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Vlasov simulation of kinetic shear Alfvén waves
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Abstract

The treatment of kinetic shear Alfvén waves in homogeneous magnetized plasmas by means of Vlasov simulati
amined. To this end, the driftkinetic version of the Vlasov–Maxwell equations is solved via various numerical sche
employing a grid in(1 + 1)D phase space. Since kinetic shear Alfvén waves are Landau damped, the use of an eq
grid in velocity space leads to a recurrence problem. The latter can be circumvented, however, by damping the fines
space scales through higher-order collision operators. Of particular interest is the question if and under which circumstanc
the magnetohydrodynamic limit (small perpendicular wavenumber) can be recovered.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Magnetized plasmas exhibit a large number
waves and instabilities[1]. In the low beta, low fre-
quency range,β � 1 and ω � Ωi [where Ωi =
(qiB)/(mic) is the ion cyclotron frequency], she
Alfvén waves are of particular interest since they
involved in a large number of plasma physics pro
lems [2]. While their simplest description is give
by magnetohydrodynamics (MHD), kinetic effec
come into play once their perpendicular wavelen

* Corresponding author.
E-mail address:Tilman.Dannert@ipp.mpg.de(T. Dannert).
0010-4655/$ – see front matter 2004 Elsevier B.V. All rights reserved
doi:10.1016/j.cpc.2004.09.001
reaches the drift wave dispersion scaleρs = cs/Ωi

[where cs = (Te/mi)
1/2 is the ion sound speed i

the cold ion limit]. In this regime, they are ther
fore called kinetic shear Alfvén waves[2]. If the
perpendicular wavelength is further decreased, t
finally transition into electron sound waves. These
exact analogues of ion sound waves, with the r
of electrons and ions reversed. Both kinetic sh
Alfvén waves and electron sound waves are Lan
damped.

Kinetic shear Alfvén waves are described by
driftkinetic (or gyrokinetic) version of the Vlasov
Maxwell equations in(3+ 2)D phase space (see, e.
Refs.[3,4]). In both cases, the fast gyrophase dep
dence is removed analytically. For the purposes of
.
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paper, it will suffice to study a homogeneous mag
tized plasma whose(1 + 1)D phase space is spann
by the field-line-following coordinatez and the par-
allel velocity v‖. The perpendicular wavenumber e
ters only as a parameter, and the remaining ve
ity space variable can be integrated out[5,6]. De-
spite its relative simplicity, this reduced system s
contains the key challenges one has to face if se
ing a numerical representation of kinetic shear Alfvén
waves.

Several options are available when trying to so
the corresponding initial value problem by means
computer simulations. Probably the most common
proach is the particle-in-cell (PIC) method[7]. As it
turns out, however, the inherent particle noise p
vents a straightforward solution unless the num
of particles is increased substantially. As an alter
tive route, various noise-reduced PIC schemes h
been proposed (see Ref.[8] and references therein
but the basic problem remains. Vlasov methods,
the other hand, avoid the noise issue completely
employing a fixed grid in phase space[9]. The ba-
sic integro-differential equations are then finite diffe
enced and solved via techniques borrowed from c
putational fluid dynamics. Here, we adopt this lat
approach.

The paper is structuredas follows. In Section2, the
basic equations are introduced and the dispersion
tion for kinetic shear Alfvén waves in a homogeneo
magnetized plasma is derived. In Section3, different
phase space discretization schemes are investig
involving explicit Runge–Kutta time stepping and u
wind or central spatial discretizations. Due to the u
of an equidistant grid in velocity space, a recurre
problem is encountered which can be circumven
however, by the use of appropriate hypercollision
erators. In Section4, convergence with respect to re
olution in velocity space and real space is checked
turns out that the number of required velocity spa
points is surprisingly low. The results of the initi
value computations are compared to those of the
spective dispersion relation for a wide range of ph
ical parameters in Section4. Finally, a brief summary
is presented in Section6.
,

2. Basic equations

2.1. Unnormalized equations in (3+ 2)D phase
space

Kinetic shear Alfvén waves in a homogeneo
magnetoplasma are described by the driftkinetic v
sion of the Vlasov–Maxwell equations in(3 + 2)D
phase space. The latter is spanned by the three
tial variables(x, y, z) [the z-axis is assumed to b
aligned with the background magnetic field] and t
velocity space variables, e.g.,(v‖, v⊥). In the low-
frequency limit, the fast gyrophase dependence m
be removed analytically. Moreover, for simplicity, th
ions are taken to be singly charged and immobile.
ter linearization, one is then left with the driftkinet
Vlasov equation

(1)

∂Fe

∂t
+ v‖

∂Fe

∂z
− eE‖

me

∂Fe0

∂v‖
= 0,

E‖ = −∂φ

∂z
− 1

c

∂A‖
∂t

for the perturbed electron distribution functionFe , to-
gether with the corresponding field equations

(2)

ne0mic
2

eB2 ∇2⊥Φ =
∫

Fe dv‖,

∇2⊥A‖ = 4πe

c

∫
v‖Fe dv‖

for the perturbed electrostatic and parallel magn
potentials,φ and A‖. Here,e > 0 is the elementary
charge andFe0 is the equilibrium distribution function
of the electrons which is assumed to be given by
unshifted Maxwellian,

(3)Fe0 = ne0
(
πv2

T e

)−3/2
e−v2/v2

T e ,

such that∂v‖Fe0 = −mev‖Fe0/Te0. Here,v2
T e = 2Te0/

me andv2 = v2‖ + v2⊥.

2.2. Normalization and reduction to (1+ 1)D phase
space

For reasons that will become clear in Section3, we
introduce the modified distribution functionge = Fe −
(v‖/c)(eA‖/Te0)Fe0 [6,10]. Normalizing Eqs.(1)–(3)
according toTable 1, one thus obtains
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Table 1
Normalization of all independentand dependent variables (c
Refs.[5,6])

x, y z v‖, v⊥ t ge, Fe , Fe0 φ A‖
ρs L‖ vT e L⊥/cs ne0/v3

T e Te0/e ρsB0βeL‖/L⊥

(4)
∂ge

∂t
+ αev‖∇‖(Fe − φFe0) = 0,

ge = Fe − αev‖ε̂βeA‖Fe0

together with

(5)
∇2⊥φ =

∫
ge dv‖,

(∇2⊥ − βe/µe

)
A‖ =

∫
αev‖ge dv‖.

Here, we have used the following definitions:

βe = 4πne0Te0

B2
0

, µe = me

mi

,

ε̂ =
(

L‖
L⊥

)2

, α2
e = 2

ε̂µe

.

As mentioned before,c2
s = Te0/mi , ρs = cs/Ωi , and

Ωi = (eB0)/(mic). The normalizations shown inTa-
ble 1correspond to the ones used in the nonlinear
rokinetic codegene (see also Refs.[5,6]). Note that
due to the use ofge instead ofFe in Eq.(5), theβe/µe

term appears in Ampère’s law.
Finally, we further simplify the problem by Fourie

transforming thex- andy-directions, and by integra
ing outv⊥ space. This procedure turns Eq.(5) into

(6)
k2⊥φ = −

∫
ge dv‖,

(
k2⊥ + βe/µe

)
A‖ = −

∫
αev‖ ge dv‖.

Eq. (4) is now to be interpreted as an equation

ge(z, v‖, t), and Fe0 = π−1/2e−v2‖ . Although thez-
direction could also be Fourier transformed, we refr
from doing so because the resulting(0 + 1)D prob-
lem turns out to possess different numerical proper
In particular, one finds that schemes which work
the(0+ 1)D problem may exhibit numerical instabi
ities when applied to the(1 + 1)D case. To be able
to generalize the approaches discussed below to i
mogeneous situations, it is therefore vital to keep
z-coordinate.
Fig. 1. Contour plot of the absolute value of the left-hand side o
Eq. (7). The zeros of this function correspond to solutions of
dispersion relation.

2.3. Dispersion relation and nominal parameters

Using Eqs.(4) and (6), one may easily derive th
dispersion relation of kinetic shear Alfvén waves in
homogeneous magnetoplasma. It reads

(7)k2⊥ + [
1+ ω̄Z(ω̄)

][
1− 2ω̄2(βe/µe)

] = 0,

whereω̄ = ω/(αek‖) andZ is the well-known plasma
dispersion function[11]. Obviously, the(1+ 1)D sys-
tem is really characterized by only two paramete
k⊥ and βe/µe. Changes inαe and k‖ may be ac-
counted for by merely renormalizing the complex f
quencyω. Throughout this paper, we usek‖ = 1 and
µe = 1/1836, and with the exception of Section5.3
we choosêε = 104 which corresponds toαe ≈ 0.606.
Settingkx = 0, k⊥ andky will be used synonymously

Given k⊥ andβe/µe , the task is to determine a
positions in the complex̄ω plane at which both the
real part and the imaginary part of Eq.(7) vanish si-
multaneously. In our case, this is done by means
Newton’s method. A typical contour plot of the a
solute value of the left-hand side of Eq.(7) is shown
in Fig. 1. Here,k⊥ = 0.3 andβe/µe = 1. Note that
the Z function allows for an infinite number of so
lutions. However, in the present context we are o
interested in the least damped modes (i.e. the ones
the largest imaginary part) which correspond to
kinetic shear Alfvén waves. In the remainder of th
paper, such solutions will be used to assess the re
of initial value computations.

3. Numerical solution of the initial value problem

3.1. Parallel canonical momentum method

The numerical solution of Eqs.(4) and (6)as an
initial value problem is not straightforward. In parti
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ular, the partial time derivative ofA‖ in Eq. (4) must
be treated with care if a time explicit scheme is to
used. As has been known since the 1970s, a simple
trapolation from past values ofA‖ leads to numerica
schemes which are violently unstable[12]. This prob-
lem may be circumvented, however, by employ
the parallel canonical momentum method propose
Refs.[6,10]. Combining∂tFe and∂tA‖, Eq. (4) may
be used to step the modified distribution functionge.
Next, the potentialsφ and A‖ at the next time leve
may be computed from Eq.(6). Knowing the updated
values of bothge andA‖, the newFe may finally be
obtained. All numerical schemes used in this paper
based on this idea.

Like some alternative approaches (see Ref.[10] and
references therein), the parallel canonical momen
method involves an important subtlety which becom
important at largeβe/µe and/or at smallk⊥. WhenFe

was replaced byge in Ampère’s law, theβe/µe term
was introduced analytically to cancel theA‖ contribu-
tion to the first moment ofge. However, if the second
(numerically computed) moment ofFe0 deviates from
1/2, wrong answers forω are obtained in the hig
β , long wavelength limit. Therefore, one has to ma
sure that such residuals are avoided, either by u
very accurate integrators or by replacing the analytica
value for

∫
v2‖ exp(−v2‖)dv‖ in Eq.(6) by its numerical

counterpart.
In the present work, we make use of this latter id

computing thev‖ integrals in Eq.(6) via a simple
trapezoidal rule. Thez domain is taken to be per
odic and runs from−π to π , while |v‖| � vcut. Unless
noted otherwise, we setvcut = 3. Equidistant grids are
used in all three dimensions, and the grid spacings
responding tot , v‖, andz are called, respectively,�t ,
�v, andh. So, e.g., the value ofge at the time level
tn and at the phase space point(vi , zm) is denoted by
g

(n)
i,m wherevi = (2i − Nv − 1)�v/2 [i = 1, . . . ,Nv ]

andzm = (2m − Nz − 1)h/2 [m = 1, . . . ,Nz]. While
many time implicit methods are also available, we w
restrict to time explicit schemes here since they al
for straightforward generalizations to more complex
problems. A very flexible approach in which the d
cretizations in phase space and time are decoupl
the ‘method of lines’.
3.2. Method of lines

Eq.(4) may be rewritten as

(8)
∂g

∂t
= −αev‖∇‖

(
g + αev‖ε̂βeA‖F0 − φF0

)
,

where the species subscript ‘e’ has been omitted. To
gether with Eq.(6), it constitutes an integro-differenti
equation forg. Introducing a homogeneous grid
phase space (like outlined above) but keeping time
continuous variable, Eq.(8) turns into a linear system
of ordinary differential equations,

(9)
∂g
∂t

= Mg.

Here, g is a NzNv-dimensional vector andM is a
NzNv × NzNv matrix. The latter consists ofNz × Nz

submatrices whose structure depends on the
cretization of the spatial differential operator∇‖ as
it is applied tog, A‖, andφ. To solve Eq.(9), one
may choose from a wide variety of well-documen
time advance methods. In the following, we will foc
on explicit Runge–Kutta (ERK) methods[13] which
are known to be fairly robust and rather straightf
ward to implement. Moreover, they allow for ea
time step adjustments which are sometimes ne
sary in nonlinear generalizations of the compu
tions presented here[14]. ERK schemes are know
to be linearly stable if and only if all eigenvalu
of the matrix M (multiplied by the time step�t)
fall inside a certain stability region in the compl

Fig. 2. Low-order explicit Runge–Kutta methods: Stability regio
in the complex plane.
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plane. The stability regions of low-order ERK met
ods are shown inFig. 2 (see Ref.[13]). As will be
shown below, centered finite-difference represe
tions of ∇‖ lead to purely imaginary eigenvalue
This means that the employed ERK scheme ne
to be at least of third order to be able to han
such cases. The time advance method used thro
out this paper is the so-called Heun scheme, a cla
representative of the one-parameter family of thi
order ERK schemes. In the language of Eq.(9), it
reads:

k1 = Mg(n),

k2 = M

(
g(n) + �t

3
k1

)
,

k3 = M

(
g(n) + 2�t

3
k2

)
,

g(n+1) = g(n) + �t

4
(k1 + 3k3).

So far, we have not addressed the question whic
nite difference schemes are to be used to represen
action of the spatial differential operator∇‖ on g, A‖,
andφ. As it turns out, one must approach this top
carefully.
-

3.3. Finite difference schemes for∇‖

Straightforward finite-difference representations
∇‖ are the centered second-order method given by

(10)
∂gl,m

∂z
= gl,m+1 − gl,m−1

2h

and the respective fourth-order scheme,

(11)
∂gl,m

∂z
= gl,m−2 − 8gl,m−1 + 8gl,m+1 − gl,m+2

12h
.

Applying Eq. (10) to all terms in Eq.(8), the eigen-
values of the matrixM are found to be purely imag
inary as can be seen inFig. 3(a). This is a reflection
of the fact that centered schemes do not involve
merical dissipation. As a consequence, if ERK ti
advance methods are used, they must be of order t
or higher. On the other hand, (computationally less
pensive) lower-order ERK schemes may be used i
eigenvalues exhibit negative real parts. This imp
that the finite difference scheme has to have num
ical dissipation and leads us to consider asymme
(or ‘upwind’) methods.

Upwind methods are often used for advection eq
tions. Here, the information reaching a fixed point
space comes from the upwind direction, and the ch
of asymmetric weights and/or stencils is suppose
reflect that. A second-order upwind scheme forvl > 0
e

Fig. 3. Numerically computed eigenvaluesλj of the phase space matrixM for k⊥ = 0.3, βe/µe = 1, Nz = 32, andNv = 40. Here, the
second-order upwind scheme of Eq.(12) was used for (a) no term at all, (b)g andA‖, (c) g, A‖, andφ, (d) g only; the remaining terms hav
been treated according to Eq.(10).
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(12)
∂gl,m

∂z
= gl,m−2 − 5gl,m−1 + 3gl,m + gl,m+1

4h
,

wherem is the space index andl the velocity index.
If the same scheme is used forA‖, andφ is center-
differenced according to Eq.(10), one arrives at the
eigenvalue distribution shown inFig. 3(b). Using an
appropriate time step, the rescaled eigenvalues wi
into any of the four stability regions shown inFig. 2.
However, if all terms in Eq.(8) are upwinded, som
eigenvalues exhibit large negative real parts, as ca
seen inFig. 3(c). Their magnitude is observed to sca
like k−2

⊥ . A third possibility is to upwind onlyg and
to center-difference both potentials. This leads to
eigenvalue distribution shown inFig. 3(d) which re-
sembles that of case (b).

These findings may be understood by inspec
the matrixM of Eq. (9). If only velocity space is dis
cretized, one obtains

∂gl

∂t
= −

Nv∑
i=1

αevl

[
δli

+ F0l�v

(
1

k2⊥
− 2vlvi(βe/µe)

k2⊥ + βe/µe

)]
∂gi

∂z

(13)≡ −
Nv∑
i=1

Vli
∂gi

∂z

which can be interpreted as a multidimensional adv
tion equation. Also discretizing the system spatia
an upwind discretization of all terms yields

Vll = αevl

[
1+ F0l�v

(
1

k2⊥
− 2v2

l (βe/µe)

k2⊥ + βe/µe

)]

× 1

4h
[1 −5 3 1 0]

for the diagonal blockmatricesVll so that the diago
nal elements ofVll increase likek−2

⊥ for k⊥ → 0. On
the other hand, if we discretize∇‖Φ via second-orde
centered differences, we get

Vll = αevl

[
1

4h
[1 −5 3 1 0]

+ F0l�v

(
1

k2⊥
− 2vlvi (βe/µe)

k2⊥ + βe/µe

)

× 1

2h
[−1 0 1]

]

so that the diagonal elements ofVll are independent o
k⊥. The discretization of theA‖ term is not relevant fo
stability issues since the respective term inVll is lim-
ited by 2v2

cut for k⊥ → 0 as long asβe/µe 	= 0. (For
βe = 0, theA‖ term vanishes, anyway.) These cons
erations are qualitatively correct also for higher-or
discretization schemes of either upwind or cente
type. As will be shown in Section4.2, although up-
wind methods according to cases (b) and (d) are sta
they are to be avoided on grounds of accuracy pr
erties. In case (d), additional accuracy problems a
from finite differencingg (which contains a contri
bution from A‖) and A‖ itself differently. In the re-
mainder of this paper, we will therefore concentr
on centered methods.

3.4. Avoiding recurrence

An important property of Eq.(8) may be investi-
gated by neglecting the potentialsφ andA‖. It may
then be written as a simple advection equation
f (z, v, t):

(14)
∂f

∂t
+ v

∂f

∂z
= 0.

A Fourier transformation of thez-coordinate leads to
the equation

(15)
∂fk

∂t
+ ikvfk = 0

for fk(v, t) which has the solution

(16)fk(v, t) = fk(v, t = 0)e−ikvt .

As is known from Van Kampen’s theory of Landa
damping[15], this system exhibits phase mixing, r
sulting in a decay of all moments offk(v, t). In the
course of this process, arbitrarily fine structures
velocity space are created. If Eq.(14) is solved nu-
merically on an equidistant grid in velocity space w
vl = l�v, the solution for a givenl can be written as

(17)fk(t) = fk(t = 0)e−ikl�vt.

Note that for anyl, the phase factor is equal to uni
if k�vt = 2π . This condition translates into the s
called recurrence timetrec = (2π)/(k�v) after which
the initial condition is restored. Since this is clearly
unphysical, the finite resolution in velocity space
fectively limits the total simulation timeT . A typ-
ical initial value simulation of kinetic shear Alfvé
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Fig. 4. Typical time trace of a simulation withNv = 40: Around
trec= 69.1, a recurrence phenomenon occurs.

waves withNv = 40 is shown inFig. 4. In this case,
trec = 69.1.

These considerations seem to indicate thatT can
only be extended ifNv is increased. However, the
is an alternative solution to the recurrence proble
One can think of Eq.(16) as a wave in velocity
space with wavenumberkv = kt . Obviously,kv in-
creases proportional to time. The Nyquist limit
the velocity grid,kv,Nyquist�v = π , is reached att =
kv,Nyquist/k = trec/2. Still finer scales are interprete
askv = kt − kv,Nyquist, such that fort = trec we have
kv = 0. This suggests that recurrence can be avo
by stopping this cascade-like process inkv space be-
fore the Nyquist limit is reached. This can be achiev
for example, by means of a hypercollision opera
like

(18)
∂f

∂t
= −ν4

∂4f

∂v4 .

Fourier transforming this equation tokv-space, we ob
tain

(19)
∂fkv

∂t
= −ν4k

4
vfkv .

The solution of Eq.(19) is

(20)fkv (t) = fkv (t = 0)e−ν4k
4
v t .

Thus one can damp out fine scales in velocity sp
without affecting the larger scales.

The parameterν4 which determines the dampin
strength must be chosen appropriately. Ifν4 is too
small, recurrence still occurs, if it is too big, the dam
ing rate is controlled by hypercollisions, not by La
dau damping. So we have to performν4 scans and
search for a plateau in the damping rate curve
Fig. 5, such aν4 scan is shown fork⊥ = 0.1, βe/µe =
1, Nv = 40, andNz = 32. There is a wide range ofν4
Fig. 5. Scan of the hypercollisionality parameterν4 for k⊥ = 0.1,
βe/µe = 1, Nv = 40, andNz = 32.

values over which the damping rate does not cha
substantially. Here like elsewhere in this paper,
damping rates are computed by means of a linea
gression of logφk(t), whereas the real frequencies a
determined via the zeros ofφk(t).

4. Convergence tests

4.1. Velocity space resolution

Having described the numerical methods used
solving the initial value problem, we now turn
convergence tests. First, we will address the issu
velocity space resolution. Given the fact that kine
shear Alfvén waves are dissipative (kinetic) in natu
not reactive (fluid-like), one might think that the na
row Landau resonances in velocity space have to
strictly resolved in order to obtain correct results. T
is not the case, however.

The runs presented in this subsection all use
following parameters:k⊥ = 0.1, βe/µe = 1, Nz = 32,
andν4 = 5 · 10−6. Solving the dispersion relation d
rectly, one obtainsωr = 0.42938 andγ = −0.002476.
These numbers are used to assess the quality of th
tial value computations. InFig. 6, the relative error in
the damping rate is shown as a function of the num
of points in velocity space,Nv . |�γ/γ | drops in the
range of less than about 1% forNv � 25. This result is
somewhat surprising for a simple reason. Writing
resonance denominator as

1

ω − αev‖k‖
= ωr − αev‖k‖

(ωr − αev‖k‖)2 + γ 2

(21)− i
γ

(ωr − αev‖k‖)2 + γ 2 ,
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Fig. 6. Relative error in the damping rate,|�γ/γ |, as a function of
the number of points in velocity space,Nv .

Fig. 7. Velocity space structure offk/φk from an initial value com-
putation (a) and from theory (b). The real and imaginary parts
denoted, respectively, with solid and dotted lines. The Landau r
nances are located around|v‖| = ωr/(αek‖) ≈ 0.71.

one finds that its imaginary part has the form
a Lorentz curve with a full-width-at-half-maximum
(FWHM) of 2|γ |. This means that there is a La
dau resonance inv‖ space aroundωr/(αek‖) with a
FWHM of δv‖ = 2|γ |/(αek‖). Using an equidistan
grid with�v‖ = (2vcut)/Nv , �v‖ � δv‖ translates into
Nv � 734. In practice, we get away with about 1/30
of that number, i.e. we do not need to resolve
fine-scale Landau resonances in velocity space.
structure offk/φk in v‖ space as it occurs in the sim
lation is shown inFig. 7. For comparison, a theoretic
prediction based on Eqs.(4) and (6)is also depicted.

It must be emphasized that we have not attemp
to minimize the number of velocity space points by u
of non-equidistant grids and/or higher-orderv‖ space
integrators. One of the simplest generalizations wo
be to divide the domain[−vcut, vcut] into two subdo-
mains, a better resolved one located around the o
and encompassing the resonance region, and a le
solved one representing the tails[10]. But even for a
simple equidistant grid, we find that the errors can
reduced if all grid points areshifted collectively by up
to �v/2 such that the resonance region is better c
ered with grid points. Moreover, it should be kept
mind that the results presented in this subsection
strongly problem dependent. The required numbe
velocity space points may vary substantially with t
type of wave or instabilityunder consideration. Em
ploying the gyrokinetic Vlasov codegene [14], we
have found, for example, that toroidal ion tempe
ture gradient instabilities are well represented by abo
12× 6 points in(v‖,µ) space. Slab-type instabilitie
on the other hand, may require more points in thev‖
direction (the number of points required in theµ di-
rection tends to almost always stay small)[10]. In
general, one can say that reactive (fluid-like) mo
are easier to resolve than dissipative (kinetic) mod

4.2. Configuration space resolution

Next, the resolution requirements for thez-direction
are investigated. Here we expect (and find) a dep
dence on the employed finite difference scheme
Fig. 8, the results of initial value computations a
compared with those of the dispersion relation
three different discretization methods: (a) fourth-or
centered, (b) second-order centered, (c) second-o
upwind forf and second-order centered forφ. Obvi-
ously, the fourth-order centered scheme outperfo
the other two, requiring less than 10 grid points in
spatial domain. The other parameters arek⊥ = 0.1,
βe/µe = 1, Nv = 40, andν4 = 5 · 10−6. In this case,
the dispersion relation yieldsωr = 0.42938 andγ =
−0.002476.

The results of the initial value computations lie
straight lines in this log–log plot, reflecting the pow
law dependence of the relative error onNz. Naturally,
the slope depends on the discretization scheme.
possible to predict the results ofFig. 8 analytically
by inspection of a modified dispersion relation cor
sponding to the spatially discretized system. The la
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Fig. 8. Relative error in the damping rate,|�γ/γ |, as a function of
Nz for three different discretization methods: (a) fourth-order cen
tered, (b) second-order centered, (c) second-order upwind forf and
second-order centered forφ. For comparison, analytic prediction
are also shown (solid lines).

has the form

(22)k2⊥ +
(

Qφ

Qf

− 2β̂

µ̂
ω̄2

)(
1+ ω̄Z(ω̄)

) = 0

which depends on the finite difference scheme
the derivatives off andφ via the spectral function
Qf andQφ . Moreover,ω̄ = ω/(αek‖) is changed to
ω̄ = ω/(αek‖Qf ). The relevant spectral functions a
(usingζ = k‖h):

second-order centered:

(23)Q(ζ ) = sin(ζ )

ζ
,

fourth-order centered:

(24)Q(ζ ) = −sin(2ζ ) + 8 sin(ζ )

6ζ
,

second-order upwind:

(25)

Q(ζ ) = −sin(2ζ ) + 6 sin(ζ )

4ζ

+ i
−cos(2ζ ) + 4 cos(ζ ) − 3

4ζ
.

They are defined via∇‖ → ik‖Q(ζ ).
If we use the same sort of finite differences

both f andφ, we haveQφ = Qf = Q. This means
that the discretized dispersion relation differs from
continuous one only in the meaning ofω̄. The result-
ing complex frequencies just need to be rescaled
factor of Q. We thus obtain|�γ/γ | = |Q − 1|. For
second-order centered differences, Eq.(23)yields

(26)|�γ/γ | = ζ 2/6+O(ζ 4).
Analogously, for fourth-order centered differences o
gets

(27)|�γ/γ | = ζ 4/30+O(ζ 6)

with the help of Eq.(24). These two functions ar
shown for comparison inFig. 8. They agree quite
nicely with the results from the initial value simul
tions.

Choosing a second-order upwind discretization
the distribution functionf together with a second
order centered scheme for the electrostatic potentia
φ, the calculation is similar only if the sameQ is used
irrespective of the sign ofv‖. (Otherwise, the plasm
dispersion functionZ is not recovered.) By means o
this approximation, one may solve Eq.(22) numeri-
cally to get the solid line corresponding to case (c
Fig. 8. It reproduces the initial value results fairly we
However, the slope of this line is of the order of−3
and not−2 like expected for a second-order accur
scheme. This puzzle may be solved by further ana
ing Eq. (22). SettingQφ/Qf = 1, one obtains agai
a rescaled value ofω, but this time the factorQf is
complex valued,Qf = Q1 + iQ2. The relative error
turns out to be|�γ/γ | ≈ |Q1 − 1+ (ωr/γ )Q2| or

(28)|�γ/γ | ≈ ζ 2/12− (ωr/γ ) ζ 3/8+O(ζ 4).

Sinceωr/γ ≈ −173.417, the third-order term is dom
inant in the parameter range we are interested in.
explains the seemingly “wrong” slope of curve (c)
Fig. 8. Moreover, Eq.(28) reveals that any finite dif
ference scheme for∇‖ whose spectral functionQ pos-
sesses a finite imaginary part, leads to large relative
rors if |γ /ωr | � 1. This is the case fork⊥ � 1 and/or
βe/µe 
 1. Upwindingg while center-differencingφ
andA‖ makes matters even worse. This is because
contribution ofA‖ to g andA‖ itself (these two terms
cancel out in an analytic formulation of the basic eq
tions) leave a finite residuum when finite differenc
differently. As far as the parallel dynamics of kine
shear Alfvén waves are concerned, upwind sche
are therefore clearly inferior to centered schemes.

5. Parameter scans

Having tested the convergence properties of v
ous numerical schemes, we are now in a position
do parameter scans. As was mentioned before, the
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key quantities are the electron plasma beta (norm
ized to the electron-to-ion mass ratio),βe/µe , and the
perpendicular wavenumber,k⊥. But before we actu
ally present the simulation results, we will derive so
analytic results which may be used for comparis
later.

5.1. Analytic results (limiting cases)

The dispersion relation, Eq.(7), contains the plasm
dispersion functionZ which, in general, must b
evaluated numerically. Only in the limit of small o
large arguments do analytic expressions exist[11]. For
|ω̄| � 1, we have

Z(ω̄) = iπ1/2 exp[−ω̄2] +
∑
ν

cνω̄
ν,

(29)ν ∈ {1,3,5, . . .},
where the power series contains only odd power
ω̄. Inserting this expression into Eq.(7), we see tha
it turns into a polynomial equation of infinite orde
And this means that it possesses infinitely many
lutions. A representative example of the positions
solutions in the complex̄ω plane was shown inFig. 1.
We will be mainly interested in the one solution wi
the lowest damping rate since it dominates the lo
time behavior of any initial-value problem (assumi
that it is excited at all). Analytically, we may recover
by setting all coefficientscν to zero and replacing th
exponential by unity. Eq.(7) then yields

(30)ω̄2
r = 1

2

µe

βe

(
1+ k2⊥

)
, γ̄ = −π1/2

4

µe

βe

k2⊥.

Here, we have evaluated the real and imaginary p
of Eq. (7) separately, at the same time assuming
|γ /ωr | � 1. A post-hoc self-consistency check sho
that this assumption is only satisfied ifβe/µe 
 1
(and/ork⊥ � 1). In the opposite limit,|ω̄| 
 1, an as-
ymptotic expansion ofZ [11] yields (to lowest order)

(31)ω̄2
r = µe

2

1

µek
2⊥ + βe

.

This has important consequences for the numer
treatment of kinetic shear Alfvén wave in the app
priate limit. Forβe � µek

2⊥, ω̄r scales likek−1
⊥ . In

a simulation, the highest frequency is thus set by
smallest finite value ofk⊥. If a time-explicit numerica
scheme is employed, increasing the perpendicular
size further increases̄ωr and in turn reduces the tim
step because of the numerical stability requirem
ωr�t � 1. For this reason it is often highly advisab
(e.g., in gyrokinetic turbulence computations) to u
finite values ofβe/µe to avoid these problems—eve
if the physics under consideration may be basic
electrostatic in nature.

We note in passing that in unnormalized units,
real frequencies given in Eqs.(30) and (31)read, re-
spectively,

(32)ω2
r = k2‖v2

A

(
1+ k2⊥ρ2

s

) [highβ limit ]
and

(33)ω2
r = k2‖v2

A

1+ k2⊥δ2
e

[low β limit ].

Fluid models of kinetic shear Alfvén waves, on t
other hand, lead to[16]

(34)ω2
r = k2‖v2

A

(
1+ k2⊥ρ2

s

1+ k2⊥δ2
e

)
.

5.2. Dependence onβe/µe andk⊥

The following numerical results have been o
tained using second-order centered differences fo∇‖
together with a third-order ERK (Heun) time ste
ping algorithm. We have employedNz = 32 points
in the spatial direction andNv = 40 points in veloc-
ity space. The hypercollisionality parameterν4 was
set to 5· 10−6. Only for cases in whichγ � 10−5,
we used more (up toNv = 140) velocity space points
an extended velocity space domain (up tovcut = 4),
and a reduced hypercollisionality parameter (of the
der of ν4 = 5 · 10−7). For k⊥ = 0.3, one obtains the
results shown inFig. 9. They agree well with the pre
dictions from the dispersion relation over 4 orders
magnitude inβe/µe. In theβe/µe 
 1 range, the pre
dicted scalings [see Eq.(30)] of ωr ∝ (βe/µe)

−1/2 and
γ ∝ (βe/µe)

−1 are recovered.
A k⊥ scan atβe/µe = 1 is shown inFig. 10. As sug-

gested by Eq.(30), ωr is almost constant andγ ∝ k−2
⊥ .

The simulation results again compare very favora
with the solutions of the dispersion relation—even
values as low ask⊥ = 0.0025 (corresponding to a pe
pendicular box size of more than 2500ρs). Note that
in the limit k⊥ → 0, kinetic shear Alfvén waves tran
sition into ideal MHD Alfvén waves, characterized b
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Fig. 9. Real frequencies and damping rates of kinetic shear Alfvén
waves as a function ofβe/µe for k⊥ = 0.3. The numerical solution
of the corresponding dispersion relation is shown as a solid line
comparison.

Fig. 10. Real frequencies and damping rates of kinetic shear Alfvén
waves as a function ofk⊥ for βe/µe = 1. The numerical solution
of the corresponding dispersion relation is shown as a solid line
comparison.

ω2
r = k2‖v2

A and γ = 0 in unnormalized units. Thi
MHD limit is well captured by the present Vlaso
scheme.

5.3. Transition to electron sound waves at highk⊥

Replacing the driftkinetic approach [Eqs.(4) and
(6)] by a gyrokinetic one[4], the graphs inFig. 10
can be extended to smaller perpendicular scales,k⊥ �
1. This is shown inFig. 11, which has been pro
duced by means of the gyrokinetic codegene [14]. In
this case, the parallel gradients are again discret
via second-order centered differences, and a th
order ERK (Heun) time stepping scheme is us
Fig. 11. Real frequencies and damping rates of kinetic shear Alfvén
waves, computed with the gyrokinetic codegene. For k⊥ ∼ 10,
there is a transition to electron sound waves. The driftkinetic e
mates are shown as dashed curves for comparison.

Thus the numerics is basically the same as that
scribed and studied in the present paper. As p
meters we usedβe/µe = 10, ε̂ = 18360,Nz = 32,
Nv = 61, andNµ = 8 (gene employs two veloc-
ity space variables, the parallel velocityv‖ and the
magnetic momentµ). Here, instead of using hype
collisions we simply increasedNv to treat the weakly
damped modes at lowk⊥, thus extending the recu
rence time up to several 100 time units. The dispers
relation, Eq.(7), was also generalized to include
nite Larmor radius effects. As can be seen inFig. 11,
thegene results and the solutions of the gyrokine
dispersion relation agree quite well over a wide ran
of k⊥. For k⊥ 
 1, kinetic shear Alfvén waves be
come electron sound waves, the exact mirror im
of ion sound waves. In particular, the ions are ad
batic at highk⊥, leaving the dynamics entirely up t
the electrons. For ion sound waves, driftkinetic the
yields

(35)ω2
r = k2‖

(Te + 3Ti)/mi

1+ k2⊥ρ2
s

in unnormalized units. Exchanging the species lab
settingTe/Ti = 1, and normalizing according toTa-
ble 1, one obtains

(36)ω̄2
r = 2

1+ µek
2⊥

.

For k⊥ ∼ 15, this formula yieldsωr ∼ 0.6, in good
agreement withFig. 11. As expected, one finds th
|γ /ωr | ∼ 1, i.e. electron sound waves are stron
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Landau damped. Finally, we would like to point o
that the driftkinetic estimates forωr andγ as given
by Eq.(32) hold way beyond their strict range of v
lidity, k⊥ � 1. As can be inferred fromFig. 11, the
driftkinetic results give reasonable approximations
to k⊥ ∼ 1.

6. Summary

We have examined kinetic shear Alfvén waves
homogeneous magnetoplasmas by means of Vla
simulation. To this end, we solved the driftkinetic ve
sion of the Vlasov–Maxwell equations on a grid
(1 + 1)D phase space and compared the result
the numerical solutions of a respective dispersion
lation. Very good agreement is obtained over a w
range of the two key parametersβe/µe andk⊥, even
ask2⊥µe/βe → 0. For an accurate reproduction of k
netic shear Alfvén waves, it turned out to be crucia
use a centered finite difference scheme for all spa
derivatives. If combined with an explicit Runge–Ku
time stepping algorithm, this requires the latter to
of third order or higher. Resolution tests revealed t
a surprisingly low number of velocity space points
required, provided the recurrence problem for Lan
damped modes on a phase space grid is dealt
(e.g., via hypercollisions). For long wavelengths, th
ideal MHD results are recovered, whereas for sh
wavelengths, kinetic shear Alfvén waves transition
electron sound waves if the driftkinetic system is
placed by a gyrokinetic one.
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