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Abstract

The treatment of kinetic shear Alfvén waves in homogeneous magnetized plasmas by means of Vlasov simulation is ex-
amined. To this end, the driftkinetic version of the Vlasov—Maxwell equations is solved via various numerical schemes, all
employing a grid in(1 + 1)D phase space. Since kinetic shear Alfvén waves are Landau damped, the use of an equidistant
grid in velocity space leads to a recurrence problem. The latter can be circumvented, however, by damping the finest velocity
space scales through higher-order collis@perators. Of particular interest isetiquestion if and under which circumstances
the magnetohydrodynamic limit (small perpendicular wavenumber) can be recovered.
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1. Introduction reaches the drift wave dispersion scale= c;/$2;
[where ¢, = (T,/m;)Y? is the ion sound speed in
Magnetized plasmas exhibit a large number of the cold ion_lim_it]. In this regime, they are there-
waves and instabilitief]. In the low beta, low fre-  fore calledkinetic shear Alfvén waveq2]. If the
quency rangeg <« 1 and w < £2; [where 2; = perpendicular wavelength is further decreased, they
(¢:B)/(m;c) is the ion cyclotron frequency], shear finally transition into electron sound waves. These are
1 l ’ . .
Alfvén waves are of particular interest since they are €xact analogues of ion sound waves, with the role
involved in a large number of plasma physics prob- of electrons and ions reversed. Both kinetic shear
lems [2]. While their simplest description is given Qlfven ;vaves and electron sound waves are Landau
by magnetohydrodynamics (MHD), kinetic effects amped.

. : . Kinetic shear Alfvén waves are described by the
come into play once their perpendicular wavelength > ™~"" N .
play Perp 9 driftkinetic (or gyrokinetic) version of the Vlasov—

Maxwell equations in3 + 2)D phase space (see, e.g.,
* Corresponding author. Refs.[3,4]). In both cases, the fast gyrophase depen-
E-mail addressTilman.Dannert@ipp.mpg.d@. Dannert). dence is removed analytically. For the purposes of this
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paper, it will suffice to study a homogeneous magne- 2. Basic equations

tized plasma whosél + 1)D phase space is spanned

by the field-line-following coordinate and the par- 2.1. Unnormalized equations in {82)D phase

allel velocity v;. The perpendicular wavenumber en- Space

ters only as a parameter, and the remaining veloc-

ity space variable can be integrated QEIG] De- Kinetic shear Alfvén waves in a homogeneous
spite its relative simplicity, this reduced system still Magnetoplasma are described by the driftkinetic ver-

contains the key challenges one has to face if seek—Sir?n of the Vlasr:)v—IMaxvyell equatignbs ifﬁ + ?D
ing a numerical represeritan of kinetic shear Alfvén phase space. The latter is spanned by the three spa-
Waves tial variables(x, y, z) [the z-axis is assumed to be

. : . aligned with the background magnetic field] and two
Several options are available when trying to solve

e velocity space variables, e.gw, v1). In the low-
the corresponding initial value problem by means of frequency limit, the fast gyrophase dependence may

computer simulations. Probably the most common ap- phe removed analytically. Moreover, for simplicity, the
proach is the particle-in-cell (PIC) methdd]. As it ions are taken to be singly charged and immobile. Af-
turns out, however, the inherent particle noise pre- ter linearization, one is then left with the driftkinetic
vents a straightforward solution unless the number Vlasov equation

of particles is increased substantially. As an alterna-

tive route, various noise-reduced PIC schemes haveaFe + v”% _E19F0 _ 0,

been proposed (see R¢8] and references therein), ! 8¢8Z 1821”6 vy 1)
but the basic problem remains. Vlasov methods, on £ =—— — ———

the other hand, avoid the noise issue completely by
employing a fixed grid in phase spaf®. The ba-

sic integro-differential equations are then finite differ-
enced and solved via techniques borrowed from com- ,, ;.2 5

putational fluid dynamics. Here, we adopt this latter efzvﬁb = / Fe dvy,

approach B de (2)
' VEA| —fvnFedvn

for the perturbed electron distribution functi@p, to-
gether with the corresponding field equations

The paper is structureas follows. In Sectior2, the c
basic equations are introduced and the dispersion rela-o; the perturbed electrostatic and parallel magnetic
tion for kinetic shear .Alfvér.w waves in a homogeneous potentials,¢ and A;. Here,e > 0 is the elementary
magnetized plasma is derived. In Sect®yrdifferent charge and-,q is the equilibrium distribution function
phase space discretization schemes are investigatedopf the electrons which is assumed to be given by an
involving explicit Runge—Kutta time stepping and up- unshifted Maxwellian,
wind or central spatial discretizations. Due to the use 0 32 22
of an equidistant grid in velocity space, a recurrence Feo :”eO(”Ure) e Ve, ®3)
problem is encountered which can be circumvented
however, by the use of appropriate hypercollision op-
erators. In Sectiod, convergence with respect to res-
olution in velocity space and real space is checked. It 2.2. Normalization and reduction to (& 1)D phase
turns out that the number of required velocity space space
points is surprisingly low. The results of the initial

value computations are compared to those of the re-  Eor reasons that will become clear in Sectime
spective dispersion relation for a wide range of phys- introduce the modified distribution functigna = F, —
ical parameters in Sectioh Finally, a brief summary (v /c)(eA}/ T.0) Fe0 [6,10]. Normalizing Eqs(1)—(3)
is presented in Sectidh according toTable 1 one thus obtains

» such thab,, F.o = —mev) Feo/ T.0. Herev?, = 2T,o/
m, andv? = vﬁ + vJZ_.
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Table 1
Normalization of all independenand dependent variables (cf.
Refs.[5,6])

X,y z  vvL ger Fer Feo & A
Ps LH UTe LL/CS neo/v%, TeO/e pSBOﬁL’LH/LL
98¢ . yvy Vy(Fy — $Fug) =0
ar eV V] Ae e ’ (4)
8e=F.— O5ev||€,BeA|| Feo
together with
Vfab:fge duy,
(5)

(V2= Be/1e) Al =/aevnge duy.

Here, we have used the following definitions:

Ane.oT.0 me
= ) HRe = —,
e Bg e m,~
2
() e
= , = —.
Ly €Me

As mentioned befora:s2 = T.o/mi, ps = c¢s/$2;, and
2; = (eBo)/(m;c). The normalizations shown ifa-
ble 1correspond to the ones used in the nonlinear gy-
rokinetic codegene (see also Refg5,6]). Note that
due to the use of, instead ofF, in Eq.(5), theB./ 1.
term appears in Ampeére’s law.

Finally, we further simplify the problem by Fourier
transforming thec- and y-directions, and by integrat-
ing outv space. This procedure turns K§) into

ki¢=—/gedv.|,

(6)
(k2 + Be/1e) Ay = — / ey 8 dvy.

Eq. (4) is now to be interpreted as an equation for
ge(z, vy, 1), and Feo = n_l/zefvﬁ. Although thez-
direction could also be Fourier transformed, we refrain
from doing so because the resultig@+ 1)D prob-
lem turns out to possess different numerical properties.
In particular, one finds that schemes which work for
the (0 + 1)D problem may exhibit numerical instabil-
ities when applied to th¢l + 1)D case. To be able
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Fig. 1. Contour plot of the absokitvalue of the left-hand side of
Eq. (7). The zeros of this function correspond to solutions of the
dispersion relation.

2.3. Dispersion relation and nominal parameters

Using Eqgs.(4) and (6) one may easily derive the
dispersion relation of kinetic shear Alfvén waves in a
homogeneous magnetoplasma. It reads

k2 +[14 &Z(@)][1 - 20%(Be/11e)] =0, 7)

whereo = w/(a.k)) andZ is the well-known plasma
dispersion functioifl1]. Obviously, the1l + 1)D sys-
tem is really characterized by only two parameters,
k1 and B./u.. Changes ina, andk; may be ac-
counted for by merely renormalizing the complex fre-
guencyw. Throughout this paper, we usg =1 and
e = 1/1836, and with the exception of Sectiér3
we choose = 10* which corresponds ta, ~ 0.606.
Settingk, =0, k, andk, will be used synonymously.
Givenk, andB./u., the task is to determine all
positions in the complex plane at which both the
real part and the imaginary part of B, vanish si-
multaneously. In our case, this is done by means of
Newton’s method. A typical contour plot of the ab-
solute value of the left-hand side of ET.) is shown
in Fig. L Here,k; = 0.3 andB./u. = 1. Note that
the Z function allows for an infinite number of so-
lutions. However, in the present context we are only
interested in the least damped modes (i.e. the ones with
the largest imaginary part) which correspond to the
kinetic shear Alfvén waves. In the remainder of this
paper, such solutions will be used to assess the results
of initial value computations.

3. Numerical solution of theinitial value problem

3.1. Parallel canonical momentum method

to generalize the approaches discussed below to inho-

mogeneous situations, it is therefore vital to keep the
z-coordinate.

The numerical solution of Eqg4) and (6)as an
initial value problem is not straightforward. In partic-



70 T. Dannert, F. Jenko / Computer Physics Communications 163 (2004) 67-78

ular, the partial time derivative o in Eq. (4) must 3.2. Method of lines
be treated with care if a time explicit scheme is to be
used. As has been known since the 1970s, a simple ex-  EQ.(4) may be rewritten as
trapolation from past values of; leads to numerical
schemes which are violently unstapl]. This prob- 8- —aev) V) (g + ctev)€Be Ay Fo — ¢ Fo), (8)
lem may be circumvented, however, by employing
the parallel canonical momentum method proposed in Where the species subscript has been omitted. To-
Refs.[6,10]. Combiningd, F, andd, A, Eq. (4) may gethe_rwnh Eq(6), it cons_tltutes an |ntegro-d|ffere_nt|<_all
be used to step the modified distribution functign ~ €duation forg. Introducing a homogeneous grid in
Next, the potentialg and A at the next time level phas_e space (I|_ke outlined abo"‘?) but kf—:-epmg time as a
may be computed from Eg6). Knowing the updated contln.uous v.arlable., E{8) turns into a linear system
i of ordinary differential equations,

values of bothg, and A, the newF, may finally be
obtained. All numerical schemes used in this paper are 99 _ )
based on this idea. ot

Like some alternative approaches (see Réfland ~ Here, g is a N.N,-dimensional vector and/ is a
references therein), the parallel canonical momentum y_ N, x N, N, matrix. The latter consists df. x N,
method involves an important subtlety which becomes submatrices whose structure depends on the dis-

important at larges. /.. and/or at smalk; . WhenF, cretization of the spatial differential operat®y as
was replaced by, in Ampere’s law, thes, /u. term it is applied tog, A, and¢. To solve Eq.(9), one
was introduced analigally to cancel thed contribu- ~ may choose from a wide variety of well-documented

tion to the first moment of.. However, if the second  time advance methods. In the following, we will focus
(numerically computed) moment o deviates from 0N explicit Runge—Kutta (ERK) method$3] which

1/2, wrong answers for are obtained in the high &€ known to be fairly robust and rather straightfor-
B, long wavelength limit. Therefore, one has to make Ward to |mp(;_ement. Morerc]a_vEr, they allow for easy
sure that such residuals are avoided, either by usingtlme step adjustments which are sometimes neces-

very accurate integrators oy lbeplacing the analytical sary in nonlinear generalizations of the computa-
. . . tions presented herd4]. ERK schemes are known
value for [ v exp(—v?) dvy in Eq.(6) by its numerical P 4]

to be linearly stable if and only if all eigenvalues

counterpart. _ _ of the matrix M (multiplied by the time stepAr)

In the present work, we make use of this latter idea, (5| inside a certain stability region in the complex
computing they| integrals in Eq.(6) via a simple
trapezoidal rule. The domain is taken to be peri- —5 Im
odic and runs from-x to 7z, while |v)| < veyt. Unless
noted otherwise, we setyt= 3. Equidistant grids are
used in all three dimensions, and the grid spacings cor-
responding ta, v, andz are called, respectively:z,
Av, andh. So, e.g., the value qf, at the time level
t, and at the phase space paint, z,,) is denoted by
g!") wherev; = (2i — Ny — DAv/2 [i =1,....Ny]
andz, = (2m — N, —Dh/2 [m=1,..., N;]. While
many time implicit methods are also available, we will
restrict to time explicit schemes here since they allow
for straightforward geneliaations to more complex
problems. A very flexible approach in which the dis-
cretizations in phase space and time are decoupled isFig. 2. Low-order explicit Runge—Kutta methods: Stability regions
the ‘method of lines’. in the complex plane.

2nd order
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plane. The stability regions of low-order ERK meth-
ods are shown irFig. 2 (see Ref[13]). As will be
shown below, centered finite-difference representa-
tions of V| lead to purely imaginary eigenvalues.

This means that the employed ERK scheme needs jg, ,,

to be at least of third order to be able to handle
such cases. The time advance method used through

out this paper is the so-called Heun scheme, a classic

representative of the one-parameter family of third-
order ERK schemes. In the language of K@), it
reads:

ke =Mg",
A

ko= M(g(") + —tk1>,
3
2A

= (o + %)

At
g(n+1) — g(n) + T(kl + 3Kk3).

So far, we have not addressed the question which fi-
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3.3. Finite difference schemes G

Straightforward finite-difference representations of
V| are the centered second-order method given by

_ 8lm+1— 8lm—1
Iz 2h
and the respective fourth-order scheme,

(10)

9g1m _ 8lm—2— 88 m-1+ 88 mt1 — Zl.m+2 (11)
Iz 12h '

Applying Eg. (10) to all terms in Eq(8), the eigen-
values of the matrix\/ are found to be purely imag-
inary as can be seen kig. 3a). This is a reflection
of the fact that centered schemes do not involve nu-
merical dissipation. As a consequence, if ERK time
advance methods are used, they must be of order three
or higher. On the other hand, (computationally less ex-
pensive) lower-order ERK schemes may be used if all
eigenvalues exhibit negative real parts. This implies
that the finite difference scheme has to have numer-
ical dissipation and leads us to consider asymmetric
(or ‘upwind’) methods.

Upwind methods are often used for advection equa-

nite difference schemes are to be used to represent theions. Here, the information reaching a fixed point in

action of the spatial differential operatdyj ong, Ay,
and ¢. As it turns out, one must approach this topic
carefully.
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Fig. 3. Numerically computed eigenvalugs of the phase space matri¥ for k; = 0.3, f¢/pe =1, N; = 32, andN, = 40

space comes from the upwind direction, and the choice
of asymmetric weights and/or stencils is supposed to
reflect that. A second-order upwind schemedot 0
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. Here, the

second-order upwind scheme of Efj2) was used for (a) no term at all, (g)and A, (c) g, A, and¢, (d) g only; the remaining terms have

been treated according to HG0).
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is given by so that the diagonal elements¥gf are independent of
k. The discretization of thd | term is not relevant for
3 2 —5g1m_1+3gm+ L e _ == A
Blm _ 8lm—2 7 Sflm-1T Sflm T 8l,m1 (12) stability issues since the respective ternvipis lim-

0z 4h ’
wherem is the space index andthe velocity index.
If the same scheme is used fafj, and¢ is center-

ited by 22, for k; — 0 as long a./u. # 0. (For
Be =0, theA| term vanishes, anyway.) These consid-

) ' | erations are qualitatively correct also for higher-order
differenced according to Eq10), one arrives at the  gigcretization schemes of either upwind or centered

eigenva!ue d_istribution shown iRig. 3§b). Using an  yne. As will be shown in Sectio#.2, although up-
appropriate time step, the rescaled eigenvalues will fit \inq methods according to cases (b) and (d) are stable,
into any of the four stability regions shown kig. 2 they are to be avoided on grounds of accuracy prop-

However, if all terms in Eq(8) are upwinded, some  gies. In case (d), additional accuracy problems arise
eigenvalues exhibit large negative real parts, as can beggm finite differencingg (which contains a contri-

seen inFig. 3(c). Their magnitude is observed to scale p tion from A;) and A itself differently. In the re-

. _2 . T .
like & “. A third possibility is to upwind onlyg and  majnder of this paper, we will therefore concentrate
to center-difference both potentials. This leads to the 5, centered methods.

eigenvalue distribution shown iRig. 3(d) which re-

sembles that of case (b). 3.4. Avoiding recurrence
These findings may be understood by inspecting
the matrixM of Eq. (9). If only velocity space is dis- An important property of Eq(8) may be investi-
cretized, one obtains gated by neglecting the potentialsand A . It may
dg) Ny then be written as a simple advection equation for
¥=—Zlotevl[5li [z, v,0):
i= a a
N o+ =0 -
k2 kR 4 Befue )] 3z A Fourier transformation of the-coordinate leads to
Ny dgi the equation
=- Z Vi m (13) Wi .
i=1 ar +ikvfy =0 (15)

which can be interpreted as a multidimensional advec-

. . . L X for fi (v, t) which has the solution
tion equation. Also discretizing the system spatially,

an upwind discretization of all terms yields fi(v,t) = fi(v, t = 0)e kvt (16)
1 2v12 (Be/te) As is known from Van Kampen'’s theory of Landau
Vi = aevr [1+ FOIAU<k—2 - ﬁ)} damping[15], this system exhibits phase mixing, re-
T kLA Pelue sulting in a decay of all moments ¢f (v, 7). In the
x i[l -5 3 1 0 course of this process, arbitrarily fine structures in
h velocity space are created. If E(L4) is solved nu-
for the diagonal blockmatrice®; so that the diago-  merically on an equidistant grid in velocity space with
nal elements oV}, increase |ikd<12 for k; — 0.0n v, = [ Av, the solution for a giveh can be written as
the other hand, if we discretiZ?g|® via second-order ikl Av
centered differences, we get Ji(®) = fi(r=0)e . 17
1 Note that for any/, the phase factor is equal to unity
Vi =aevz[ﬂ[1 -5 3 140 if kAvt = 27. This condition translates into the so-
called recurrence timgec = (27)/(kAv) after which
+ FozAv(i _ 2o (ﬂdw)) the initial condition is rest@d. Since this is clearly
k2 k2 A+ Be/the unphysical, the finite resolution in velocity space ef-

1 fectively limits the total simulation tim&’. A typ-
X Z[_l 0 1 ical initial value simulation of kinetic shear Alfvén
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Fig. 4. Typical time trace of a simulation with,, = 40: Around

Fig. 5. Scan of the hypercollisionality parametgrfor k| = 0.1,
trec=69.1, a recurrence phenomenon occurs. 9 yp yp 2 +

Be/ie =1, Ny =40, andN, = 32.

waves withN, = 40 is shown inFig. 4. In this case,
frec = 69.1.

These considerations seem to indicate thatan
only be extended ifV, is increased. However, there
is an alternative solution to the recurrence problem.
One can think of Eq.(16) as a wave in velocity
space with wavenumbet, = kr. Obviously, k, in-
creases proportional to time. The Nyquist limit of
the velocity grid,k, nyquistAv = 7, is reached at =
kv, Nyquist/ k = trec/2. Still finer scales are interpreted ) )
ask, = kt — ky nyquiss Such that for = frec we have 4.1. Velocity space resolution
ky, = 0. This suggests that recurrence can be avoided
by Stopping this cascade-like procesg{mspace be- HaVing described the numerical methods used for
fore the Nyquist limit is reached. This can be achieved, solving the initial value problem, we now turn to
for examp|e’ by means of a hyperco”ision Operator ConVergence tests. FiI‘St, we will address the issue of

values over which the damping rate does not change
substantially. Here like elsewhere in this paper, the
damping rates are computed by means of a linear re-
gression of lo@y (1), whereas the real frequencies are
determined via the zeros ¢f,(¢).

4. Convergencetests

like velocity space resolution. Given the fact that kinetic
4 shear Alfvén waves are dissipative (kinetic) in nature,
of = _v4ﬂ. (18) not reactive (fluid-like), one might think that the nar-
ot dv row Landau resonances in velocity space have to be
Fourier transforming this equation kg-space, we ob-  strictly resolved in order to obtain correct results. This
tain is not the case, however.
i . Thg runs presented in this subsection all use the
ryale —vaky; fi, - (19) following parameterst | = 0.1, Be/pte =1, N: =32,
) . andvs =5- 1076, Solving the dispersion relation di-
The solution of Eq(19)is rectly, one obtaine, = 0.42938 and, = —0.002476.
F ) = fi(t = O)e*”“"f’. (20) These numbers are used to assess the quality of the ini-

tial value computations. IRig. 6, the relative error in

Thus one can damp out fine scales in velocity space the damping rate is shown as a function of the number

without affecting the larger scales. of points in velocity spacey,. |[Ay/y| drops in the
The parameteps which determines the damping range of less than about 1% i, = 25. This result is

strength must be chosen appropriatelyvifis too somewhat surprising for a simple reason. Writing the

small, recurrence still occurs, if it is too big, the damp- resonance denominator as

ing rate is controlled by hypercollisions, not by Lan- 1

dau damping. So we have to perfonm scans and = > 5

search for a plateau in the damping rate curve. In @~ vkl (@r — vk +y

Fig. 5, such av4 scan is shown fok; = 0.1, B, /e = _i Y , 21)

1, N, = 40, andN, = 32. There is a wide range of; (@ — aevyk? + y?

Wy — vk
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Fig. 7. Velocity space structure g, /¢, from an initial value com-
putation (a) and from theory (b). The real and imaginary parts are
denoted, respectively, with solid and dotted lines. The Landau reso-
nances are located aroupg|| = wy /(ack) ~ 0.71.

one finds that its imaginary part has the form of
a Lorentz curve with a fullvidth-at-half-maximum
(FWHM) of 2|y|. This means that there is a Lan-
dau resonance im; space arouna, /(c.kj) with a
FWHM of sv = 2|y|/(a.ky). Using an equidistant
grid with Avy = (2ueu) /Ny, Avy S Sy translates into
N, = 734. In practice, we get away with abouyt3D

of that number, i.e. we do not need to resolve the

fine-scale Landau resonances in velocity space. The

structure off; /¢x in v space as it occurs in the simu-
lation is shown irFig. 7. For comparison, a theoretical
prediction based on Eq§t) and (6)is also depicted.
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integrators. One of the simplest generalizations would
be to divide the domaif—uvcyt, veut] into two subdo-
mains, a better resolved one located around the origin
and encompassing the resonance region, and a less re-
solved one representing the tafild]. But even for a
simple equidistant grid, we find that the errors can be
reduced if all grid points arghifted collectively by up

to Av/2 such that the resonance region is better cov-
ered with grid points. Moreover, it should be kept in
mind that the results presented in this subsection are
strongly problem dependent. The required number of
velocity space points may vary substantially with the
type of wave or instabilityunder consideration. Em-
ploying the gyrokinetic Vlasov codgene [14], we
have found, for example, that toroidal ion tempera-
ture gradient ingtbilities are well represented by about
12 x 6 points in(v, u) space. Slab-type instabilities,
on the other hand, may require more points in the
direction (the number of points required in thedi-
rection tends to almost always stay smdllp]. In
general, one can say that reactive (fluid-like) modes
are easier to resolve than dissipative (kinetic) modes.

4.2. Configuration space resolution

Next, the resolution requirements for thelirection
are investigated. Here we expect (and find) a depen-
dence on the employed finite difference scheme. In
Fig. 8 the results of initial value computations are
compared with those of the dispersion relation for
three different discretization methods: (a) fourth-order
centered, (b) second-order centered, (c) second-order
upwind for f and second-order centered #orObvi-
ously, the fourth-order centered scheme outperforms
the other two, requiring less than 10 grid points in the
spatial domain. The other parameters are= 0.1,
Be/ie =1, N, = 40, andvs = 5- 1076, In this case,
the dispersion relation yields, = 0.42938 andy =
—0.002476.

The results of the initial value computations lie on
straight lines in this log—log plot, reflecting the power
law dependence of the relative error &p. Naturally,
the slope depends on the discretization scheme. It is

It must be emphasized that we have not attempted possible to predict the results &ig. 8 analytically

to minimize the number of velocity space points by use
of non-equidistant grids and/or higher-ordgrspace

by inspection of a modified dispersion relation corre-
sponding to the spatially discretized system. The latter
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abs(Ay/7y)

Fig. 8. Relative error in the damping rateyy /y |, as a function of
N for three different discretizeon methods: (a) fourth-order cen-
tered, (b) second-order centdréc) second-order upwind fgf and
second-order centered fgr. For comparison, analytic predictions
are also shown (solid lines).

has the form

2 &Jﬁ—z) 1+ 6Z(@) =
kJ_—l—(Qf [Lw (1+@Z(@))=0
which depends on the finite difference scheme for
the derivatives off and¢ via the spectral functions
Qr and Q4. Moreover,o = w/(ack)) is changed to

@ = w/(a.k) Qr). The relevant spectral functions are
(using¢ = kyh):

(22)

second-order centered:

00) = S'Z_@, (23)
fourth-order centered:
0() = —S|n(2§g+83|n(§)’ (24)
¢
second-order upwind:
. —sin(2¢) + 6sin¢)
0= i
+i—cos(2§)+4cos{§)—3. (25)

ar

They are defined vi&| — ik Q ().

If we use the same sort of finite differences for
both f and¢, we haveQy = Qy = Q. This means
that the discretized dispersion relation differs from the
continuous one only in the meaning ®f The result-

75

Analogously, for fourth-order centered differences one
gets

Ay /y1=¢*/30+ 0O®) (27)

with the help of Eq.(24). These two functions are
shown for comparison irFig. 8 They agree quite
nicely with the results from the initial value simula-
tions.

Choosing a second-order upwind discretization for
the distribution functionf together with a second-
order centered scheme forettelectrostatic potential
¢, the calculation is similar only if the sam@ is used
irrespective of the sign ofy. (Otherwise, the plasma
dispersion functior? is not recovered.) By means of
this approximation, one may solve E@2) numeri-
cally to get the solid line corresponding to case (c) in
Fig. 8 Itreproduces the initial value results fairly well.
However, the slope of this line is of the order-e8
and not—2 like expected for a second-order accurate
scheme. This puzzle may be solved by further analyz-
ing Eq.(22). SettingQ,4/0r = 1, one obtains again
a rescaled value ab, but this time the factoQ s is
complex valuedQ y = Q1 + Q2. The relative error
turns outto beéAy /vy |~ |01 — 1+ (w,/y) Q2| Or

|Ay [y~ ¢2/12— (0, /y) 3184 Och). (28)

Sincew, /y ~ —173417, the third-order term is dom-
inant in the parameter range we are interested in. This
explains the seemingly “wrong” slope of curve (c) in
Fig. 8 Moreover, Eq(28) reveals that any finite dif-
ference scheme for; whose spectral functio@ pos-
sesses a finite imaginary part, leads to large relative er-
rors if |y /w,| < 1. This is the case for; « 1 and/or
Be/ e > 1. Upwindingg while center-differencing
andA; makes matters even worse. This is because the
contribution ofA| to g and A itself (these two terms
cancel out in an analytic formulation of the basic equa-
tions) leave a finite residuum when finite differenced
differently. As far as the parallel dynamics of kinetic
shear Alfvén waves are concerned, upwind schemes
are therefore clearly inferior to centered schemes.

ing complex frequencies just need to be rescaled by a5 parameter scans

factor of 9. We thus obtainAy/y| = |0 — 1]. For
second-order centered differences, &3) yields

Ay /[y =¢2/6+ 0. (26)

Having tested the convergence properties of vari-
ous numerical schemes, we are now in a position to
do parameter scans. As was mentioned before, the two
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key quantities are the electron plasma beta (normal- size further increases, and in turn reduces the time
ized to the electron-to-ion mass rati@),/ 1., and the step because of the numerical stability requirement
perpendicular wavenumbeék, . But before we actu-  w,Ar < 1. For this reason it is often highly advisable
ally present the simulation results, we will derive some (e.g., in gyrokinetic turbulence computations) to use
analytic results which may be used for comparison finite values of8,/u. to avoid these problems—even

later. if the physics under consideration may be basically
electrostatic in nature.
5.1. Analytic results (limiting cases) We note in passing that in unnormalized units, the

real frequencies given in EqE0) and (31)yead, re-
The dispersion relation, E€7), contains the plasma  spectively,
dispersion functionZ which, in general, must be

2_ 4272 2 2 ; L
evaluated numerically. Only in the limit of small or  @r =K| vi(1+k1pg) [highp limit] (32)
large arguments do analytic expressions d#is}. For and
|o| <« 1, we have kﬁvi
2 _ . .
%
vell,35,..1, (29) Fluid models of kinetic shear Alfvén waves, on the

) _ other hand, lead t{6]
where the power series contains only odd powers of

@. Inserting this expression into E(), we see that w2 = k2y2 1+kips2 (34)
it turns into a polynomial equation of infinite order. " 1A\ 144252 )0

And this means that it possesses infinitely many so-

lutions. A representative example of the positions of 5.2. Dependence o/, andk

solutions in the comple® plane was shown ifig. 1

We will be mainly interested in the one solution with The following numerical results have been ob-
the lowest damping rate since it dominates the long- tained using second-order centered difference¥for
time behavior of any initial-value problem (assuming together with a third-order ERK (Heun) time step-
that it is excited at all). Analytically, we may recoverit ping algorithm. We have employeN, = 32 points
by setting all coefficients, to zero and replacing the in the spatial direction and/, = 40 points in veloc-

exponential by unity. E((:7) then yields ity space. The hypercollisionality parameter was
1 12 set to 5. 10°%. Only for cases in whicty < 1075,

&% == &(1 + ki) 7= T e k2. (30) we used more (up t&/, = 140) velocity space points,
2 Be 4 P an extended velocity space domain (upuvtQ: = 4),

Here, we have evaluated the real and imaginary partsand a reduced hypercollisionality parameter (of the or-
of Eq. (7) separately, at the same time assuming that der of v4 =5-10~7). For k; = 0.3, one obtains the
ly /wr| < 1. A post-hoc self-consistency check shows results shown irFig. 9. They agree well with the pre-
that this assumption is only satisfied gf /. > 1 dictions from the dispersion relation over 4 orders of
(and/ork « 1). In the opposite limitj@| > 1, an as- magnitude ind. /.. In the . /. > 1 range, the pre-
ymptotic expansion of [11] yields (to lowest order) dicted scalings [see EB0)] of w, o (Be/ i)~ Y/? and
" 1 Y & (Be/1e) 1 are recovered.
= (31) Ak, scanap,/u. = 1is shownirFig. 10 As sug-

2 ek’ + Be gested by E((30), w, is almost constant and o kIZ.
This has important consequences for the numerical The simulation results again compare very favorably
treatment of kinetic shear Alfvén wave in the appro- with the solutions of the dispersion relation—even for

priate limit. For 8, <« ;Leki, @, scales Iikekll. In values as low a&; = 0.0025 (corresponding to a per-
a simulation, the highest frequency is thus set by the pendicular box size of more than 250. Note that
smallest finite value of; . If a time-explicit numerical in the limit k; — 0, kinetic shear Alfvén waves tran-

scheme is employed, increasing the perpendicular boxsition into ideal MHD Alfvén waves, characterized by
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Fig. 9. Real frequencies and daimg rates of kinetic shear Alfvén
waves as a function @, /. for k| = 0.3. The numerical solution

of the corresponding dispersion relation is shown as a solid line for
comparison.
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Fig. 10. Real frequencies and daimgprates of kinetic shear Alfvén
waves as a function of; for B./ue = 1. The numerical solution

of the corresponding dispersion relation is shown as a solid line for
comparison.

o? = kfv§ and y =0 in unnormalized units. This
MHD limit is well captured by the present Vlasov
scheme.

5.3. Transition to electron sound waves at high

Replacing the driftkinetic approach [Eqggl) and
(6)] by a gyrokinetic ong4], the graphs inFig. 10
can be extended to smaller perpendicular scéles;
1. This is shown inFig. 11, which has been pro-
duced by means of the gyrokinetic cagiene [14]. In

7

0.6[

electron
sound
waves

0.4

MHD limit

v cod vl ol ol i

0.1 1
k,0.

Fig. 11. Real frequencies and daimgrates of kinetic shear Alfvén
waves, computed with the gyrokinetic cogene. For k| ~ 10,
there is a transition to electron sound waves. The driftkinetic esti-
mates are shown as dashed curves for comparison.

Thus the numerics is basically the same as that de-
scribed and studied in the present paper. As para-
meters we use@®./u. = 10, € = 18360, N, = 32,

N, =61, andN, = 8 (gene employs two veloc-

ity space variables, the parallel velocity and the
magnetic moment). Here, instead of using hyper-
collisions we simply increased, to treat the weakly
damped modes at low, , thus extending the recur-
rence time up to several 100 time units. The dispersion
relation, Eq.(7), was also generalized to include fi-
nite Larmor radius effects. As can be seerfig. 11,
thegene results and the solutions of the gyrokinetic
dispersion relation agree quite well over a wide range
of k.. For k; > 1, kinetic shear Alfvén waves be-
come electron sound waves, the exact mirror image
of ion sound waves. In particular, the ions are adia-
batic at highk, leaving the dynamics entirely up to
the electrons. For ion sound waves, driftkinetic theory
yields

2 5 (Te + 3T;)/m;
A k2 p2
in unnormalized units. Exchanging the species labels,
setting T, /T; = 1, and normalizing according ta-
ble 1, one obtains
2
@ = — >3-
1+ peks

(39)

(36)

i

this case, the parallel gradients are again discretizedFor k; ~ 15, this formula yieldsy, ~ 0.6, in good

via second-order centered differences, and a third-
order ERK (Heun) time stepping scheme is used.

agreement withFig. 11 As expected, one finds that
ly/wr| ~ 1, i.e. electron sound waves are strongly
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Landau damped. Finally, we would like to point out Acknowledgement

that the driftkinetic estimates fap, andy as given

by Eq.(32) hold way beyond their strict range of va- F. Jenko would like to acknowledge helpful discus-
lidity, k£, <« 1. As can be inferred frorfig. 11, the sions with G.W. Hammett on the recurrence problem.
driftkinetic results give reasonable approximations up

tok; ~1.
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