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Plasma microinstabilities, which can be described in the framework of the linear gyrokinetic equations,
are routinely computed in the context of stability analyses and transport predictions for magnetic
confinement fusion experiments. The GENE code, which solves the gyrokinetic equations, has been
coupled to the SLEPc package for an efficient iterative, matrix-free, and parallel computation of rightmost
eigenvalues. This setup is presented, including the preconditioner which is necessary for the newly
implemented Jacobi–Davidson solver. The fast computation of instabilities at a single parameter set
is exploited to make parameter scans viable, that is to compute the solution at many points in
the parameter space. Several issues related to parameter scans are discussed, such as an efficient
parallelization over parameter sets and subspace recycling.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

In magnetically confined high temperature plasmas as they oc-
cur in fusion experiments, temperature and density profiles are
determined by turbulent transport. Given that the relevant time
scales are usually clearly above the particles’ gyration times, this
so-called microturbulence can be described in the framework of
gyrokinetic theory [1] which is a reduced kinetic model, neglect-
ing the fast gyrophase dependence. It describes the plasma as a
collection of quasiparticles (charged rings) in a five-dimensional
phase space, coupled via a modified form of Maxwell’s equations.
Assuming that the system size clearly exceeds the radial correla-
tion length of the turbulence, it is common to make a (radially)
local approximation, reducing the simulation volume to a thin flux
tube [2]. Moreover, if one is only interested in the microinstabili-
ties which drive the turbulence, the gyrokinetic equations may be
linearized. While greatly reducing the overall computational effort,
this still allows to make valuable predictions concerning the ex-
pected properties of the resulting turbulent transport.

In local gyrokinetics, the time evolution of the modified distri-
bution function g of the gyrocenters can schematically be written
as [3]

∂t g = Lg + N[g].
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Here, the distribution function g is a function of the two spa-
tial coordinates (kx,ky) perpendicular to the background magnetic
field, the parallel coordinate z, the two velocity space coordinates
(parallel velocity and magnetic moment) (v‖,μ), the species in-
dex s, and time t . L is the linear gyrokinetic operator and N[g]
is the quadratic E × B nonlinearity; both operators are of integro-
differential form.

The turbulence in the nonlinear system is driven by linear in-
stabilities, i.e., eigenmodes of L with positive real part of the eigen-
value. Investigations of the growth rate and frequency (i.e., real and
imaginary parts of the eigenvalue) of these instabilities, which oc-
cur owing to temperature and density gradients of the background,
already give some information about the behaviour of the system.
Furthermore, the eigenvalues and -vectors can be used to construct
quasilinear models (see, e.g., Ref. [4]).

The linear operator L is block diagonal in ky and only cou-
ples certain kx values. The problem size of a linear computation is
very much reduced compared to a nonlinear simulation, where the
nonlinearity couples all values in the kx,ky plane. Linear investiga-
tions are therefore computationally much less demanding than full
nonlinear turbulence simulations. This can be exploited to perform
high dimensional parameter scans, which allows, e.g., for checks
of the robustness of a simulation result with respect to variations
about a nominal set of parameters, predictive simulations of fusion
plasmas, and the optimization of experimental parameters.

For a general set of background gradients, several modes are
unstable. While the most unstable mode is usually the most in-
teresting one for quasilinear models, parameter variations lead to
variations of the growth rates and therefore to transitions of the
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Table 1
Test case I: GENE configuration for an ITG mode with growth rate of 0.2055 and frequency of 0.2872 and a subdominant TEM (0.1227–0.4494i).

Dir. Resol. Boxsize Geom. & other params. Param. Ions Electrons

s 2 geom. circular R/Ln 2.5 2.5
x 5 ŝ 0.8 R/LT 3.5 4.0
y 1 ky,min 0.25 q0 1.4 mass 1.0 0.00027
z 16 trpeps 0.18 charge 1.0 −1.0
v 48 lv 3.0 β 0.001 T 1.0 1.5
μ 8 lμ 9.0 (hypz,hypv ) (2, 0.5) dens 1.0 1.0
most unstable mode. The most unstable mode can be computed
both as initial and eigenvalue problem, but mode transitions can
only be monitored if an eigenvalue solver is used. Furthermore,
the computation time for the initial value approach diverges ex-
actly at a mode transition. Since the results of Ref. [4] suggest that
subdominant modes only contribute to the nonlinear properties if
they are similar in growth rate to the most unstable mode, only
the dominant and the first subdominant mode are considered.

This paper is organized as follows. In the next section, we in-
troduce the equations solved in the gyrokinetic GENE code and
present the test case which will be used throughout this paper.
In Section 3, the interface between the GENE code, which imple-
ments the gyrokinetic equations, and the SLEPc library, which is
used for the eigenvalue computations, is described, with focus on
the recently implemented Jacobi–Davidson solver and the precon-
ditioner, which is necessary for good performance. In Section 4, we
discuss strategies to efficiently process large numbers of eigenvalue
computations, including subspace recycling and parallelization. The
capability of the resulting setup is demonstrated for an example in
Section 5. Finally, Section 6 closes with a summary.

2. The GENE code

Since the nonlinear gyrokinetic equations generally do not al-
low for analytic solutions, they have to be solved numerically.
A state-of-the-art gyrokinetic solver is provided by the GENE
code [5–8]. GENE is physically comprehensive and flexible, compu-
tationally efficient, and hyperscalable. GENE is being further devel-
oped by an international team and is freely available. More details
can be found on the GENE website (http://gene.rzg.mpg.de).

In the context of the present work, we will focus on the lin-
earized gyrokinetic equations as implemented in GENE. We start
by noting that the linear gyrokinetic operator is a complex, non-
Hermitian integro-differential operator. It can be split in two parts

L = Lg + Lχ ,

where

Lg = − T0s(2v2‖ + μB0)

qs B0
(K yiky + Kxikx) − vT s

J B0
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∂
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+ vT s
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∂

∂v‖
is a differential operator acting directly on g , and Lχ is a more
complicated operator that contains the various derivatives of the
(gyro-averaged) electromagnetic fields. It can be written as
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2
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where

χs = φ̄s − vT s v‖ Ā‖s

is a combination of the electromagnetic fields φ and A‖ (the bars
denote gyro-averaging). Its dependency on the species index s is
introduced by the gyro-averaging operator. The fields are computed
from g by the linear operators

φ =
∑

s n0sπqs B0
∫

J0(λs)gs dv‖ dμ

k2⊥λ2
D + ∑

s
q2

s
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∑
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.

For the definitions of the prefactors, see [7]. The derivatives are
discretized with (centered) finite differences in GENE, leading to a
banded structure of Lg . The field operators contain integrals in the
v‖ , μ and s coordinates and therefore leads to a large bandwidth
of Lχ , which is inherited by L.

Since a computation based on an explicit representation of a
matrix with this structure would be very inefficient, the opera-
tor is implemented in a matrix-free form in GENE, exploiting the
knowledge about the integro-differential structure of the operator.

The default parameter set that will be used as a test case
throughout this paper is specified in Table 1. It corresponds to the
parameter set 4 of the SLEPc testsuite provided by GENE. For this
parameter set, a dominant ion temperature gradient (ITG) mode
and a subdominant collisionless trapped electron mode (TEM) can
be observed. To simplify the notation, we represent the v‖ coordi-
nate as v in Table 1 and in the rest of the paper.

3. Fast eigenvalue computations

The GENE code was coupled to the SLEPc package [9,10] several
years ago and since then it has been routinely used to compute
the spectral radius of the linear operator. This allows the exact
determination of the maximum allowed time step for the Runge–
Kutta scheme used in initial value computations. Apart from this
rather technical application, the investigation of a selected subset
of eigenvalues and eigenvectors is of great physical interest and
can be used, e.g., in the context of quasilinear models (see, e.g.,
Refs. [6,11,4]). Of obvious interest are the unstable eigenmodes
(i.e., eigenmodes with positive real part), because they drive the
turbulent transport in fusion plasmas.

The approach presented here can be used to compute any part
of the spectrum (critical gradients, stable eigenmodes that are rel-
evant for the saturation of the nonlinear system). It is well known
that eigensolvers have much more difficulties, in terms of conver-
gence, when computing interior eigenvalues, compared to eigen-
values in the periphery of the spectrum. In the case of unstable
modes, the eigenvalues of interest are the rightmost ones, which
in our case are as difficult to compute as interior eigenvalues be-
cause the spectrum is very elongated along the imaginary axis, and
the few modes with positive growth rate are relatively close to the
origin.

http://gene.rzg.mpg.de
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Because of the integro-differential structure discussed in the
previous section, the linear operator L has a banded pattern only
in two (kx and z) of the five dimensions, with the velocity space
and species dimensions completely filled. For our test case, this
corresponds to a matrix with almost 4000 non-zero diagonals for
a matrix dimension of around 60 000 (here, a non-zero diagonal is
a diagonal k consisting of entries aij with |i − j| = k where some
or all of the entries are different from zero).

The iterative solvers in SLEPc only require the matrix–vector
product of a test vector with the linear operator for the com-
putation of the eigenvectors. This means that no explicit matrix
representation has to be computed. SLEPc can directly use the
matrix–vector product with L which is also used for initial value
computations in GENE.

Previous efforts to improve the computation of these rightmost
eigenvalues in SLEPc resulted in the implementation of the har-
monic projection method for the Krylov–Schur solver [12], which
allowed for the discovery of non-Hermitian degeneracies of gyroki-
netic eigenmodes [3].

Recently, a Jacobi–Davidson solver has been implemented in
SLEPc [13,14]. The performance of this solver depends, in contrast
to the previously used solver, on effective preconditioning methods
for the correction equation. We next give details related to this ap-
proach.

3.1. Eigenvalue solver

Iterative eigensolvers are usually based on a projection onto a
search subspace of increasing dimension. The expansion of the sub-
space is done by computing a new vector at each iteration, until
a maximum dimension is reached (then the method is restarted).
At each iteration, eigenvalue approximations can be obtained from
the subspace, either with a Rayleigh–Ritz procedure or other ex-
traction methods such as the aforementioned harmonic projection.

In some cases, Krylov methods are limited by the fact that the
built subspace has to maintain the Krylov structure. As a conse-
quence, convergence can be extremely slow in difficult problems
such as the ones discussed in this paper.

An alternative to Krylov methods are Davidson-type methods,
that do not impose any restriction on the subspace and can thus
expand the subspace with the “best” vector according to some cri-
terion. In particular, these methods choose one of the eigenvalue-
eigenvector approximations (θ, u) contained in the subspace (e.g.,
the eigenvalue closest to the target τ specified by the user), then
form the residual vector associated to it, r = Au − θu, and finally
compute the so-called correction vector t that will be added to the
subspace.

This new vector can be computed by simply preconditioning
the residual,

t = K −1r, (1)

as in the Generalized Davidson (GD) method [15], where the pre-
conditioner K can be viewed as a rough approximation of A − θ I .
However, in difficult problems this simple approach is not effective
enough. The more sophisticated Jacobi–Davidson (JD) method [16]
computes t by (approximately) solving the so-called correction
equation: a system of linear equations involving the matrix A, the
preconditioner K , and a projector P related to K and the approxi-
mate eigenvector u. In particular, in this paper we use

P K −1(A − θ I)Pt = −r̂, P = I − K −1zu∗

u∗K −1z
, t ⊥ u, (2)

where z ∈ span{Au, u} and r̂ = P K −1r. Furthermore, we employ
algorithmic techniques similar to the JDQZ variant [17], in order to
enable the use of harmonic extraction in a numerically stable way.
Additional details about the algorithm and its use in the context of
the GENE code can be found in [14], except for the preconditioning
which will be treated in this paper.

Another drawback of Krylov methods is that they start building
the subspace from a single vector. If one has an a priori knowledge
of a rough approximation of the wanted eigenspace, e.g., from a
closely related eigenproblem, then this knowledge cannot be ex-
ploited. In contrast, Davidson methods can indeed benefit from
using a rough approximation of the solution as initial guess. The
explanation is that Davidson methods can be viewed from the per-
spective of inexact Newton schemes [18]. Thus, a good starting
solution can improve convergence considerably, with the corre-
sponding reduction of the overall cost. We will exploit this fact
in parameter scans, see Section 4.

3.2. Overview of SLEPc and PETSc

SLEPc, the Scalable Library for Eigenvalue Problem Computa-
tions [9,10], is a software package for the solution of large-scale
eigenvalue problems on parallel computers. It can be used to solve
a variety of eigenvalue problems, including standard and general-
ized problems, both Hermitian and non-Hermitian, as well as other
types of problems such as the quadratic eigenvalue problem or the
singular value decomposition. SLEPc can work with either real or
complex arithmetic, in single or double precision.

SLEPc offers a number of iterative eigensolvers, as described in
the previous subsection. In particular, it provides a parallel im-
plementation of the Krylov–Schur method, as well as GD and JD
solvers, with various possibilities for the computation of the cor-
rection vector. In the Davidson-type methods (GD and JD), the user
can easily select which preconditioner to use, via PETSc as de-
scribed below.

SLEPc is built on top of PETSc (Portable, Extensible Toolkit for
Scientific Computation [19,20]), a parallel framework for the nu-
merical solution of partial differential equations, which is based
on defining basic abstract data objects such as vectors and matri-
ces, and building solver objects on top of them, including linear,
nonlinear and time-stepping solvers. SLEPc inherits all the good
properties of PETSc, including portability to a wide range of par-
allel platforms, scalability to a large number of processors, and
run-time flexibility giving full control over the solution process
(one can for instance specify the solver at run time, or change rel-
evant parameters such as the tolerance or the size of the subspace
basis).

For the solution of linear systems, PETSc provides a list of
iterative solvers such as GMRES, together with a variety of pre-
conditioners including Jacobi (diagonal) preconditioning, and block
Jacobi/additive Schwarz (with a choice of incomplete factorizations
for the blocks). See [21] for details about the algorithms. It is also
possible to use preconditioners available in third-party packages
that are seamlessly integrated into PETSc.

Both in SLEPc and PETSc, iterative solvers can be employed in a
matrix-free manner, that is, accessing the matrix only via matrix–
vector product operations. However, this limits part of the func-
tionality, most notably the construction of preconditioners.

3.3. Approximate explicit matrix representation for the preconditioner

Most preconditioning techniques are based on explicitly build-
ing a preconditioner based on information about the individual
entries of the matrix, e.g., computing an incomplete factorization
or a sparse approximate inverse. Those techniques are not viable to
compute a preconditioner for a matrix-free operator. Only methods
that are based solely on the information collected from matrix–
vector products could be used, for instance using a Krylov iterative
solver as a preconditioner. However, our experience with these



F. Merz et al. / Computer Physics Communications 183 (2012) 922–930 925
nested Krylov techniques indicates that they are not competitive,
at least for our application.

Since an explicit representation of the full linear operator L
cannot be used for the reasons given above, we have opted for
constructing the preconditioner from the explicit representation of
Lg , which can be viewed as a rough (sparse) approximation of L.
The bandwidth of this operator is much smaller (only 9 diagonals
for our test case), but it still contains important contributions like,
e.g., the parallel electron dynamics, which usually is the dominant
advection term of the linear operator and therefore largely deter-
mines its spectral radius. The L g matrix is stored in parallel sparse
matrix format provided by PETSc, and the time for its computation
is negligible.

We next describe the two preconditioning techniques that we
have tested, namely additive Schwarz and parallel ARMS.

3.4. ASM+ILU preconditioner

Having an explicit representation of the matrix L g , precondi-
tioners can be built with the standard PETSc packages. The linear
system has to be solved in parallel and thus it has to be dis-
tributed to the different MPI processes. A first step would be to
compute a preconditioner from a block diagonal approximation by
Lg ≈ ∑

i Ri Lg Ri with Ri being a diagonal matrix having ones only
for the indexes belonging to the ith subdomain. For the additive
Schwarz method (ASM) [22] even points outside the domain are
added if they have a neighbor of δth order being inside the do-
main. Thus the differential operator Lg can be approximated by

Lg ≈
∑

i

Lδ
gi =

∑
i

Rδ
i Lg Rδ

i (3)

with Rδ
i being the restriction operator involving also the δth order

neighbor.
The overlap δ is thus representing the interaction between

neighboring subdomains and is thus a measure of the required
communication between the subdomains. Since the linear oper-
ator Lg is just containing a few diagonals, the number of δth
order neighbors is rather small and requiring few computational
resources for communication. The main idea of that domain de-
composition is to create a preconditioner K being a sum of pre-
conditioners Ki , which are themselves constructed from the Lδ

gi .
The overall system to solve is then∑

i

Ki
(
Lδ

gi

)
Lg x =

∑
i

Ki
(
Lδ

gi

)
b (4)

which can be done in parallel since both the computation of the
preconditioner and the evaluation of the linear gyrokinetic opera-
tor are distributed on the respective processes via MPI and PETSc.

The explicit representation of Lδ
gi allows the construction of an

incomplete LU (ILU) decomposition [21] L̃i Ũ i with its inverse being
computable cheaply via forward/backward substitution. This allows
the construction of a preconditioner by

K =
∑

i

Ki =
∑

i

(L̃i Ũ i)
−1 ≈

∑
i

(
Lδ

gi

)−1 ≈ L−1
g (5)

in parallel. Doing only an incomplete LU decomposition has the
advantage of preserving the sparsity of Lδ

gi , since a full decom-
position would lead to a large fill-in which is requiring a lot of
additional memory. PETSc allows one to set a maximum level of
fill-in, which is limiting the creation of entries from other filled in
values to preserve the sparsity pattern. Also the ILU decomposi-
tion creates less fill-in if the ordering of the matrix is optimized.
Different reorderings exist and the quotient minimum degree [23]
reordering seemed to provide the best results for our purposes. All
mentioned algorithms are provided by PETSc and could thus be
easily connected with the eigenvalue computation in SLEPc.

3.5. pARMS preconditioner

The pARMS preconditioner [24,25] is a parallel, multi-level pre-
conditioner based on the Schur complement and algebraic recur-
sive multilevel solver (ARMS) techniques.

Given a system of linear equations Ax = b that is written in
block form[

B F

E C

][
x1

x2

]
=

[
b1

b2

]
, (6)

the idea is to compute an incomplete block LU decomposition of A
as[

B F

E C

]
≈

[
L 0

EU−1 I

][
U L−1 F

0 S

]
, (7)

where LU is an incomplete factorization of B and the Schur com-
plement matrix is S = C − (EU−1)(L−1 F ).

As in the case of Schwarz preconditioners, pARMS is also based
on the domain decomposition idea. In this case, all the unknowns
interior to the different subdomains are placed in the x1 part
in (6), whereas the x2 part contains unknowns corresponding to
the interface between subdomains. Therefore, a permutation is re-
quired for reordering the unknowns. The ARMS method consists
in applying the permutation and incomplete factorization to the
Schur complement S recursively for a given number of levels. In
parallel, pARMS distributes the available subdomains across pro-
cessors. For further details, see [24,25].

There is an MPI implementation of the pARMS preconditioner.1

As part of this work, we have integrated it as an external package
in PETSc 3.2.

3.6. Results for one parameter set

We now present results from some experiments to evaluate dif-
ferent eigensolver configurations. The tests are executed on HPC-FF,
a Linux cluster of 1080 nodes composed of two Intel Xeon X5570
(Nehalem-EP) Quad-Core processors at 2.93 GHz and 24 GB of
DDR3 memory at 1066 MHz, and interconnected by Infiniband
QDR with non-blocking Fat Tree topology.

The results correspond to GENE 1.5 linked with versions 3.2 of
PETSc and SLEPc. All code is compiled with Intel C and Fortran
Compilers 11.1.

The parameter set used is detailed in Table 1.
The SLEPc JD eigensolver is configured to compute the two

eigenvalues closest to the target τ = 1, with a relative tolerance
of 10−5. The search subspace is bounded to 64 vectors and when
it is complete, the method restarts with 5 vectors. The correction
equation is solved in a maximum of 300 iterations of BiCGstab(2)
and with a tolerance of 10−8, accelerated by a preconditioner
K −1 ≈ (Lg − σ I)−1 with σ being a constant value (to avoid re-
computing the preconditioner at each iteration). Usually, the shift
σ is taken to be equal to the target τ , but in our experiments we
observe a small improvement by taking slightly larger values of σ
than τ (see Fig. 1 (right)), so we set σ = 3 as the default value.

3.6.1. Optimal settings of the ASM preconditioner
The Lg matrix exhibits a block diagonal structure in the dimen-

sions s and μ. When these dimensions prevail in the distribution,
the resulting domains become quite unconnected and the block Ja-
cobi preconditioner is effective. For other decompositions that have

1 http://www-users.cs.umn.edu/~saad/software/pARMS/.

http://www-users.cs.umn.edu/~saad/software/pARMS/


926 F. Merz et al. / Computer Physics Communications 183 (2012) 922–930
Fig. 1. Influence of the overlap δ (left) and the shift σ of the preconditioner matrix (right) on the total time. The plots show the mean and the standard deviation (left) and
the minimum time (right) spent by JD with different domain decompositions.

Table 2
Time (in seconds) spent by JD with ASM+ILU solving the test case I with different distribution of processes across the directions s, z, v and μ.

s z v μ Time s z v μ Time s z v μ Time

1 processor 4 processors 32 processors

1 1 1 1 73.29 2 1 1 2 24.69 2 1 2 8 3.88
2 processors 1 1 1 4 24.52 2 2 1 8 5.61

2 1 1 1 33.53 16 processors

1 1 1 2 35.20 2 1 1 8 6.29
1 1 2 1 49.48 1 2 1 8 10.45
1 2 1 1 79.88 1 4 1 4 92.50
more connected domains, ASM can provide better preconditioners
(in terms of convergence), but with more time-consuming applica-
tion, due to the requirement of taking into account the neighbors
of the order determined by the overlap δ.

Of course, the most efficient overlap value depends on the
problem settings and the distribution. However, we obtained good
results with an overlap δ = 2 if fine-grained local preconditioners
are used. Fig. 1 (left) compares the performance of JD solving the
test case I with different overlap values, using ASM with ILU as the
local preconditioner.

Whereas previous solvers could rely on GENE’s internal auto-
matic optimization of the domain decomposition for a fast eval-
uation of L, this choice might not be optimal for the ASM (and
Block–Jacobi) preconditioner. Tests have shown that any decom-
position in the z and v directions leads to a significant drop in
performance due to increased communication, with the decom-
position in z behaving even worse than the one in v (see some
examples in Table 2 and the standard deviations of the time in
Fig. 1 (left)). Care has to be taken that the domain decomposition
is chosen in a way that the s and μ directions are decomposed
first, followed by a decomposition in the v direction.

Besides the optimal configuration of the preconditioner, the
maximum iteration of the Jacobi–Davidson solver has to be
changed to achieve optimal runtimes. If the ASM+ILU precondi-
tioner is applied, five iterations of the BiCGstab algorithm lead
to a sufficient accuracy in solving the correction equation to
achieve convergence of the Jacobi–Davidson algorithm in minimal
time.

3.6.2. Optimal settings of the pARMS preconditioner
The performance of the pARMS preconditioner is specially sen-

sitive to the problem settings, the domain distribution and the
number of processes, making it very difficult to find an optimal
configuration. For the test case I, we found the best performance
when using ARMS as local preconditioner, up to 16 levels of recur-
sion, with a drop tolerance of 10−7 and a maximum fill-in of 90%.
The solution obtained by the Schur complement recursive factor-
ization of pARMS is enriched with up to 5 iterations of FGMRES.

The resulting preconditioner is slightly more expensive than
ASM+ILU, as Fig. 2 (left) shows, but pARMS converges with less
preconditioner applications (3313, against 5229 ASM+ILU appli-
cations). However, in this case JD with ASM+ILU is faster. Notice
that the use of preconditioners shifts the computational effort from
GENE (the matrix–vector product, MV in Fig. 2) to the precondi-
tioner application operation.

On the other hand, the overhead of pARMS does not seem to
penalize its parallel performance, as the comparison of speedups
shows in Fig. 2 (right).

4. Parameter scans

4.1. Subspace recycling

In an m-dimensional parameter scan, all eigenvalue problems
are identified by a vector �p in the m-dimensional subspace of
the physical parameters varied, while the remaining (physical and
numerical) parameters �p0 are the same for all eigenvalue prob-
lems in the scan. The structure of the linear operator and most
of the parameter values stay the same throughout the scan, and
this should be reflected by a similarity of the eigenvectors. Since
the initialization of the test vectors has a big influence on the
speed of convergence of iterative solvers, the reuse of already com-
puted eigenvectors as initial condition for a ‘nearby’ parameter set,
so-called subspace recycling, has therefore the potential to speed
up parameter scans significantly. To illustrate this, we have com-
puted a one-dimensional parameter scan over the ion temperature
gradient R/LT i from 2.5 to 5.5 around the nominal parameter set.
Then the eigenvalue problem corresponding to the central point
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Fig. 2. Time spent with 16 processes (left) and speedup (right) of JD solving the test case I without preconditioner (None), with ASM preconditioner using δ = 2 and the local
preconditioner ILU (ASM+ILU), and with pARMS using the local preconditioner ARMS (pARMS). MV stands for matrix–vector products.

Fig. 3. Computation time for the eigenvalue problem with R/LT i = 4.0 as a function of the difference to the R/LT i value of the eigenvectors used as initial condition,
normalized to the computation time with random initial vectors.
of the scan (R/LT i = 4.0) has been repeatedly solved, using the
eigenvectors from the first scan at the different R/LT i positions
as initial condition. The computation time relative to the com-
putation time with random initialization is show in Fig. 3 as a
function of �R/LT i = R/Lin

T i − 4.0. As expected, the computation
time drops to almost zero for �R/LT i = 0, with only the time for
initialization remaining. The computation time increases quickly
for |�R/LT i| > 0, but the speedup compared to the computation
time with random initial condition is significant throughout the
parameter interval.

This illustrates two points. First of all, if eigenvectors ei,a (a =
1..nev ) for the parameter sets �pi (i = 1..n, where n is the total
number of previously computed solutions) are available, subspace
recycling can reduce the computation time for a new parame-
ter point �pn+1 dramatically. And secondly, since the effect decays
rapidly, an optimal selection of i is crucial.

4.2. Distances in parameter space

To speed up the computation for �pn+1, the �pi ‘closest’ to �pn+1
has to be found. For a one-dimensional scan, the difference vector
in parameter space, ��i = �pn+1 − �pi , has only one entry, which can
naturally be used as a measure for the distance (as in Fig. 3). For
an m-dimensional scan however, ��i is m-dimensional, so that a
metric has to be defined in parameter space. Then, the available ei

can be ranked according their | ��i | and the closest can be selected.
For multi-dimensional scans, the scan ranges for the different

parameter directions can differ by orders of magnitude, as can the
effects of the variation on the solution, so that a simple Euclidean
norm | ��i | =

√ ��i · ��i does not make sense. It is reasonable to as-
sume that the speedup of the computation of the ath eigenvector
of �pn+1 due to initial vector �ei,b is related to the correlation coef-
ficient between ei,a and en+1,b ,

C(ei,a, en+1,b) = | ∫ dλ e∗
i,aen+1,b|√∫

dλ e∗
i,aei,a

√∫
dλ e∗

n+1,ben+1,b

,

where
∫

dλ denotes integration over the whole phase space, i.e.,
over all coordinates including the species. In our test problem,
two eigenvalues are computed for each parameter set (a,b = 1,2),
which results in four combinations for C(ei,a, en+1,b). For ��i → �0,
two of the correlation coefficients approach unity, while the other
two values approach the (smaller) correlation coefficient between
the eigenvectors at �pn+1. For the speedup, only the two combina-
tions with the largest correlation coefficients are of interest, they
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Fig. 4. Number of iterations for the eigenvalue problem with the nominal parameters as function of D ′ = 1.0 − C(ei , en+1).

Fig. 5. Number of iterations for the eigenvalue problem with the nominal parameters as function of D .
are averaged to C(ei, en+1), giving one real scalar quantity for each
parameter combination.

To check the relevance of C(ei, en+1), a set of random sam-
ple points �pi has been created, with a Gaussian distribution in
R/LT i and R/LT e (σ = 0.6) around the nominal parameter set. In
a second stage, these ei have then been used as initial condition
for the computation of the problem with the nominal parame-
ter set. Fig. 4 shows the number of iterations as a function of
D ′ = 1.0 − C(ei, en+1). The number of iterations is proportional to
log(D ′), approaching the 217 iterations needed for D ′ = 1.0 (ran-
dom initial condition). Finding the optimal ei is thus equivalent to
finding the smallest D ′ . The true 1 − C(ei, en+1) can of course only
be determined after en+1 has been computed, but it can be mod-
eled to a good precision by D(pi, pn+1) = ��T

i · M · ��i ≈ D ′ . For
simplicity, the metric tensor M is assumed to be constant in pa-
rameter space. The entries of M can be determined by a fit (we
use least squares fitting) to data, once the number of data points
exceeds m(m + 1)/2, which is the number of unknowns of M in
m dimensions. For scan intervals that are not too big, we found
that M converges quickly with the number of data points (here,
we use 33 = 9 equidistant points, corresponding to the first re-
finement stage for the hierarchical scans described in the next
section). The data of Fig. 4 plotted against D(pi, pn+1) is shown
in Fig. 5.

4.3. Parallelization

Going from a single eigenvalue computation to a parameter
scan introduces new possibilities for parallelization. Without sub-
space recycling, the computations for the different parameter sets
are completely independent and trivial to parallelize. This means
that the individual eigenvalue computations can be run at their
most efficient parallelization (which is determined by a balance of
cache effects and communication overhead) and the whole scan
can still employ a high number of processors to complete in a rea-
sonable time.

To exploit this, the GENE solver has been extended to be able to
deal with (independent) sets of input parameter files. In the initial-
ization, the global MPI communicator is split into n_parallel_sims
new communicators. On each of these subcommunicators, one
(parallel) eigenvalue computation is run at a time. When the com-
putation has finished, a new parameter set is selected from the
(common) set of input files. The different instances keep track
of the status of computation for each of the input files via MPI
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Table 3
Wall clock times to compute the test parameter scan on 64 processors.

Solver Parallelization Subspace recycling Time [s]

Krylov–Schur 64/1 no 2375
Jacobi–Davidson 64/1 no 342
Jacobi–Davidson 8/8 no 264
Jacobi–Davidson 4/16 no 306
Jacobi–Davidson 8/8 yes 202

communication, so that each problem is only solved once; this is
repeated until all parameter sets have been computed and GENE
exits. In the present implementation of the solver, the file contain-
ing the initial vectors has to be specified in the input files, so they
have to be known before the code is started.

As has become obvious in the previous subsections, subspace
recycling is essential for the speed of parameter scans, the ques-
tion is therefore how we can combine the benefits of subspace
recycling (which introduces dependencies of the parameter sets)
and this additional parallelism.

A good solution are hierarchical parameter scans, where the
eigenvectors from previous refinement stages can easily be used
as initial vectors, so that subspace recycling and parallelization
over parameter sets can efficiently be combined. The necessity
for a hierarchical sequence of parameter scans occurs naturally
for adaptive grid refinement techniques, but even for dense grid
scans without adaptivity, starting with a low resolution in the scan
volume and hierarchically refining by bisection has the benefit of
providing an interpolation for the full scan volume while the scan
is still running.

The scans are managed by a superordinated Python script that
is part of the GENE package since release 1.5. Controlled by a mas-
ter input file, the script manages the creation of the parameter sets
for a refinement stage. Taking into account all available eigenvec-
tors from the previous stages, it computes the optimal ei for each
�pn+1 of this new stage. It then starts the actual GENE code, which
treats all parameter points of this refinement stage as independent
and can therefore efficiently parallelize over the parameter points.
The script then collects the results, and manages the storage of the
eigenvectors and other output files, and continues with the next
refinement stage.

5. Application

We now want to demonstrate the gains due to the various im-
provements presented in the previous sections. As a test case, we
perform a three-dimensional scan around the nominal parameter
set presented in Table 1, varying the ion temperature gradient be-
tween 3.0 and 4.0, the electron temperature gradient between 3.5
and 4.5, and the magnetic safety factor q0 between 1.2 and 1.4.
We compute 53 = 125 equidistant points in this parameter volume
and use 64 processors for all cases. The results are shown in Ta-
ble 3.

The solvers that have been compared are SLEPc’s Krylov–Schur
solver with harmonic projection, which needs no precondition-
ing and the Jacobi–Davidson solver with ASM+ILU preconditioning
as described in Section 3. The parallelization column shows the
number of processors per computation/number of parallel compu-
tations. As can be seen, the most important gain (a speedup of a
factor 7) is due to the new solver/preconditioner. Both the optimal
parallelization (8 cores per eigenvalue computation in this case)
and the subspace recycling lead to further reductions of around
25% each. All in all, the computation time for eigenvalue scans
with GENE/SLEPc has been reduced by more than an order of mag-
nitude compared to previous versions.
6. Summary

In this paper, we have presented and analyzed advanced nu-
merical methods to perform large parameter scans with the
GENE/SLEPc linear gyrokinetic eigenvalue solver. Considerable
progress has been made concerning the robustness and speed
of each single eigenvalue computation using the Jacobi–Davidson
eigenvalue solver available from SLEPc 3.1 onwards, in combination
with a preconditioner based on an approximate explicit represen-
tation of the linear gyrokinetic operator. In addition, two methods
to speed up parameter scans have been used, namely the re-
cycling of previously computed eigenvectors as initial condition
for the computation at a nearby parameter set, and paralleliza-
tion over the parameter sets, which removes the need to go to
high processor numbers for the single parameter computations
and therefore increases the efficiency. The performance gains for
multi-dimensional parameter scans using a three-dimensional test
case compared to previous code versions were substantial, reach-
ing a speedup factor of up to 12.

The overall implication of these improvements is that detailed
investigations of the stable and unstable eigenmodes in the multi-
dimensional gyrokinetic parameter space are now computationally
feasible. The application of the techniques described in this paper
will certainly contribute to a better understanding of the impor-
tant driving mechanisms of turbulent transport in fusion plas-
mas.
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