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1Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712, USA
2Max Planck Institute for Plasma Physics, EURATOM Association, 85748 Garching, Germany

3Max-Planck/Princeton Center for Plasma Physics
(Received 18 June 2013; published 22 October 2013)

A gyrokinetic model of ion temperature gradient driven turbulence in magnetized plasmas is used to

study the injection, nonlinear redistribution, and collisional dissipation of free energy in the saturated

turbulent state over a broad range of driving gradients and collision frequencies. The dimensionless

parameter LT=LC, where LT is the ion temperature gradient scale length and LC is the collisional mean

free path, is shown to parametrize a transition between a saturation regime dominated by nonlinear

transfer of free energy to small perpendicular (to the magnetic field) scales and a regime dominated by

dissipation at large scales in all phase space dimensions.
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Introduction.—Gyrokinetic theory is the predominant
formalism for describing low-frequency microturbulence
in magnetized plasmas [1], with a wide range of applica-
tions from magnetic confinement fusion [2,3] to space
and astrophysics [4–6]. Despite its importance, a coherent
overall picture regarding the fundamental nature of gyro-
kinetic turbulence has yet to emerge. In this context, it is
key to understand the injection, nonlinear redistribution,
and collisional dissipation of free energy—which is the
ideal quadratic invariant in gyrokinetics—in the saturated
turbulent state. Because of the diffusive terms (second-
order velocity space derivatives) inherent in realistic
collision operators, collisional dissipation is often associ-
ated with small scales in velocity space. This is roughly
analogous to the link between dissipation and small spa-
tial scales in Navier-Stokes turbulence, with the (normal-
ized) collision frequency playing the role of the inverse
Reynolds number.

Two main mechanisms have been identified for devel-
oping small scales in velocity space: linear phase mixing
(Landau damping) [7,8], associated with small scales in
parallel (to the magnetic field) velocity space, and non-
linear phase mixing [9,10], which becomes important at
k?�i > 1 (k? is the perpendicular wave number and �i is
the ion gyroradius) and is linked to small scales in perpen-
dicular velocity and real space. In contrast with the latter, a
large fraction of the collisional dissipation is often
observed to occur at large (real space) perpendicular scales
in gyrokinetic simulations [11,12]. This large-scale dissi-
pation has been interpreted using the so-called damped
eigenmode paradigm [11–13]–saturation via nonlinear ex-
citation of linearly stable structures at phase space scales
comparable to those of the driving microinstabilities. To
date, there exists no framework reconciling large-scale and
small-scale dissipation scenarios. At issue is the relative
importance of each of these mechanisms, the processes by

which they interact with each other, and the parameters
that determine transitions between different saturation
regimes.
In this work, we exploit the transparency of a relatively

simple gyrokinetic system in order to address these ques-
tions. We study electrostatic ion temperature gradient
(ITG) driven turbulence in slab geometry using a
Hermite representation for the parallel velocity space.
The Hermite free energy spectrum, which is steeper
than is expected linearly, is interpreted using the concept
of critical balance [14–16]. These insights are used to
reconcile different saturation paradigms. In particular, it
is shown that the dimensionless parameter LT=LC, where
LT is the ion temperature gradient scale length and LC is
the collisional mean free path, parameterizes a transition
from a regime where the bulk of the free energy achieves
dissipation via nonlinear transfer to small perpendicu-
lar scales (for very small LT=LC) to a regime where
the dissipation is dominated by dynamics on large
scales in all phase space dimensions (for larger
LT=LC). The transition is observed to occur in the weakly
collisional regime at a critical value of LT=LC on the
order of 10�3.
Gyrokinetic model.—We study the nonlinear gyrokinetic

equations in unsheared slab geometry, using the adiabatic
electron approximation. The real space dimensions are
subjected to a Fourier representation, while the parallel
velocity space is decomposed in terms of Hermite

polynomials, fðvÞ ¼ P1
n¼0 f̂nHnðvÞe�v2

, where HnðxÞ �
ðn!2n�1=2Þ�1=2ex

2ð�d=dxÞne�x2 . Hermite polynomials
provide an elegant characterization of energy transfer and
dissipation in parallel velocity scales [17,18]. Moreover,
they have recently been shown to optimally represent
velocity space in gyrokinetic simulations [19] and to fa-
cilitate accurate solutions of linear kinetic operators [20].
The resulting gyrokinetic equation reads [21]
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where f̂k;nð�ini0=Lnv
3
tiÞ is the ion distribution function, ni0

is the ion density, Ln is the density gradient scale length, vti

is the ion thermal velocity, n denotes the order of the
Hermite polynomial, tðLn=vtiÞ is time, �i ¼ Ln=LT is
the ratio of the gradient scale lengths, kyð��1

i Þ is the

Fourier wave number for the direction perpendicular to
both the direction of the background gradients [x !
kxð��1

i Þ] and the coordinate aligned with the magnetic field

[z ! kzðL�1
n Þ]. The perpendicular wave number is k? �

ðk2x þ k2yÞ1=2, ��kð�iTe0=LneÞ is the gyro-averaged electro-

static potential, Te0 is the background electron tempera-
ture, e is the elementary charge, and �ðvti=LnÞ is the
collision frequency. We use the Lenard-Bernstein collision
operator [22] for the parallel velocity, for which Hermite
polynomials are eigenvectors: �@v½ð1=2Þ@v þ v� ! �n.
Equation (1) has been integrated over perpendicular veloc-
ity, replacing the gyroaverage operators with factors of

e�k2?=2—an exact result if the perturbed distribution func-
tion is a Maxwellian in v?. The electrostatic potential is
determined by the field equation

�k ¼ �1=4e�k2?=2f̂k;0=½�þ 1� �0ðk2?Þ�; (2)

where � is the ratio of the ion to electron temperature, and
�0ðxÞ � e�xI0ðxÞ, with I0 the zeroth order modified Bessel
function. Note that here we do not remove the flux-surface-
averaged potential, as this treatment strongly suppresses
the turbulence in slab simulations [17]. This v?-integrated
gyrokinetic system is well justified for k? < 1 [23]. In the
numerical results described below, simulations are limited
to these scales. By doing this, we intentionally neglect
nonlinear phase mixing (which becomes important at
k? > 1), and model dissipative processes at k? > 1 using
hyperdiffusion.

Free energy balance.—The k- and n-resolved evolution

equation for the free energy "k;n ¼ "ð�Þ
k �n;0 þ "ðfÞk;n with

the electrostatic part "ð�Þ
k � 1

2 ½�þ 1� �0ðk2?Þ��1j�kj2
and the entropy part "ðfÞk;n � 1

2�
1=2jf̂k;nj2 is readily derived

with the help of Eqs. (1) and (2). One thus obtains

@"ðfÞk;n

@t
¼ �iQk�n;2 � Ck;n � Jð�Þ

k �n;1

þ Jk;n�1=2 � Jk;nþ1=2 þ NðfÞ
k;n; (3)

where the energy injection rate �iQk ¼
�i<½�ð�1=4=21=2Þikyf̂�k;2 ��� is proportional to the radial

ion heat flux Qk and limited to n ¼ 2, the collisional

dissipation rate is Ck;n ¼ 2�n"ðfÞk;n, Jð�Þ
k is the energy

transferred between the electrostatic component at
n ¼ 0 and the entropy component (i.e., Landau damp-

ing), Jk;n�1=2 � <½��1=2ikz
ffiffiffi
n

p
f̂�k;nf̂k;n�1� (Jk;nþ1=2 �

<½�1=2ikz
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
f̂�k;nf̂k;nþ1�), defines energy transfer

between n� 1 (nþ 1) and n (i.e., phase mixing), and

NðfÞ
k;n is the contribution from the nonlinearity. The latter

redistributes energy in k space in a conservative manner.
Similarly, the phase mixing terms represent conservative
energy transfer in n space, as reflected in the Jk;n�1=2

notation. Thus, the k- and n-summed energy equation
reduces to a balance of the net energy sources �iQ and
sinksC. The scales (in the the full phase space) at which this
balance is achieved depend on the interplay between the
dissipation and the conservative energy transfer channels,
which is the focus of the remainder of this Letter.
Simulations.—A fully spectral code (called DNA)

has been developed to solve the system defined by
Eqs. (1) and (2). The simulations use a (normalized) box
size of 125.7 (increased to 144.4 in some simulations) in the

x and y directions, and resolve up to kðmaxÞ
x;y ¼ 1:55.

Hyperdiffusion [15] of the form �?ðkx;y=kðmaxÞ
x;y Þ8f̂k;n is

employed in the perpendicular spatial directions in order
to cut off the spectrum at k? � 1:0. For the parallel direc-
tion, the (normalized) box size is 62.8, and the simulations
resolve up to kz ¼ 4:7. In the literature, k ¼ 0 modes are
often artificially deleted [17,24] for slab ITG simulations.
We opt to dynamically evolve all k ¼ 0 modes and imple-

ment a Krook damping term for kz ¼ 0 and kz ¼ kðminÞ
z

modes in order to avoid slowly growing low-kz modes
that fail to saturate (this is only necessary at very low
collisionality and/or high gradient drive). This Krook term
is always a small fraction of the total dissipation. In combi-
nation with the collision operator, we use hypercollisions

[25] of the form �hðn=nmaxÞ8f̂k;n in order to cut off the

Hermite spectra more sharply in the dissipation range. nmax

and �h are selected in combination with kðmaxÞ
z to satisfy two

criteria: (i) dissipation due to the hypercollisions becomes
important only for n > nc, where nc characterizes the scale
at which collisionality begins to dominate the phase mixing

cascade, and (ii) �h > kðmaxÞ
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nmax þ 1

p
. The latter criterion,

when used in conjunction with the boundary condition [25]

f̂nmaxþ1 ¼ ikz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nmax þ 1

p
f̂n=ð�hÞðnmax þ 1=nmaxÞ8 is suffi-

cient to ensure that the tails of the Hermite spectra are
completely smooth at the nmax boundary.
Critical balance and Hermite spectra.—First, we would

like to characterize the Hermite free energy spectra. The
steady-state n � 1 version of the energy evolution equa-

tion, Eq. (3), can be approximated as jkzjð@=@nÞ
ffiffiffi
n

p
"k;n ¼

NðfÞ
k;n � 2�n"k;n [17,18]. By summing over k space, this

becomes ð@=@nÞhkzin
ffiffiffi
n

p
"n ¼ �2�n"n, where "n �P

k"k;n, and the characteristic parallel wave number for

the nth-order Hermite polynomial is
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hkzin �
P

k jkzj"ðfÞk;n
P

k "
ðfÞ
k;n

: (4)

In cases with fixed kz, this equation can produce spectra

with n�1=2 power laws [18,25]. In the model used in this
work, the characteristic parallel scale length is free to
adjust to the turbulent dynamics, and the n dependence
of hkzin is necessary for determining the Hermite spectrum.
We postulate, and numerically verify, that the nonlinear
decorrelation rate !NL

n determines this n-dependent paral-
lel scale length via the relation !NL

n � hkzvtiin. This is, in
effect, a type of critical balance [14–16] applied to
moments of all orders.

We first test the concept of critical balance in the limit-
ing case � ! 0, which we approximate by setting � ¼ 0,
keeping only hyper-collisions and resolving up to nmax ¼
256. The correlation function Rk?;nð�Þ ¼

R
f̂�k?;nðtþ

�Þf̂k?;nðtÞdt=
R jf̂k?;nj2dt, where f̂k?;n � P

kz
f̂k;n, is

shown in Fig. 1 along with the characteristic parallel
streaming time hkzvtii�1

n for three representative values
of k?. The close connection between hkzvtii�1

n and con-
tours of Rk?;n demonstrates critical balance. Note that the

result is the same if the correlation function is calculated

for the actual nonlinear term in Eq. (1) instead of f̂k?;n.

The observed
ffiffiffi
n

p
dependence of the nonlinear decorre-

lation rate is inconsistent with the naive scaling argument

!NL
n �N k;n=f̂k;n � k2? ��, which has no n dependence.

A plausible explanation for the observed n dependence can
be arrived at by noting that, for each n, the electrostatic

potential beats with the distribution function, additively
combining their characteristic frequencies!NL

n;k �!�jk0 þ
!fn jk�k0 . If the characteristic frequency for the distribution

function is determined by the phase mixing time scale
!fn jk � kz

ffiffiffi
n

p
, then the observed

ffiffiffi
n

p
dependence is cap-

tured for n � 1.
The

ffiffiffi
n

p
dependence of the global (k? summed) hkzin is

clearly observed for the three driving gradients examined
(�i ¼ ½5:0; 7:5; 10:0�), and can be explicitly incorporated
into the n � 1 energy equation,

@

@n
n"n ¼ � 2�

kðeffÞz

n"n � Sn; (5)

where kðeffÞz � hkzin=
ffiffiffi
n

p
. In this equation, an energy sink

term Sn has been added which could represent, e.g., dis-
sipation due to nonlinear phase mixing. In our simulations,
Sn represents high-k? hyperdiffusion, or if one considers
the limited range k? < 1, nonlinear energy transfer to
higher k?. If we assume a simple relation Sn ¼ �"n,
then Eq. (5) has solutions of the form

"n ¼ c0n
�1��e�2�n=kðeffÞz ; (6)

i.e., due to the extra factor of
ffiffiffi
n

p
, the energy equation

supports power laws with arbitrary exponents, depending
on the rate of energy extraction due to Sn. For the arti-
ficial scenario Sn ¼ 0, Eq. (5) produces n�1 power laws—
verified numerically and shown in Fig. 2(a). Note that a
spectral exponent of �1 is a critical exponent separating
collisional dissipation spectra that increase with n from
those that decrease with n. When �> 0 (i.e., whenever Sn
is an energy sink), the Hermite spectrum is steeper than
n�1, and the collisional dissipation peaks at large scales in
parallel velocity space. A hypothetical analogous scenario
for Navier-Stokes turbulence would be observed if power
spectra were steeper than k�2: the scales of energy dis-
sipation would be reversed. Consistent with Eq. (6), vari-
ous power laws are observed in our simulations depending
on the value of �?. The spectra shown in Fig. 2(b) exhibit a

(a)

(b)

(c)

FIG. 1 (color). Contour plots of the temporal correlation func-
tion Rk?;nð�Þ for three representative wave numbers, kx ¼ 0,

ky�i ¼ 0:26 (a), kx ¼ 0, ky�i ¼ 0:52 (b), kx ¼ 0, ky�i ¼ 0:78

(c). Note that the characteristic parallel streaming time hkzvtii�1
n

(dots) tracks the contours of Rk?;nð�Þ.

(a) (b)

FIG. 2 (color online). Hermite spectra of the free energy "ðfÞn

for three different values of the normalized temperature gradient
�i. The spectra are consistent with the power laws defined in
Eq. (6) for cases with �? ¼ 0 (a) and �? � 0 (b).
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n�1:85 power law, which is achieved independently for the
three driving gradients by increasing �? until the appro-

priate [15] perpendicular energy spectrum "kx;y / k�7=3
x;y is

observed between the outer scale and k? � 1.
Two saturation regimes.—Having characterized the

Hermite spectra, we now apply this knowledge to the
saturation paradigms outlined in the introduction. As a
result of the strongly decreasing (with n) dissipation spec-
tra, large scales in velocity space can make a significant
contribution to the dissipation. Since the velocity space
structures of the linear eigenmodes that drive the turbu-
lence are strongly peaked at low n, it is not surprising that
collisional dissipation peaks at the same perpendicular
scales as the energy drive. This is the case for the model
studied here [as seen in Fig. 3(a)], as well as for, to the best
of our knowledge, all other published gyrokinetic dissipa-
tion spectra (see, e.g., Refs. [11,12,17,26–28]). This is
consistent with the damped eigenmode paradigm; nonlin-
ear energy transfer from the unstable modes will primarily
produce structures with comparable scales in velocity
space since the nonlinearity does not (directly) couple
different n. This will be explored in detail in a future
publication.

This analysis also suggests regimes where this low-k?
dissipation scenario will no longer hold. The collision
frequency determines how much energy is dissipated at
each n [compare Figs. 3(b) and 3(d)], and by extension,
how much energy remains to be transferred nonlinearly to
k? * 1 where the much faster nonlinear perpendicular
phase mixing cascade takes over. Likewise, the normalized
driving gradient �i determines the amplitude of �, and by
extension the rate of nonlinear energy transfer to k? > 1.
Thus, it may be expected that a dimensionless parameter
incorporating both of these quantities LT=LC ¼ ��1

i �
determines a transition between two saturation regimes.

An estimate of these two processes can be made
by exactly expressing the collisional dissipation as

Ck?&1 ¼ �
P

k?&1

P
kz

P
n n"

ðfÞ
k;n, and approximating

the nonlinear energy flux [28] as �k?�1 �P
kz

P
n !

NL
k?�1"

ðfÞ
kz;n;k?�1 (k? � 1 denotes a sum over a shell

of wave numbers with magnitude k? � 1). The normalized
nonlinear decorrelation rate at k? � 1 is expected to be
somewhat smaller than �i, and is observed in our simula-
tions to obey !NL

k?�1 � 	k?�1�i, with 	k?�1 & 0:3 (taking

for simplicity the n-summed quantity). The relative impor-
tance of the two mechanisms can thus be estimated as
Ck?&1=�k?�1 � 
�1

d LT=LC, where


�1
d �

P
k?&1

P
kz

P
n n"

ðfÞ
k;n

P
kz

P
n 	k?�1"

ðfÞ
kz;n;k?�1

: (7)

Note that both the numerator and the denominator in
Eq. (7) entail sums over the free energy, but the contribu-
tion from the collisional dissipation (numerator) is larger
because it is a global sum in k?, and the prefactor increases
more strongly with n. This suggests that low-k? dissipa-
tion can be important even for LT=LC � 1.
We conducted a scan of LT=LC for three different ion

temperature gradients and for collision frequencies span-
ning over two orders of magnitude, adjusted to hold LT=LC

constant at each point in the scan. The ratio of the
collisional dissipation C to the dissipation due to k? hyper-
diffusion D?, is plotted in Fig. 4 (note that the hyper-
collisions are grouped with the collisions, and the low-kz
dissipation term is not included); the dissipation is domi-
nated by high-k? hyperdiffusion [see Fig. 3(c)] at very low
collisionality, and by collisional dissipation at low k? [see
Fig. 3(a)] as the collisionality increases. The two dissipa-
tion mechanisms are equal at LT=LC � 2:7	 10�3, indi-
cating that the low-k? mechanism is important even in
weakly collisional regimes (i.e., for �L=vti � 1). These
results are consistent with full toroidal gyrokinetic simu-
lations—e.g., in Ref. [28] the ratio of dissipation at k? < 1
to dissipation at k? > 1 (similar to the quantity C=D?) is
found to be approximately one for LT=LC ¼ 1:7	 10�3

[inferred from Fig. (1)b in Ref. [28]]. A modified collision
operator (removing collisions at n ¼ 1 and n ¼ 2 in order
to conserve momentum and energy) was also tested and

(a) (b)

(d)(c)

FIG. 3 (color online). Free energy dissipation for two collision
frequencies, LT=LC ¼ 6:3	 10�3 (top row), and LT=LC ¼
2:0	 10�4 (bottom row). Contour plots for the perpendicular
wave numbers are shown in (a) and (c), and Hermite spectra are
shown in (b) and (d).

FIG. 4 (color online). The ratio of collisional dissipation C to
dissipation from k? hyperdiffusion D? for a scan in LT=LC. The
black circle denotes a similar quantity (ratio of dissipation at
k? < 1 to dissipation at k? > 1) for the toroidal gyrokinetic
simulation described in Ref. [28].
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found to decrease the collisional dissipation and increase
the low-kz dissipation. The critical LT=LC was shifted to
�6	 10�3, but the major conclusions are unchanged.

Summary.—A fully spectral gyrokinetic model of ion
temperature gradient driven turbulence in magnetized plas-
mas was used to investigate free energy dynamics in quasi-
stationary states. We have shown that even for small values
of LT=LC the dissipation mainly takes place at large scales
in all phase space dimensions. As LT=LC decreases, colli-
sional dissipation in parallel velocity space at k? < 1 is
insufficient to balance the free energy injection, and non-
linear perpendicular phase mixing is inferred to be an
important dissipation mechanism. This work reconciles
two disparate dissipation paradigms for gyrokinetic
turbulence.
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