¼

X
n

gkþx ;ky
ðz; vjj; lÞðnÞjj h

ðnÞ
kþx ;ky
ðtÞ: (7)

This procedure is identical to that described in Sec. III A for

Ajj, except that each column of the input matrix now addi-

tionally contains the vjj and l dependence of the distribution

function. Note that the SVD modes produced by this decom-

position have the same functional dependence as the distri-

bution function produced when performing a linear

calculation, i.e., they both have the same ðkþx ; z; vjj; lÞ do-

main. As a result, many aspects of these SVD modes can be

compared directly with the linear modes described in

Sec. IV, notably, self consistent U and Ajj mode structures,

and quasilinear fluxes. This SVD of the distribution function

also facilitates a free-energy-based investigation of nonlinear

excitation mechanisms, described in Sec. VI B.

We first examine the nonlinearly evolved distribution

function for the b ¼ 0:003 case at kyqs ¼ 0:2, and centered at

kxqs ¼ 0 (with an extended mode structure consisting of nine

kx modes). An SVD mode decomposition of the form of

Eq. (7) is constructed from this data set, and produces an

n¼ 1 SVD mode that is very similar to the unstable ITG

TABLE I. Summary of mode characteristics for several linear eigenmodes.

The MTM is unique in its electromagnetic properties.

ITG TITG ETG TETG MTM

Tearing parity X X X

Frequency sign þ þ � � �
R=LTi threshold X X

R=LTe threshold X X X

b threshold X

Strongly U dependent X X X X

jQEM
e j=jQES

e j � 1 � 1 � 1 � 1 >1

FIG. 5. Extended parallel mode structures of representative TITG ((A) and

(B)) and the TETG modes ((C) and (D)) for b ¼ 0:003; kyqs ¼ 0:2, and cen-

tered at kxqs ¼ 0.

FIG. 6. Dispersion relations for the ITG/TEM (black circles), most unstable

TETG (red squares), and most unstable TITG (blue diamonds) modes.
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mode. In order to determine the SVD modes that are responsi-

ble for the magnetic stochasticity and associated transport, the

electron EM heat flux was calculated for each mode. Although

the SVD modes are not orthogonal for the heat flux operation,

the orthogonality of the SVD time traces allows a time-

averaged heat flux to be uniquely associated with each mode.

The n¼ 4 SVD mode possesses tearing parity and additionally

defines the dominant outward contribution to QEM
e ; for this

mode QEM
e =ðcsP0q2

s=R2Þ ¼ 1:0, compared with a total of

QEM
e =ðcsP0q2

s=R2Þ ¼ �6:3� 10�3 for all other subdominant

(n > 1) modes combined. Thus the transport associated with

this wave number can be completely described by the domi-

nant ITG mode (n¼ 1) and the dominant tearing mode

(n¼ 4). The mode structure for this tearing mode is shown in

Fig. 7 and exhibits clearly dominant tearing parity with a

(largely) symmetric Ajj and antisymmetric U. SVDs of

extended mode structures at other wave numbers are similar,

although in some cases two or more similar SVD modes pro-

duce significant contributions to the EM flux, and at jkxj > 0,

the parity of the mode structures is more strongly mixed.

Note that the U mode structure shown in Fig. 7 is well

resolved with only a few kx connections (i.e., a few multiples

of p) in contrast with the MTMs described in Refs. 23–25.

MTMs with limited mode structures similar to those

described here have recently been identified in gyrokinetic

simulations in other parameter regimes.27,28

The Ajj mode structure of the SVD mode is plotted along

with the corresponding mode structures for the tearing-parity

linear eigenmodes in Fig. 8; the SVD mode has a nearly

identical mode structure to the linear MTM, whereas the dis-

tinctive features of the TITG and TETG modes are not

observed. Other features of the modes also indicate a con-

nection between the SVD mode and the linear MTM; as

summarized in Table II, these modes have comparable val-

ues of quasilinear EM fluxes and the ratio of Ajj to U inten-

sity, whereas the values for the TITG and TETG modes are

orders of magnitude smaller. These observations are a strong

indication that the fluctuations responsible for the magnetic

stochasticity and transport are nonlinear manifestations of

MTMs similar to those described in the literature.

B. Linear eigenmode projection

Additional insight can be gained by projecting the nonlin-

ear distribution function onto a partial basis of linear eigenm-

odes. To this end, a nonlinear simulation was performed using

parameters corresponding to those used to calculate the linear

MTM described in Sec. IV. The distribution function for the

extended mode structure at kyqs ¼ 0:2 and centered at kxqs ¼
0 was projected onto a large set of orthogonalized eigenmo-

des.36 The eigenmodes were orthogonalized using the Gram-

Schmidt procedure starting with the ITG mode and the MTM,

followed by a large subset of subdominant modes ordered by

linear growth rate. The contribution of each mode to the EM

heat transport was calculated and is shown in Fig. 9, where

the eigenvalues are plotted in the complex plane representing

the mode growth rates and frequencies, and the color weight-

ing indicates the absolute value of the EM transport produced

by each mode. The ITG mode is associated with a large nega-

tive value, and the subdominant tearing mode (with c ¼
�0:43cs=R and x ¼ �0:98cs=R) produces a significant posi-

tive value. All other modes produce only small contributions

to the EM transport. Note that the MTM does not achieve an

extraordinarily high amplitude in relation to the other subdo-

minant modes, but rather only a large contribution to the EM

heat flux due to its large quasilinear QEM
e .

It should be noted that the modes cannot be orthogonal-

ized for the EM heat flux operator, which is not a valid scalar

product (because it can violate the condition hv; vi > 0 when

v 6¼ 0). For this reason, and because of the resolution con-

straints enforced by the direct eigenmode solver, this eigen-

mode projection should be considered as a qualitative rather

than quantitative description of the transport dynamics.

FIG. 7. Parallel mode structure of the tearing-parity mode constructed from

an SVD of the gyrocenter distribution function at b ¼ 0:003; kyqs ¼ 0:2, and

centered at kxqs ¼ 0. The mode produces the dominant contribution to the

outward electromagnetic heat flux at this wave number.

FIG. 8. Comparison of the Ajj mode structures for the SVD tearing-parity

mode (black x’s), the linear subdominant microtearing mode (red þ’s), the

TITG mode (blue dashed line), and the TETG mode (green dot-dashed line).

The SVD mode clearly matches the microtearing mode structure but not the

TITG or TETG modes.

TABLE II. Summary of mode properties connecting the SVD tearing mode

and the linear MTM, and distinguishing them from the TITG and TETG

modes.

TITG TETG MTM SVD

QEM
e =jQES

i j 4:8� 10�3 �0.13 730 330Ð
A2
jjdz=

Ð
U2dz 1:3� 10�3 2:8� 10�5 0.10 0.16
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C. Microtearing considerations

The connection between the MTM and the EM transport

studied here motivates an investigation of certain physical and

numerical properties to which microtearing is known to be

sensitive. Microtearing physics can be extremely demanding

to resolve numerically, requiring both very small radial scales

(i.e., a very extended mode structure) in order to resolve the

electrostatic potential fluctuations and current layers, and large

radial box sizes to resolve the Ajj fluctuations. For this reason,

nonlinear simulations where microtearing is the dominant

instability have only become accessible in the last few

years.24,25 Unfortunately, linear convergence tests directly

examining the resolution requirements of the subdominant

MTM are not possible because of the scaling properties of the

direct eigenmode solver described in Sec. IV. However, as

shown in Fig. 7, the microtearing mode structure extracted

from the nonlinear simulations is sufficiently resolved. More-

over, microtearing modes with similar mode structures (i.e.,

requiring only a few kx connections) have recently been

observed in other scenarios.27,28

Additionally, nonlinear resolution tests were performed

(in addition to the thorough convergence tests described in

Ref. 14). A simulation at b ¼ 0:003 using increased parallel

and velocity-space resolution ((48, 64, 16) grid points in the

ðz; vjj; lÞ coordinates) and two simulations (at b ¼ 0:003 and

0.006) with increased radial resolution (using 392 kx modes

resolving up to kxmaxqs ¼ 11:9) show no significant change

in transport levels. Note that the radial hyperdiffusion is of

the form cðkx=kxmaxÞ4, where c is a user-defined coefficient,

so that when the resolution is increased, the operator only

becomes active at correspondingly higher wave numbers.

Microtearing modes are also sensitive to collisions,

which are neglected in the CBC b scan but are an integral

part of microtearing physics. The dependence of microtear-

ing modes on collisionality is non-trivial; collisions can be

either stabilizing or destabilizing depending on the parameter

regime.26–28 Nonlinear collisionality scans were performed

for the b ¼ 0:003; 0:006 cases covering the regime �R=cs

� 1 to �R=cs � 1. At �R=cs � 1, the EM transport is simi-

lar to the collisionless cases. As � increases, the ES transport

decreases consistent with the corresponding decrease of the

ITG growth rate. The EM transport also decreases, but at a

much faster rate than the ES transport, as shown in Fig. 10.

In both scans, the electron EM transport is strongly sup-

pressed in relation to the ES transport as �R=cs ! 1. It is

unknown whether these features are related to a direct effect

on the microtearing modes, an indirect effect on the nonlin-

ear excitation mechanism, or simply the properties of heat

transport in a stochastic magnetic field.

VI. NONLINEAR EXCITATION MECHANISM

A. Nonlinear time scales

Having demonstrated a connection with the linear

microtearing mode, we now seek to identify an excitation

mechanism. The electron EM transport shows distinct signa-

tures of nonlinear excitation. Fig. 11(A) shows the time

traces for the electron EM heat flux along with the electro-

static channels for the b ¼ 0:007 case. The ion and electron

ES transport channels are both produced by the ITG mode,

and their time traces are highly correlated; the nonlinear

amplitudes fluctuate in phase with each other and differ only

by their relative amplitude, which is related to the properties

of the linear ITG mode. In the early time linear growth phase

(shown in Fig. 11(B)), the ES channels grow at approxi-

mately the rate that would be expected from the linear

growth rate of the ITG mode (note that growth rates shown

here are twice the corresponding linear growth rates since

the flux is a quadratic quantity). The EM transport begins

growing at a later time than the ES transport. Moreover, in

contrast to the ES transport, the EM transport exhibits no

smooth exponential growth, but rather a general trend of

growth at approximately twice the rate of the ES channels,

punctuated by brief sharp increases. Both the general trend

FIG. 9. A subset of the linear eigenvalues plotted in the complex plane

defined by the growth rate and frequency at b ¼ 0:003; kyqs ¼ 0:2, and cen-

tered at kxqs ¼ 0. The color weighting is produced by projecting the nonli-

nearly evolved distribution function onto this subset of orthogonalized

eigenmodes and calculating the time-averaged absolute value of the electron

electromagnetic heat flux associated with each mode. The ITG mode pro-

duces a significant negative flux, and the microtearing mode produces a sig-

nificant outward flux.

FIG. 10. The ratio QEM
e =QES

e over a scan in collisionality for the b ¼ 0:003

case (black x’s) and the b ¼ 0:006 case (blue þ’s), and the ratio QES
e =QES

i

for the same b cases (red circles and green triangles, respectively). The EM

transport is suppressed as collisionality increases. The larger free-standing

symbols at the lowest collisionality point represent velocity space resolution

tests with (96,16) and (48,16) grid points in ðvjj; lÞ for the b ¼ 0:003 and

b ¼ 0:006 cases, respectively.
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(cR=cs � 1) and the bursts (cR=cs 	 1) are much larger than

any linear growth rates in the system, indicating a nonlinear

excitation mechanism.

In the saturated phase shown in Fig. 11(C), these relative

time scales are maintained. A probability distribution func-

tion (PDF) of the instantaneous growth rates ð1=QÞ @Q=@t
shows that the ES growth rates are characteristic of the linear

growth time scales, while the instantaneous EM growth rates

are characterized by time scales, which are much larger than

the ES growth rates. Additionally, the ES channels continue

to fluctuate in phase in the saturated state. In contrast, the

EM channel follows the trends of the ES channels, but typi-

cally with a time lag. The cross correlation function CðsÞ
¼
Ð

QES
e ðtÞQEM

e ðtþ sÞ dt indicates that the two signals are

most strongly correlated at scs=R ’ 2.

These basic properties are observed, with some varia-

tion, throughout the b scan and also in the TEM b scan

described in Ref. 15.

B. Nonlinear excitation through coupling with zonal
wave numbers

In order to identify the relevant nonlinear coupling

mechanisms, we construct an SVD of the gyrocenter distri-

bution function from a GENE simulation and examine the

energetics of the tearing fluctuations. We examine in detail

the SVD microtearing mode described in Sec. V A

(kyqs ¼ 0:2; kxqs ¼ 0 for the b ¼ 0:003 case). In order to

study the excitation mechanism of this mode, we construct

nonlinear energy transfer functions.49,50 The free energy51 is

defined as

Ek ¼
X

j

ð
dz dvjj dl Tj0=Fj0ðgjk þ qjFj0=Tj0vjkÞ
gjk; (8)

where j denotes the particle species, qj is particle charge, Fj0

is the background Maxwellian distribution function,

vj ¼ �Uj þ vTjvjj �Ajj j, where the overbar denotes a gyroaver-

age, and vTj is the particle thermal velocity. Normalization is

as described in Ref. 52. The corresponding energy evolution

equation is

@tEk ¼ L½gk; gk� þ
X

k0
N k;k0 ½gk; gk0 ; gk�k0 � þ c:c: ; (9)

where L includes the linear gyrokinetic operator, c.c. denotes

the complex conjugate, and the nonlinear energy transfer

function N is defined as

N
k;k
0 ¼

X
j

ð
dz dvjj dl ðk0xky � kxk

0

yÞ

� ½qjv


jkvjk0gjðk�k0Þ � Tj0=Fj0g
jkvjðk�k0Þgjk0 � : (10)

The latter represents the energy transferred conservatively

between the wave numbers ðkx; kyÞ and ðk0x; k
0
yÞ, as evidenced

by the property N k;k0 ¼ �N k0;k. This energy equation, how-

ever, defines the nonlinear energy transfer function for all

fluctuations at a given wave number; a refinement is necessary

to examine the energetics of the tearing mode of interest:

@tE
ðtearÞ
k ¼ L½gðtearÞ

k ; gk� þ
P

k0 N k;k0 ½gðtearÞ
k ; gk0 ; gk�k0 �, where

gðtearÞ represents the SVD tearing mode described above, and

the LHS represents the evolution of the tearing mode energy

due to the orthogonality of the SVD modes.

It is observed that the nonlinear energy transfer for the

tearing mode is dominated by energy injected into the mode

from wave numbers at the same ky and jkxj > 0, and energy

transferred out of the mode into zonal wave numbers

(ky ¼ 0). Note that both of these energy transfer channels

represent coupling with zonal modes, i.e., either k
0
y ¼ 0 or

k
0 0
y � ky � k

0
y ¼ 0. A closer examination shows that the ener-

getics of the mode is dominated by the imbalance between

this energy transfer as demonstrated in Fig. 12. The free

energy of the tearing mode is plotted along with the total

nonlinear drive for a time period in the saturated nonlinear

phase. The linear contribution (not shown in Fig. 12) also

occasionally plays a role but is much smaller than the nonlin-

ear term, which dominates both the drive and saturation of

the mode; in general, the free energy increases when the non-

linear drive is positive and decreases when the nonlinear

drive is negative. Also shown in Fig. 12 is the component of

the nonlinear drive defined by the subset of wave numbers

representing zonal coupling: k
0
yqs ¼ 0:2 and k

0
yqs ¼ 0. This

subset closely tracks the total nonlinear drive and captures

the major trends in the energy balance. We thus have the

unique situation where the saturation mechanism for the

driving ITG instability in turn catalyzes a significant addi-

tional transport channel. It is interesting to note that in two-

dimensional fluid models of plasma microturbulence, zonal

flows have been identified as the main mechanism for

damped eigenmode excitation.53

FIG. 11. Time traces of the ion electrostatic (blue dashed line), electron

electrostatic (green dotted-dashed line), and electron electromagnetic (red

solid line) for the b ¼ 0:007 case. The electrostatic transport channels are in

phase and are associated with the same time scales as the linear growth rates.

The electromagnetic flux lags the electrostatic channels and is characterized

by time scales faster than the linear time scales, suggesting a nonlinear exci-

tation mechanism.
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The excitation mechanism outlined above is observed for a

wide range of wave numbers (a ky scan at kx ¼ 0 and a kx scan

at kyqs ¼ 0:2). For jkxj > 0 wave numbers, an additional mech-

anism is sometimes observed. For some tearing SVD modes, the

linear term in the energy balance drives the mode, and the non-

linear term balances the linear drive. This is interpreted as a

manifestation of sub-critical instability since no unstable

tearing-parity modes with significant quasilinear EM transport

are observed in the linear spectra at these wave numbers.

The analysis presented above cannot distinguish between

zonal flows and GAMs, which are both ky ¼ 0 fluctuations.

This distinction may be important when taking into account

parity considerations of the coupling mechanism. Zonal flows

are uniform in the z direction, while GAMs have an odd paral-

lel component. Thus, it may be expected that a GAM would

couple more effectively with a ballooning parity ITG mode to

drive tearing-parity fluctuations. However, coupling between

zonal flows and ITG modes is also possible when considering

the odd component of jkxj > 0 ITG modes. Neither zonal

flows nor GAMs can be excluded as a contributing factor in

the nonlinear excitation mechanism.

VII. TRANSPORT MODELING

The scenario described in this paper states that a signifi-

cant component of the heat transport is not directly attribut-

able to the driving instabilities. Such dynamics cannot be

captured by quasilinear theory. Nonetheless, the EM trans-

port channel is intimately connected to the ITG drive through

the nonlinear excitation mechanism; the same mechanism

that sets the ES transport levels (coupling with zonal modes)

is also responsible for the excitation of the EM transport

channel. It is thus plausible that the EM transport could be

modeled in relation to the ES transport. Such a description

would be useful as a tool for reduced transport modeling and

also provide some expectations of how EM transport behaves

in a broader parameter regime.

In Refs. 8 and 14, it is shown that the electron EM heat

diffusivity vEM
e is proportional to b2 times the ES diffusivity

vES ¼ vES
i þ vES

e . This estimate can be refined by including a

quasilinear correction, which accounts for the contribution of

the most unstable mode, as described in Ref. 8. These results

motivate a simple model for the EM heat diffusivity

vEM
e � rðb=bcritÞ2vES þ vES

e ðvEM
e =vES

e ÞMU ; (11)

where bcrit is the KBM threshold (this normalization to bcrit is

used in Ref. 54), MU denotes that these quantities are taken

from the most unstable linear eigenmode, and r is an order-

unity constant that is expected to depend on such things as the

collisionality, the relative effectiveness of the nonlinear exci-

tation mechanism described in Sec. VI, and the parallel heat

diffusivity vejj � q0RðTe=meÞ1=2
(the parallel heat diffusivity

can be used to relate vEM
e to the magnetic fluctuation ampli-

tude14,45). The second term on the RHS of Eq. (11) describes

the quasilinear EM heat diffusivity expected from the most

unstable eigenmode. The first term on the RHS of Eq. (11)

describes the component of the transport associated with the

microtearing fluctuations and is plotted for both the CBC and

TEM b scans in Fig. 13, where the values r ¼ ð0:92; 0:24Þ
have been selected for the (CBC and TEM) scans, respec-

tively. The quasilinear correction significantly improves the

model at low b for the CBC scan,8 but not for the TEM scan.

Note that the normalization to bcrit indicates that this b2

proportionality factor will typically be smaller—often much

smaller—than unity. Some conclusions can be drawn about the

r factor by examining the database of nonlinear EM gyrokinetic

simulations described in Ref. 54. The database comprises

thirty nonlinear EM simulations consisting of variations in gra-

dient scale lengths ðR=Ln¼½0:37;3:0�;R=LTe¼½0;6:9�;R=LTi

¼½0;10:4�Þ;b¼½0:001;0:02�;q0¼½1:4;3:7�, and ŝ¼½0:57;2:5�
representative of typical core parameters. Simulations modeling

ASDEX upgrade and JET discharges using experimental pro-

files and equilibria are also included. It is found that the value

r¼1 is an upper bound for almost all simulations in the data-

base (excluding MTM driven turbulence). Several simulations

with low values of ðb=bcritÞ2vES exhibit negative EM diffusiv-

ities as would be expected from the quasilinear term in Eq. (11).

FIG. 12. The free energy in the SVD tearing mode (solid black line) at

b ¼ 0:003; kyqs ¼ 0:2, and centered at kxqs ¼ 0, along with the total nonlin-

ear drive (gray line–red online) and the nonlinear drive defined by coupling

with zonal wave numbers (dashed line–blue online), plotted over a time seg-

ment of the nonlinear saturated state. The energetics of the tearing mode is

dominated by the nonlinear drive which consists largely of the zonal cou-

pling. Reprinted with permission from D. R. Hatch et al., Phys. Rev. Lett.

108, 235002 (2012). Copyright 2012 the American Physical Society.

FIG. 13. The electron electromagnetic heat diffusivity (black x’s) plotted

over the b scan and the same quantity produced from the first term on the

rhs of Eq. (11) (red þ’s), for the CBC case (A) and the TEM case (B). Val-

ues of r ¼ ð0:92; 0:24Þ were used for the (CBC, TEM) cases, respectively.
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These results suggest that high-b ITG/TEM transport

will not produce drastically high levels of electromagnetic

heat flux for typical core parameters. The effective result of

EM effects on ITG/TEM driven transport is a shift away

from ion heat transport to processes where the transport is

more heavily driven in the electron channel, with gradients

still constrained by a b limit (KBM, or possibly the scenario

described in Ref. 43).

VIII. SUMMARY AND CONCLUSIONS

This study has provided a detailed examination of the

mechanisms whereby magnetic stochasticity and transport

develop in electromagnetic ITG-driven turbulence. Two pos-

sible sources of tearing-parity fluctuations were considered,

namely linear eigenmodes with tearing parity and ITG

modes at jkxj > 0. The magnetic fluctuations from nonlinear

simulations were decomposed according to parity considera-

tions into predominantly ballooning parity fluctuations corre-

sponding to the ITG modes, and predominantly tearing-

parity fluctuations. It was shown that the latter are responsi-

ble for the magnetic stochasticity, eliminating the ITG mode

as the direct cause of the EM effects. The EM heat transport

is a superposition of an inward component associated with

the ITG modes and an outward component associated with

the tearing fluctuations; the outward component scales like

b2QES and eventually dominates as b increases.

The linear eigenmodes that have tearing-parity were clas-

sified and described. Three types of tearing-parity modes were

identified; TITG and TETG modes are similar to conventional

ITG and ETG modes with the exception of the mode parity

and may be unstable for the parameter regimes studied here.

Additionally, a stable microtearing mode was found in the lin-

ear spectrum. SVD decompositions of the nonlinearly evolved

distribution function produce modes that most efficiently

describe the nonlinear fluctuations and can be compared with

the linear eigenmodes. These decompositions reveal tearing-

parity modes, which are responsible for the EM heat flux and

have characteristics (including parallel mode structures, quasi-

linear EM fluxes, and the ratio of Ajj to U) that are very simi-

lar to linear microtearing modes and dissimilar to the TITG

and TETG modes. It was concluded that microtearing modes

are responsible for the magnetic stochasticity and associated

heat transport. This is further substantiated by a projection of

the nonlinearly evolved distribution function onto a partial ba-

sis of linear eigenmodes, which demonstrates significant con-

tributions to the outward EM transport only from the

subdominant microtearing mode.

The EM heat flux shows signatures of nonlinear excita-

tion, being associated with growth time scales (in both the

earlier linear and later saturated phases) much larger than the

linear growth rates in the system. An examination of nonlin-

ear energy transfer functions revealed that the predominant

excitation mechanism for the microtearing modes is coupling

with zonal modes (modes at ky ¼ 0).

A simple formula was presented relating EM transport

to ES transport, and it was tentatively concluded that ITG/

TEM driven EM transport will not produce drastically high

transport levels for typical core parameters.

In summary, this work explains many of the features of

EM microturbulence discovered in recent gyrokinetic studies

and may offer a paradigm, which can be examined in a

broader range of parameter regimes, for how magnetic fluctu-

ations develop in turbulence driven by instabilities that are not

intrinsically electromagnetic. This paradigm may shed light

on the various b scalings for confinement reported experimen-

tally, and ultimately offer insight into how EM effects on

transport may be manifest in future devices such as ITER.
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