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A B S T R A C T

Modern fusion research aims at making the energy source of the sun accessible for
electricity generation on earth. For this purpose, magnetically confined plasmas
must be heated to very high temperatures of 100 million Kelvin. The resulting
steep pressure gradients lead to turbulent mixing in the plasma, causing a drastic
deterioration of particle and energy confinement. Under certain conditions, how-
ever, self-organized transport barriers can form in the plasma, which allow for
extremely steep density and temperature gradients, and substantially improved
confinement. Understanding the physical mechanisms of transport barriers is thus
a key step toward increasing the feasibility and competitiveness of fusion power
plants.

This work aims to advance the theoretical understanding of transport barriers
occurring both in the core and in the edge of the plasma. In order to study such
conditions, the effect of strongly varying temperature and density profiles must
be considered, as well as the complex shaping of today’s tokamak plasmas. The
gyrokinetic turbulence code Gene has in recent years been extended to include
such capabilities, and is in this work for the first time applied to the conditions of
both core and edge transport barriers.

As an example of internal transport barriers, discharges of the Swiss tokamak
TCV are examined. Experimentally, the steepness of the barrier in these discharges
can be controlled by varying the plasma current profile. This in turn leads to
changes in the geometry of the magnetic field, which stabilizes the turbulence
and results in a steeper barrier. In the present thesis, the global version of Gene is
used to study turbulence under these conditions with a comprehensive physical
model. While for low ion temperature, trapped electron mode (TEM) turbulence
is responsible for the heat and particle transport, it is found that for higher ion
temperature, small-scale electron temperature gradient driven modes (ETG) can
play a key role in determining the steepness of the barrier. The use of a global
model in such studies turns out to be crucial, as the transport due to large-scale
turbulence is otherwise overestimated by orders of magnitude.

Next, the Gene code is used to study plasma edge turbulence in a discharge
of the German tokamak ASDEX Upgrade. In the linear regime, the spatial mode
structures are strongly affected by the complex geometry of the magnetic field. It
turns out that ETG instabilities dominate over a wide range of the wavenumber
spectrum, hinting at their possible importance. In nonlinear simulations, it is then
confirmed that these instabilities are indeed able to drive a large fraction of the
experimental heat transport levels, making them a key candidate for the residual
turbulence in the edge transport barrier of high-confinement discharges.
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Z U S A M M E N FA S S U N G

Die moderne Kernfusionsforschung verfolgt das Ziel, die Energiequelle der Sonne
zur irdischen Energieerzeugung nutzbar zu machen. Magnetisch eingeschlossene
Plasmen müssen zu diesem Zweck auf sehr hohe Temperaturen von mehr als
100 Mio. Kelvin geheizt werden. Daraus resultieren steile Druckgradienten, die
im Plasma für eine turbulente Durchmischung sorgen, welche den Einschluss
von Wärme und Teilchen drastisch verschlechtert. Unter bestimmten Bedingun-
gen entstehen in den Fusionsplasmen jedoch Transportbarrieren, welche extrem
steile Druckgradienten erlauben und den Einschluss deutlich verbessern. Das Ver-
ständnis der physikalischen Vorgänge in solchen Barrieren ist daher von großer
Bedeutung für die Realisierbarkeit und die Wettbewerbsfähigkeit zukünftiger Fu-
sionskraftwerke.

Die vorliegende Dissertation soll das theoretische Verständnis von Transport-
barrieren im Plasmakern und auch im Plasmarand vertiefen. Um Plasmaturbu-
lenz unter solchen Bedingungen zu untersuchen, müssen sowohl die stark vari-
ierenden Temperatur- und Dichteprofile, als auch die komplexe Form heutiger
Tokamakplasmen in Betracht gezogen werden. Der gyrokinetische Turbulenzcode
Gene wurde in den letzten Jahren mit den nötigen Fähigkeiten ausgestattet und
wird in dieser Arbeit erstmals auf Kern- und Randtransportbarrieren angewandt.

Zur Untersuchung von internen Transportbarrieren dienen Plasmaentladungen,
die am Schweizer Tokamak TCV durchgeführt wurden. Im Experiment kann die
Güte dieser Barrieren durch Variation des Plasmastromprofils kontrolliert werden.
Dieses beeinflusst die Magnetfeldgeometrie und erlaubt durch Stabilisierung der
Turbulenz eine Transportbarriere mit steilerem Druckgradienten. In der vorliegen-
den Arbeit wird die globale Version von Gene verwendet, um Plasmaturbulenz
unter solchen Bedingungen mit einem umfassenden physikalischen Modell zu
studieren. Während bei niedriger Ionentemperatur die Turbulenz von Gefangenen-
Elektronen-Moden (TEM) getrieben wird, steigt bei höherer Ionentemperatur der
Anteil kleinskaliger, vom Elektronentemperaturgradienten getriebener Turbulenz
(ETG). Die Verwendung eines globalen Modells, welches die radiale Profilvaria-
tion berücksichtigt, erweist sich als zwingend, da der Transport durch großskalige
Turbulenz anderenfalls um Größenordnungen überschätzt wird.

Schließlich wird Gene zur Untersuchung von Plasmarand-Turbulenz einer Ent-
ladung des Garchinger Tokamaks ASDEX Upgrade verwendet. In linearen Simu-
lationen zeigt sich, dass die räumliche Struktur der Instabilitäten stark durch die
komplexe Geometrie des Magnetfelds beeinflusst wird. Über ein breites Wellen-
zahlspektrum hinweg dominieren hier ETG-Instabilitäten. In nichtlinearen Simula-
tionen wird schließlich gezeigt, dass diese kleinskalige Turbulenzart einen großen
Teil des Wärmeflusses treiben kann. Damit ist ETG-Turbulenz ein Hauptkandidat
zur Erklärung des residuellen Transports in Plasmarandbarrieren.
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1

I N T R O D U C T I O N

For the past decades, scientists have been striving to make possible the utilization
of nuclear fusion as a power source. As the name suggests, the process of nuclear
fusion involves the combination of lighter atomic nuclei into heavier ones. For
elements lighter than iron, such a reaction often involves an energy release, since
the binding energy of its product will be larger than that of the initial nuclei
(Fig. 1). On the other hand, nuclear fission works by splitting heavy atoms into
lighter ones, which is also accompanied by an energy release due to the peaked
shape of the binding energy curve.

For all such reactions, the energy difference between the initial and final state is
roughly a million times larger than that of a typical chemical reaction taking place
in the atomic shell. A power plant harnessing fusion reactions for the generation
of electricity would therefore require only small amounts of fuel compared to
conventional power plants, making such an approach a very promising candidate
for a long-term energy supply.

nuclear fusion

A very well-known fusion reaction is the proton-proton cycle, which is the main
source of the continuous energy conversion occurring in the sun. This reaction,
which takes place in several stages, can be summarized as

4 1
1p→ 4

2He + 2e+ + 2νe + 2γ + 25.7 MeV,

i.e. four protons are combined into a helium nucleus, and two positrons, electron-
neutrinos and gamma particles are emitted. The total energy distributed to all
products then amounts to 25.7 MeV. Unfortunately, the first stage of this reaction,
which involves the fusion of two protons via the weak interaction, has a very low
reaction cross-section and thus prevents the exploitation of the proton-proton cy-
cle in a terrestrial fusion power plant. Instead, the most promising fusion reaction
begins with the next heavier isotopes of hydrogen and relies on the combination
of deuterium and tritium into a helium nucleus,

2
1D + 3

1T→ 4
2He + 1

0n + 17.6 MeV.

In this process, a neutron is released, which carries 80 % of the released energy
of 17.6 MeV. Deuterium is a naturally abundant isotope of hydrogen and can be
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Figure 1: Illustration of energy gain by fusion and fission due to varying nuclear binding
energy. The graph depicts the binding energy per nucleon in MeV versus the
atomic mass number. Data source: [1]

extracted from ocean water, in which it can be found in the form of D2O and
HDO molecules. Tritium, on the other hand, is radioactive and due to its short
half-life of 12.3 years, it does not occur naturally in sufficient amounts and must
instead be bred by neutron activation of lithium, its neighbor in the periodic table
of elements. This can be achieved by the reaction

6
3Li + 1

0n → 4
2He + 3

1T + 4.8 MeV.

By lining the wall blankets of a fusion reactor with lithium1, the tritium supplies
of the power plant can be regenerated within the reactor, so that deuterium and
lithium can be regarded as the primary resources required for power generation
via nuclear fusion. Both these elements are available in large amounts, although
concerns about the competition of lithium requirements with the batteries of elec-
tric cars have recently been voiced [2].

benefits

While both fission and fusion power plants virtually eliminate the immense CO2
emission of fossil fuel combustion, the safety and environmental properties of
future fusion power plants are far superior compared to those of today’s fission
reactors. Unlike the latter, fusion reactors do not rely on a critically balanced chain
reaction, eliminating the risk of a run-away reaction as in the Chernobyl accident.
The more recent Fukushima accident, on the other hand, was not caused by a
lack of control of the chain-reaction, but by the inability to remove the decay heat,

1 A neutron-multiplying layer of beryllium is also necessary to compensate the loss of neutrons
which are absorbed by other wall components.
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which is generated by residual nuclear reactions continuing after the shutdown
of the reactor. This problem is also much less of a concern for a fusion power
plant, since the fusion reactions immediately cease after shutdown (or damaging)
of the reactor; remaining nuclear reactions in the reactor walls will not be able to
endanger the reactor structures [3].

Finally, the terminal storage problem does not exist on the same scope as for
fission power plants. The waste produced by the latter contains a large variety of
radioactive isotopes, some of which have a half-life on the order of 100, 000 years.
The targeted fusion reactions, on the other hand, do not directly produce radioac-
tive waste, but the fast neutrons will activate the materials of the reactor walls.
Unlike in the case of fission, the relevant materials can be selected to have good
activation properties. Thus, it is foreseen that the majority of the activated com-
ponents will have a short enough half-life to enable their recycling after less than
100 years of safe storage (see Ref. [3] and references therein). Finding suitable stor-
age areas (e.g. buildings) for such a timescale is, of course, a much simpler task
than finding a repository that remains safe for 100, 000 years.

fusion requirements

The principal challenge of achieving nuclear fusion is the requirement that the
participating nuclei must overcome their mutual Coulomb repulsion, before the
strong nuclear interaction becomes dominant and leads to the fusion of both nu-
clei. Thus, the latter have to collide with a large kinetic energy, which must in prin-
ciple be larger than the height of the Coulomb barrier of 415 keV. Fortunately, the
required energy is substantially reduced by the quantum tunneling effect, which
leads to a finite probability of penetrating the Coulomb wall even if the particles’
energy is actually smaller than the barrier energy.

The most promising approach to achieving sufficiently large kinetic energies
for a large number of particles is to heat a gas of deuterium and tritium to a very
high temperature, so that the particles’ random motion becomes fast enough. In
a Maxwellian velocity distribution, there always exists a fraction of particles with
large velocity, so that fusion reactions will set in at temperatures far below the
above mentioned energies. Even with these favorable effects, in order to achieve
a practically usable fusion rate, the fuel gas must still be heated to a temperature
of 100− 200 million Kelvin, which corresponds to a thermal energy of roughly
10− 20 keV. These energies far exceed the electron binding energies in the atomic
shell of light elements, so that the fuel gases are fully ionized, i.e. they exist in the
plasma state.

plasma confinement

At such extreme temperatures, it is no longer possible to confine the plasma solely
with material walls, since no material would withstand the continued exposure
to the hot plasma. Instead, use is made of the fact that the plasma consists of
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Figure 2: Illustration of the tokamak principle. (Source: IPP, adapted)

charged particles, whose motion can be influenced by magnetic fields. By placing
coils around the plasma, a strong magnetic field is imposed, which confines the
plasma particles to helical orbits around the field by means of the Lorentz force

FL =
q
c

v× B.

The Lorentz force, however, acts only in the plane perpendicular to the magnetic
field. To contain the particles also along the field lines, a straightforward approach
would be to close the magnetic field in a ring. Unfortunately, the resulting inho-
mogeneity of the field leads to particle drifts, which make such a configuration
intrinsically unstable.

By twisting the field lines into a helical shape, it is possible to overcome this
problem and obtain a macroscopically stable plasma containment. This additional
twisting of the field lines can be achieved by driving a current in the plasma,
which induces an additional (poloidal) magnetic field, adding to the external
(purely toroidal) field. To drive the current, usually the transformer principle is
employed by placing the primary coil in the center of the plasma ring, and using
the plasma itself as secondary coil. This approach is, following a Russian acronym
for ’toroidal chamber with magnetic field coils’, called the tokamak principle (see
Fig. 2).

Another approach, the stellarator, generates the helical magnetic field purely by
external coils, so that no plasma current is required. This is an intrinsic advan-
tage, since it allows for steady-state operation, while a (standard) tokamak must
be operated in a pulsed fashion due to the limitations of the transformer princi-
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ple. On the other hand, simple stellarator designs are subject to strong transport
losses, and stellarator designs thus have to rely on computer-aided optimization
of the coil shapes to overcome this problem. Both the tokamak and the stellarator
concepts are being actively researched and developed, with the ultimate goal of
producing an efficient and commercially competitive power plant reactor.

By means of magnetic plasma confinement, the walls of the vacuum vessel are
no longer in direct contact with the hot plasma and thus have a much increased
lifetime. Due to the requirement of low temperature (at most about 1300 K) at
the walls, but very high temperature (∼ 108 K) in the plasma core, the region in
between—which in many experiments is only a few ten centimeters wide—must
obviously be characterized by a large temperature gradient. While the plasma is
macroscopically stable, the gradients of temperature and density drive microinsta-
bilities which lead to turbulent transport of heat, particles and momentum. The
timescale on which the heat losses occur is measured by the energy confinement
time τE, and is given by

τE =
E

Pext
,

where E is the energy contained in the plasma, and Pext denotes the amount of
external heating required in the steady state. A criterion for the ’break-even’ con-
dition, at which the produced fusion power balances the required external heating
(corresponding to a fusion power gain of Q = 1), is given by the triple product
nTτE (density × temperature × confinement time) exceeding a value of

nTτE & 1021 s · keV
m3 .

Due to turbulent transport, the confinement times are much smaller in practice
than anticipated in the early days of fusion research, and fusion reactors must
in turn be built much larger in size to overcome these additional losses. For this
reason, understanding and improving the transport properties of fusion plasmas
is crucial to ensuring the feasibility and also the commercial competitiveness of
future power plants.

improved confinement regimes

Significant progress in improving the plasma confinement was achieved with
the discovery of the ’H-mode’ regime (“high-confinement mode”) [4], which the
plasma enters when the external heating power exceeds a given threshold value.
In this regime, the energy confinement time τE is roughly twice as large as in the
low-confinement ’L-mode’. The improved confinement results from the formation
of a transport barrier at the very edge of the plasma (see Fig. 3), which permits
extremely steep temperature and density gradients in that region. Naturally, such
a region is not easily accessible to either experimental measurement or theoretical
description, although significant progress in both areas has been made since the
experimental discovery of the H-mode (see Ref. [5] for a review). The generally
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Figure 3: Illustration of the confinement improvement in the H-mode regime.

accepted picture of the H-mode barrier is that fast, sheared plasma flows suppress
large-scale turbulence in the barrier region, which in turn leads to substantially
reduced heat and particle transport. While many theoretical studies support this
picture, a fully self-consistent numerical simulation of an edge transport barrier
has not yet been achieved, and many questions concerning the relevant turbulence
mechanisms are still open.

In addition to the exploration of the H-mode regime, experiments have in recent
years also successfully obtained discharges with internal transport barriers, which
form—as their name suggests—not in the very edge, but in the core of the plasma.
This kind of barrier is usually obtained by a combination of induced plasma rota-
tion and reversed magnetic shear, which act to stabilize the turbulence in the core
region of the plasma (see, e.g., Ref. [6] for a review of such barriers).

In both edge and core transport barriers, it is usually observed that the ion
heat diffusivity is reduced to very low levels, close to what would be expected
in the case of purely collisional diffusion (see Ref. [7] for an extensive review
of this topic). Both the particle and the electron heat fluxes, on the other hand,
clearly exceed such levels, and are therefore likely to be caused by turbulence.
The mechanisms governing these phenomena are the subject of this work.

links to fundamental research

Apart from the obvious application of the present studies to fusion research, many
of the phenomena occurring in the context of plasma turbulence are interesting in
their own right. In recent decades, interdisciplinary science fields such as systems
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theory and complexity theory have gained attention by aiming for a description
of phenomena like self-regulation, self-organization, and emergence, which can
be observed in many different fields of science ranging from biology, chemistry,
and physics to sociology and economics.

Self-organization and emergence are features of complex systems, which in gen-
eral consist of a large number of individual agents with a given set of properties.
Emergence is the appearance of new—often surprising—collective phenomena in
such systems, which become possible by the interaction of the individual agents.
Basic examples of such systems can be examined using cellular automata, e.g.
in Conway’s Game of Life [8], in which agents with a single property (“dead” or
“alive”), under a given set of rules, are able to form complex objects and behaviors.

In the present case, the plasma itself can be viewed as a complex system, which
consists of many individual particles with given charge and mass. The evolution of
these particles is determined by their mutual interaction through self-generated
fields, allowing for a host of collective phenomena like waves, instabilities and
flows. The plasmas considered here are in a state far from thermodynamic equilib-
rium, and are exposed to a continuous input and outflow of energy, particles and
momentum. Often, self-organization in parts of the plasma can be observed: Tur-
bulence in a plasma can regulate itself—similar to a predator-prey relationship—
by the generation of zonal flows, which back-react on the turbulence by breaking
up convective cells, thus limiting the transport levels. Transitions to improved
confinement states, as studied in this thesis, are also self-organized phenomena,
which can be triggered by exceeding a given threshold heating power to the
plasma, or by manipulating macroscopic properties like the profile of the plasma
current.

scope of the present work

The present thesis aims to make a useful contribution to the theoretical under-
standing of both edge and core transport barriers. To this end, the gyrokinetic
turbulence code Gene is extended with several useful features, including the pos-
sibility to study the effect of sheared E× B rotation, a new interface to magnetic ge-
ometries reconstructed from actual experiments, a conservative global discretiza-
tion of the nonlinear terms in the gyrokinetic equations, and an adaptive parti-
cle source for gradient-driven global simulations. Furthermore, improvements to
the treatment of complex magnetic field geometries are introduced, including a
shifted-metric approach for strongly sheared magnetic fields, and a remapping of
the parallel coordinate grid to remedy resolution problems occurring in simula-
tions of the plasma edge.

With these improvements, the Gene code is used to study an electron internal
transport barrier in comprehensive global simulations, including both kinetic ions
and electrons. In all three examined cases, it is found that electron temperature
gradient driven (ETG) modes are strongly unstable, indicating their possible im-
portance in determining the electron heat transport, and thus the strength of the
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transport barrier. Indeed, nonlinear simulations reveal substantial transport contri-
butions at electron gyroradius scales, indicating that there is no clear separation
of the latter from the ion scales. Simulations of both pure ETG turbulence and
pure ion-scale turbulence are then used to show that a large fraction of the total
heat transport is indeed driven at electron scales, underscoring their importance
under these conditions. A sensitivity study proves the robustness of this statement
by showing that ETG contributions persist also in presence of impurities, weaker
profile gradients, and lower ion temperature.

As another application, the local version of Gene is used to study instabilities
and turbulence in a high-confinement ASDEX Upgrade discharge, focusing on the
edge region. It is found that ETG turbulence is able to carry a significant fraction of
the experimentally expected heat flux, even though commonly expected features
like radially elongated streamers are absent. Various positions across the pedestal
of the discharge are examined, yielding substantial ETG-driven transport levels
from the middle of the pedestal to the pedestal top. This result is shown to be
robust also for rather impure edge plasmas. Due to the challenging magnetic
background geometry in the plasma edge, various numerical optimizations are
employed, and extensive convergence tests are performed to validate the obtained
results.

This thesis is structured as follows. In Chapter 2, the theoretical framework of
gyrokinetic theory is introduced, and the derivation of the Gene equations is de-
tailed. Chapter 3 describes the numerical implementation of the equations, along
with several new features introduced during the course of this thesis. These in-
clude changes to the implementation of multiple gyroaverages, a conservative dis-
cretization of the nonlinearity in the global version of Gene, as well as additional
features allowing the inclusion of sheared perpendicular and parallel equilibrium
E × B flows. In Chapter 4, improvements to the geometry capabilities of Gene

are detailed. In particular, the implementation and benchmarking of a new inter-
face to the widely-used Efit output files, using a Gene-internal field-line tracing
module is described. Furthermore, a shifted metric procedure, which facilitates
simulations in presence of strongly sheared magnetic fields, is implemented and
thoroughly examined, and an optimized treatment of the parallel coordinate is
introduced in order to alleviate resolution issues occurring in simulations of the
plasma edge. Chapter 5 describes global simulations of an electron internal trans-
port barrier discharge of the TCV tokamak. In Chapter 6, local simulations of an
ASDEX Upgrade plasma pedestal are shown. In Chapter 7, finally, conclusions are
drawn from the obtained results, and an outlook to future necessary and planned
work is given.



2

T H E O R E T I C A L B A C K G R O U N D

2.1 overview

The present chapter is dedicated to the theoretical framework that will be used
throughout this work to describe phenomena of plasma turbulence under con-
ditions found in transport barriers. After a short description of the kinetic equa-
tions governing the dynamics of plasmas, in Sec. 2.2 several ordering assumptions
about plasma fluctuations are introduced, which determine fundamentally the
physics retained in the final equations. In Sec. 2.3, equations of motion, suitable
to describe the motion of single particles in strongly magnetized plasmas with
fluctuating electromagnetic fields, are derived. Using the results of that section
along with the ordering assumptions introduced before, the gyrokinetic Vlasov
equation, describing the evolution of a gyrocenter distribution, is constructed in
Sec. 2.4. Finally, Maxwell’s equations are adapted to the gyrokinetic model in
Sec. 2.5, providing a means to calculate the fields generated by the gyrocenter
distribution and thereby closing the system of equations.

The magnetically confined plasmas studied for fusion applications are character-
ized by their very high temperature and low density. They are therefore essentially
collision-free2, contradicting the usual fluid theory assumption of strong particle
collisions. While the latter assumption still proves to be adequate when describing
the large-scale behavior of the plasma, for the description of microstability phe-
nomena it is necessary to employ a kinetic description which includes the velocity
space dynamics.

Neglecting collisional particle interactions, the equations describing plasma dy-
namics are given by the Vlasov equation

D f j

Dt
=

∂ f j

∂t
+ v · ∇x f j +

F
m
· ∇v f j = 0, (2.1)

which relates the spatio-temporal evolution of the particle distribution f j(x, v, t)
(j denoting the index of the particle species) to a self-consistently generated force-
field F = q (E + v× B), which is in turn given by the Maxwell equations

2 See plasma physics textbooks such as Refs. [9, 10, 11].

9
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∇× E = −1
c

∂B
∂t

∇× B =
4π

c ∑
j

qj

ˆ
v f jdv +

1
c

∂E
∂t

∇ · E = 4π ∑
j

qj

ˆ
f jdv

∇ · B = 0.

While it is feasible (but computationally expensive) to solve these kinetic equa-
tions numerically, they can be further reduced and adapted to the problem at
hand, while keeping the physics of interest intact. The most important reduction
in this context is made possible by the strong magnetization of the fusion plasmas
studied here, which forces particles into helical gyro-orbits and thereby limits their
mobility in the perpendicular plane3. The averaged particle motion in that plane
is thus slowed down by orders of magnitude, and the turbulence dynamics of in-
terest becomes much slower than the timescale on which gyration takes place. By
exploiting this fact, it is possible to derive an approximate set of equations which
describes only low-frequency phenomena in a reduced five-dimensional phase
space (three space, two velocity space dimensions). This set of equations, which is
known as the gyrokinetic Vlasov-Maxwell system, will form the theoretical back-
ground for the studies performed in the present thesis.

In the following sections, the derivation of the gyrokinetic equations will be
outlined. Starting from an analysis of single-particle motion, we will construct a
set of equations for the gyrocenter distribution function and its self-consistently
generated fields. Here, we will follow the Hamiltonian approach detailed in the
publications [12] and [13], and further references therein.

2.2 gyrokinetic ordering

During the derivation of the gyrokinetic equation system, assumptions about the
magnitude of various quantities will be used. These assumptions are motivated
by experimental observations as well as some basic properties of plasmas. For
instance, our equations will consider small perturbations of the distribution func-
tion about a Maxwellian background, and potential energy perturbations that are
small compared to the background temperature, which we will characterize by an
expansion parameter denoted by εδ. The aforementioned orderings are summa-
rized by the estimates

f1

F0
∼ qφ1

Te
∼ q

v‖
c

A1‖
Te
∼

B1‖
B
∼ εδ. (2.2)

3 From now on, the terms ’parallel’ and ’perpendicular’ will always refer to the direction of the
background magnetic field.
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Here, f1 denotes the deviation of the distribution function from its stationary back-
ground F0; c is the speed of light, q the electric charge, φ1 the perturbed electro-
static potential, v‖ the velocity along the background magnetic field, A1‖ the per-
turbed parallel magnetic potential, Te the electron temperature, B the background
magnetic field and B1‖ the parallel magnetic field perturbation. The magnetic vec-
tor potential is related to the magnetic field by the relation

B = ∇× A.

Aside from the orderings regarding the magnitude of perturbations, equilib-
rium quantities are assumed to vary slowly in space, which can be expressed by
stating

ρi∇F0

F0
∼ εF

ρi∇B
B

∼ εB.

Moreover, these quantities are taken to be static in time. We will usually assume
that4 εB ∼ εF. Finally, the highly anisotropic particle mobility in the plasma—
parallel motion is not affected by the background magnetic field—causes parallel
derivatives of fluctuating quantities to be much smaller than perpendicular deriva-
tives, which will be taken into account by the wavenumber ordering

k‖
k⊥
∼ ε‖.

On the other hand, to allow studies of turbulence at arbitrary spatial scales, its
perpendicular fluctuation scale lengths are allowed to be comparable to the gyro-
radius

k⊥ρi/e ∼ 1

of the considered particle species. The gyroradius is—for a particle of species j—
given by

ρj =
vj

Ωj
,

with the gyrofrequency

Ωj =
qjB
mjc

.

4 In fact, in toroidal plasmas, the magnetic field variation is weaker than that of the other profiles
roughly by a factor ε = a/R, with a and R the minor and major radii, respectively.
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Here, mj is the particle mass, vj its velocity and qj its charge. Combining the
ordering of the perpendicular wavenumber with that of the potentials φ1 and A1‖,
gives an ordering for the electromagnetic fields

c |E1⊥|
vthB

∼ |B1|
B
∼ εδ,

with the perpendicular electric field perturbation E1⊥ = −∇⊥φ1, the thermal
velocity vth, the background magnetic field B, and its perturbation B1.

2.3 gyrokinetic single-particle dynamics

As a first step in the derivation of the gyrokinetic equation system, we will ex-
amine the gyrokinetic equations of motion for single particles. We start from the
Lagrangian

L(x, ẋ, t) =
1
2

mv2 − qφ(x, t) = p(v) · ẋ− H(x, p(v), t),

which can be used to obtain the Euler-Lagrange equations of a particle in the pres-
ence of electromagnetic potentials φ and A (see, e.g., Ref. [14]). In this equation,
p(v) = mv + qA(x)/c is the canonical momentum of the particle. The techniques
we are going to employ in this chapter usually use the associated one-form γ

instead of the Lagrangian, which is defined via the action integral
ˆ

L dt =
ˆ

γ. (2.3)

Inserting the single-particle Hamiltonian H(x, p(v), t) = 1
2 mv2 + qφ(x, t) yields

the one-form

γ =
(

mv +
q
c

A(x)
)
· dx−

(
1
2

mv2 + qφ(x, t)
)

dt. (2.4)

This one-form is now subjected to a two-step transformation, the first of which will
yield the one-form for guiding center motion in a stationary electromagnetic field.
In the second step, field perturbations—which are required for the description of
turbulent plasmas—are allowed, and a new set of gyrocenter equations of motion
is found, which retains the average effect of the gyromotion without depending
explicitly on the gyroangle.

2.3.1 transformation to guiding-center coordinates

In a strong magnetic field, it is advantageous to describe the motion of charged
particles as a superposition of the motion of its guiding center, and a fast gyration
of the particle around the latter. For many investigations, it is sufficient to examine
the guiding center motion and disregard the exact dynamics of the fast gyration,
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saving many orders of magnitude in both temporal and spatial resolution, and
gaining also analytical simplicity.

The instantaneous position of the guiding center can be derived from a particle’s
trajectory x(t) by splitting its velocity vector v = ẋ(t) into parts that are parallel
and perpendicular to the background magnetic field, yielding

v = v‖b̂ + v⊥ĉ.

Here, b̂ is the unit vector parallel to the magnetic field, and ĉ is the unit vector fol-
lowing the perpendicular part of the velocity vector. Since the gyration frequency
of a charged particle5 with mass m and charge q in a magnetic field is the cyclotron
frequency, given by

Ω(x) =
qB(x)

mc
,

we can derive the gyroradius to be

ρ(x, v⊥) =
v⊥

Ω(x)
.

This allows us to establish the relationship between the gyroradius vector and the
perpendicular part of the velocity as

v⊥ = v⊥ĉ =
dρ

dt
.

A very common parametrization of the gyromotion, which forms also the basis of
the theory in this work, is achieved by describing the perpendicular gyromotion
in polar coordinates. This approach is justified by the assumption that the back-
ground magnetic field varies on much larger scale lengths, and that the particle
can complete many gyrations before moving significantly in the perpendicular
plane. We can then define the gyroradius vector as

ρ =
v⊥
Ω

â(θ) =
v⊥
Ω

(cos θê1 − sin θê2) .

Here, we have introduced the gyrophase or gyroangle θ and two orthogonal unit
vectors ê1, ê2 spanning the perpendicular plane. From the above definition, upon
using dθ/dt = Ω we get

v⊥ = v⊥ĉ = −v⊥ (sin θê1 + cos θê2) .

Having defined the gyroradius vector, we can give the position of the guiding
center as

X = x− ρ = x− ρ(x, v⊥)â(θ).

5 Unless they are necessary, we will usually suppress species indices for better readability.
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Figure 4: Depiction of a particle trajectory and the vectors describing the particle position,
velocity, the guiding-center position and the gyroradius vector (x, ẋ, X and ρ
respectively).

The relations between the above defined vectors are also indicated in Fig. 4. In
many practical applications such as the fusion plasmas considered in this work,
the background magnetic field varies on a much slower temporal and spatial scale
than the gyromotion. In such situations, the magnetic moment

µ =
mv2
⊥

2B(X)

is an adiabatic invariant (see classical mechanics textbooks such as Ref. [14]), i.e.
an approximate constant of motion. With the above definitions, it is possible to
transform the one-form from Eq. 2.4 to guiding-center coordinates

{
X, v‖, µ

}
.

Applying this transformation and keeping only terms of first order in εB = ρ/LB,
one can derive the gyrophase-averaged guiding center one-form (see, e.g. Refs. [15,
16])

Γ0 =
[
mb̂v‖ +

q
c

A0(X)
]
· dX +

µB(X)

Ω(X)
dθ −

[
1
2

mv2
‖ + µB(X) + eφ0(X)

]
dt,

with the equilibrium electrostatic potential φ0 associated to the plasma rotation.
This contribution will be neglected from now on, and rotation will only be consid-
ered in the co-moving frame, in which the equilibrium potential vanishes. At this
point, it is useful to introduce the abbreviation

A∗0 = A0 +
mc
q

v‖b̂
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and the zeroth-order guiding center Hamiltonian

H0(X, v‖, µ) =
1
2

mv2
‖ + µB(X).

Using this notation, we can express the unperturbed guiding-center one-form in
a compact way as

Γ0 =
q
c

A∗0(X) · dX +
µB(X)

Ω(X)
dθ − H0(X, v‖, µ)dt. (2.5)

This one-form describes the motion of charged particles in a slowly-varying
electromagnetic field and can be used to derive the associated equations of motion
to yield the so-called drift-kinetic Vlasov equation, which is already very useful
to investigate effects of particle motion in given background fields.

2.3.2 transformation to gyrocenter coordinates

In order to describe turbulent transport, it is necessary to extend the guiding-
center one-form from the previous section and allow for perturbations in the
electromagnetic potentials. We start by extending the previous definitions of the
one-forms and the Hamiltonian function by perturbed contributions

γ = γ0 + γ1

Γ = Γ0 + Γ1

H = H0 + H1,

which are of order O (εδ) compared to their background counterparts. The per-
turbed parts of the one-form and the Hamiltonian are given by

γ1 =
q
c

A1(x, t) · dx− H1dt (2.6)

H1 = qφ1(x, t).

Here, γ denotes again the one-form in particle phase space, while Γ denotes its
guiding-center coordinate counterpart. Taking into account that x = X +ρ(X, µ, θ),
we can see that the total one-form as well as the Hamiltonian have again acquired
a gyrophase dependence, which had been averaged out of the guiding center
one-form Γ0. Here, however, it is not possible to remove the dependence on the
gyroangle by simply taking a gyroaverage, since the potential perturbations vary
on the gyroradius scale. Instead, to derive a reduced version of the perturbed one-
form, we will use the formalism of Lie perturbation theory (an introduction can
be found, e.g., in Ref. [17]) to find a new set of gyrocenter equations of motion,
which do not depend on the gyrophase. The Lie-transformed gyrocenter one-form
Γ1 is marked with an overbar to distinguish it from its guiding-center counterpart.
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There are various ways to find simplified equations, which differ by the choice
of which parts of the gyrocenter one-form should retain perturbed fields. For
instance, in the Hamiltonian approach (see, e.g., Ref. [18]) one chooses to set all
components of Γ1 to zero, except for Γ1t = −H1. This approach has the advantage
of leaving the equations of motion unchanged compared to the guiding center
equations.

Here, however, we employ the so-called symplectic approach (see, e.g., Ref. [19]),
which allows the symplectic part of the gyrocenter one-form (i.e. the components
multiplied by dX, dv‖, dµ and dθ) to retain gyroangle-independent parts of the
perturbed fields. The advantage of this approach compared to the Hamiltonian
one is that the parallel momentum coordinate does not acquire a dependence
on the perturbed magnetic potential and remains a kinetic momentum. All ap-
proaches, however, have in common that all dependences of the perturbed poten-
tials on the gyroangle are at each order moved into a gauge function denoted by
Sn, while the resulting equations of motion are independent of the gyroangle.

The actual transformation to the gyrocenter one-form is (up to second order in
ε) given by

Γ0 = Γ0 + dS0

Γ1 = Γ1 − G1 ·ω0 + dS1

Γ2 = −G2 ·ω0 −
1
2

G1 · (ω1 + ω1) + dS2,

where the functions Gn are the generating functions of the Lie transformation and
ωn is the nth-order Lagrange-tensor, defined as

ωn,αβ =
∂Γn,β

∂zα
− ∂Γn,α

∂zβ
(2.7)

and the derivatives are taken with respect to the phase-space coordinates zµ accu-
rate to O(εn). The first-order Hamiltonian function, on the other hand, is given
by

H1 = 〈H1 − G1 · dH0〉 , (2.8)

where the brackets 〈...〉 denote an average over the gyrophase, which is for an
arbitrary quantity Q defined as

〈Q〉 = 1
2π

˛
Q (X + ρ) dθ.
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As a first step in our derivation, we have to transform the first order perturbed
one-form to guiding-center coordinates. Expanding Eq. 2.6 to zeroth order in εB
yields

Γ = Γ0 + Γ1 =
(q

c
A∗0 +

q
c

A1

)
· dX +

q
c

(
A1 ·

∂ρ

∂µ

)
dµ

+

(
µB
Ω

+
q
c

A1 ·
∂ρ

∂θ

)
dθ − (H0 + qφ1)dt

It is sufficient to carry the calculation of the perturbed one-form to O
(
ε0

B
)
, as the

terms contributing to the equations of motion will then be of the same order as
the O (εB) corrections from the zeroth-order one-form (assuming that εB ∼ εδ).
The derivation proceeds now in a very similar way as in Ref. [20], except that we
choose to keep only

Γ1X =
q
c

b̂
〈

A1‖
〉

in the perturbed gyrocenter one-form6. The component Γ1µ is chosen to be zero,
which is a necessary requirement to establish the new gyrocenter magnetic mo-
ment as an adiabatic invariant7. Another requirement to achieve this property is
that the total Γθ depend only on µ; we therefore choose Γ1θ = 0 as well. The
component Γ1v‖ vanishes already in the above equation and we accordingly set
Γ1v‖ = 0 in the gyrocenter one-form. The approach of keeping only the A1‖ com-
ponent in Γ1X corresponds to the ‖-symplectic gyrocenter model (α = 0, β = 1 in
Eq. (157) of Ref. [13]). The generating functions G1 then have to be chosen as

Gµ
1 =

Ω
B

(
m
B

A1 · v⊥ +
∂S1

∂θ

)
G

v‖
1 =

Ω
B

B∗0
B∗0‖
·
(

A1 − b̂
〈

A1‖
〉
+

c
q
∇S1

)
Gθ

1 = −Ω
B

(
1

v⊥
A1 · â +

∂S1

∂µ

)
GX

1 = − 1
B∗0‖

[
b̂×

(
A1 +

c
q
∇S1

)
+

B∗0
m

∂S1

∂v‖

]
,

where B∗0 = ∇ × A∗0 . Note that in comparison to Ref. [20], due to our slightly
different choice of Γ1X , the definition of GX

1 contains the full magnetic potential
instead of only the fluctuations, and G

v‖
1 contains the full perpendicular potential,

but only the fluctuations of the parallel one. Comparing the derivatives of the

6 To the order of accuracy of our final equations, this yields the same result as in Ref. [20], where
the perpendicular component of A1 was also kept, but neglected later on to derive the equations
of motion.

7 This property simplifies the final equations in the sense that only X and v‖ are dynamic variables
with a time evolution, while the magnetic moment µ enters as a mere parameter.
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gauge function S1 in magnitude (see Ref. [20]), we retain only ∂S1/∂θ, which then
has to be chosen to fulfill

∂S1

∂θ
=

1
Ω

{
qφ̃1 +

b̂
B∗0‖
× Ã1 · µ∇B−

qv‖
c

B∗0
B∗0‖
· Ã1 −

Ω
B

(
Ã1 · v⊥

)}
. (2.9)

In the last equation, we introduced the notation

Q̃ = Q− 〈Q〉

to denote the gyroangle-dependent part of a fluctuating quantity Q. From Eq. 2.8,
the perturbed Hamiltonian can be found to be

H1 = q
〈

φ1 −
v⊥
c
· A1⊥

〉
.

By expanding the magnetic potential A1 as

A1(X + ρ) =
∞

∑
n=0

1
n!

(ρ · ∇⊥)n A1(X),

the term
〈v⊥ · A1⊥/c〉 = 1

2πc

ˆ
v⊥ · A1⊥dθ

can be identified [21] as

〈v⊥ · A1⊥/c〉 = −µ

q
I1(λ)B1‖ = −

µ

q

〈
B1‖
〉

.

Here, we introduced the abbreviation

I1(λ) =
2
λ

J1(λ)

in terms of λ2 = −ρ2∇2
⊥ and the nth order Bessel functions

Jn(λ) =
∞

∑
k=0

(−1)k

k! (n + k)!

(
λ

2

)n+2k
.

Replacing the gyroaverage accordingly, we can define

H1 = q
〈

φ1 +
µ

q
B1‖

〉
≡ q 〈ψ1〉 ,

where ψ1 is the effective potential in the perturbed Hamiltonian. Summing up all
relations derived up to now, the full gyrocenter one-form reads

Γ =
[q

c
A∗0 +

q
c

〈
A1‖
〉

b̂
]
· dX +

µB
Ω

dθ − [H0 + q 〈ψ1〉]dt. (2.10)
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Note that the above Taylor expansion in ρ is only valid if all orders are kept, since
A1 varies on the gyroradius scale. As we will see later on, keeping all orders is only
possible in a local model, which treats a thin sheet of the plasma and therefore
allows for periodic boundary conditions. In the more general global model, only
the perpendicular magnetic field fluctuations described by A1‖ will be kept, so
that ψ1 reduces to φ1. With this restriction, the latter model is valid in the limit of
low plasma β; i.e. the plasma pressure must be small compared to the magnetic
pressure, which is usually well-fulfilled for the systems studied here.

2.3.3 gyrocenter equations of motion

Using the gyrocenter one-form of Eq. 2.10, we can write down its associated equa-
tions of motion. One possibility is to use Definition 2.7 and calculate the Euler-
Lagrange equations of motion

ωαβ
∂zβ

∂t
=

∂H
∂zα

;

alternatively, one can employ the associated Poisson bracket (see Eq. (159) of
Ref. [13]). Calculating Ẋ = {X, H} and v̇‖ = {v‖, H} yields the equations of
motion

Ẋ =
cb̂

qB∗‖
×∇H +

∂H
∂v‖

B∗

mB∗‖
(2.11)

v̇‖ = − B∗

mB∗‖
·
(
∇H +

q
c

b̂Ȧ1‖
)

. (2.12)

Here, we have started to denote gyroaveraged quantities appearing in the equa-
tions of motion by an overbar8. Using the above equations, we can straightfor-
wardly calculate the collisionless (single-particle) Vlasov equation via

∂F
∂t

+ Ẋ · ∇F + v̇‖
∂F
∂v‖

= 0.

Note that the terms containing µ̇ and θ̇ are absent from the gyrokinetic Vlasov
equation, because µ̇ = 0 and the gyrocenter distribution does not depend on the
gyrophase (∂F/∂θ = 0). Before proceeding to write down the Vlasov equation, we
will first examine the equations of motion more closely.

8 Gyroaverages in the equations of motion are taken about the gyrocenter position X, whereas in
the field equations they are taken about the particle position x. The latter gyrophase averages will
be denoted by brackets 〈· · · 〉.
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Due to the introduction of perturbed fields, the effective magnetic field B∗ ap-
pearing in the above equations now contains a term due to magnetic fluctuations,
and can be written as

B∗ = B∗0 +∇×
(

b̂A1‖
)
= B +

B
Ω

v‖∇× b̂ +∇×
(

b̂A1‖
)

≈ B +
B
Ω

v‖∇× b̂− b̂×∇A1‖.

In the last step, a term of order εBεδ was dropped. Separating the parallel and
perpendicular parts of B∗ then allows us to write

B∗ = B∗‖ b̂ +
B
Ω

v‖
(
∇× b̂

)
⊥
− b̂×∇A1‖

with B∗‖ = B∗0‖. The second and third term can be cast in terms of drift speeds due
to the curvature and the perpendicular fluctuations of the magnetic field, and we
can write

B∗ = B∗‖ b̂ +
B
v‖

vc +
B
v‖

vA1‖ , (2.13)

where we have defined the curvature drift velocity

vc =
v2
‖

Ω

(
∇× b̂

)
⊥

and the drift velocity due to perpendicular magnetic field fluctuations (also known
as magnetic flutter)

vA1‖ = −
1

mΩ
b̂×

(qv‖
c
∇A1‖

)
.

Note that both of the above O(ε) corrections arise from the motion of particles
along a perturbed or inhomogeneous background field.

Equation for the gyrocenter velocity

Using the explicit form from Eq. 2.13 of B∗, we can express the gyrocenter velocity
(Eq. 2.11) as

Ẋ = v‖b̂ +
B
B∗‖

[
b̂

mΩ
×∇H + vA1‖ + vc

]
.

Taking into account that the Hamiltonian is given by

H = H0 + H1 =
1
2

mv2
‖ + µB + qψ1

and defining the modified potential

χ1 = ψ1 −
v‖
c

A1‖ = φ1 −
v‖
c

A1‖ +
µ

q
B1‖,
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the grad-B drift velocity
v∇B =

µ

Ωm
b̂×∇B

and the generalized E× B drift speed (which contains also the drifts due to paral-
lel and perpendicular magnetic fluctuations)

vχ =
c
B

b̂×∇χ1, (2.14)

we can conveniently rewrite the equation for the gyrocenter velocity as

Ẋ = v‖b̂ +
B
B∗‖

(v∇B + vχ + vc) . (2.15)

The terms contained in this equation are slow perpendicular motion of the gyro-
center due to the grad-B drift, the generalized E× B drift, the curvature drift, and
fast motion along the unperturbed magnetic field.

Equation for the gyrocenter acceleration

A more explicit form of Eq. 2.12 for the parallel gyrocenter acceleration is

v̇‖ = −
B∗

mB∗‖
·
(
µ∇B + q∇ψ1

)
− q

mc
Ȧ1‖.

Alternatively, we can write

v̇‖ = −
Ẋ

mv‖
·
(
µ∇B + q∇ψ1

)
− q

mc
Ȧ1‖, (2.16)

which can be verified by inserting Eq. 2.11 and using b̂ · Ẋ = v‖. Using Eq. 2.15,
we arrive at

v̇‖ = −
(

1
m

b̂ +
1

mv‖

B
B∗‖

(v∇B + vχ + vc)

)
·
(
µ∇B + q∇ψ1

)
− q

mc
Ȧ1‖.
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2.4 gyrokinetic vlasov equation

Using Eqs. 2.1, 2.15 and 2.16, the gyrokinetic Vlasov equation is obtained as

DF
dt

=
∂ (F0 + f1)

∂t
+ Ẋ · ∇ (F0 + f1) + v̇‖

∂ (F0 + f1)

∂v‖
(2.17)

=
∂ f1

∂t
+

{
cb̂

qB∗‖
×∇ (µB + qχ1) + v‖b̂ +

B
B∗‖

vc

}

·
{
∇ (F0 + f1)−

[
1

mv‖
·
(
µ∇B + q∇ψ1

)] ∂ (F0 + f1)

∂v‖

}

− q
mc

Ȧ1‖
∂ (F0 + f1)

∂v‖
= 0.

In this equation, we introduced the delta- f splitting by setting F = F0 + f1 with
the time-independent equilibrium distribution F0 and a small perturbation f1. Em-
ploying the ordering defined in Sec. 2.2 (the orders given here are relative to Ω f1),
we can separate the above equation into terms of zeroth, first and second order in
ε, where we assume different εα (α = δ, F, B, ‖, ω) to be of similar magnitude. To
zeroth order, the equation reads

v‖b̂ ·
[
∇F0 −

1
mv‖

µ∇B
∂F0

∂v‖

]
= 0. (2.18)

This equation imposes a condition on the equilibrium distribution, which is not
explicitly evolved in time; therefore, the equilibrium distribution will be chosen
such that it fulfills Eq. 2.18 exactly at all times (see next section). Using this prop-
erty and adding O (ε) terms, the equation then reads

∂ f1

∂t
+

{
cb̂

qB∗‖
×∇ (µB + qχ1) +

B
B∗‖

vc

}

·
[
∇ (F0 + f1)−

1
mv‖

(
µ∇B + q∇ψ1

) ∂F0

∂v‖

]

+v‖b̂ ·
[
∇ f1 −

1
mv‖

q∇ψ1
∂F0

∂v‖
− 1

mv‖
µ∇B

∂ f1

∂v‖

]

− q
mc

Ȧ1‖
∂F0

∂v‖
= 0. (2.19)
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The second (and higher) order terms—also known as parallel nonlinearity—will
not be taken into account in this work9 and turn out to be (on the left hand side
of the above equation)

−
[

cb̂
qB∗‖
×∇ (µB + qχ1) +

B
B∗‖

vc

]
·
[

1
mv‖

(
µ∇B + q∇ψ1

) ∂ f1

∂v‖

]

+
q
m

(
B
B∗‖

b̂ · ∇ψ1 −
1
c

Ȧ1‖

)
∂ f1

∂v‖
. (2.20)

The equation we will explicitly solve is therefore given by Eq. 2.19.

2.4.1 definition of the equilibrium distribution

The equilibrium distribution F0 is chosen to be a local (i.e. radially dependent)
Maxwellian, which is for each species given by

F0

(
x, v‖, µ

)
=

n(x)
π3/2v3

T(x)
exp

−E
(

v‖,µ
)

T(x)

 ,

where both n(x) and T(x) are allowed to be species dependent and E
(

v‖, µ
)
=

mv2
‖/2 + µB. With this choice, the derivatives of the equilibrium distribution are

∂xF0 =

[
∂x ln n + ∂x ln T

(
E
T
− 3

2

)
− µ

T
∂xB

]
F0

∂y,zF0 = −µ∂y,zB
F0

T

∂v‖F0 = −mv‖
F0

T

∂µF0 = −B
F0

T
.

In addition, we define the radial derivative acting only on the density and temper-
ature profiles10 as

∂n,T
x F0 =

[
∂x ln n + ∂x ln T

(
E
T
− 3

2

)]
F0.

9 This is in accordance with previous simulation work [22, 23], which showed that for medium and
large devices the parallel nonlinearity does not significantly influence the results.

10 This definition proves to be useful in deriving the final form of the Vlasov equation, since the term
associated to the magnetic field derivative can be combined with other terms to yield the final
curvature and grad-B drift terms.
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Using this choice for the equilibrium distribution, the zeroth order Vlasov equa-
tion (Eq. 2.18) is automatically fulfilled. The Vlasov equation up to first order then
turns into

∂ f1

∂t
+

{
cb̂

qB∗‖
×∇ (µB + qχ1) +

B
B∗‖

vc

}
·
[
∇ (F0 + f1) +∇

(
µB + qψ1

) F0

T0

]

+ v‖b̂ ·
[
∇ f1 + q∇ψ1

F0

T0
− µ

mv‖
∇B

∂ f1

∂v‖

]
+

qv‖
c

Ȧ1‖
F0

T0
= 0

As can be seen, apart from the time derivative of the distribution function f1,
there is another time derivative acting on the perturbed magnetic potential A1‖.
For numerical solution, however, it is advantageous to unite all time derivatives in
one quantity, whose time derivative is then discretized using one of the available
numerical schemes. Therefore, we define the modified distribution function

g1 = f1 −
q

mc
∂F0

∂v‖
A1‖ = f1 +

qv‖
c

F0

T0
A1‖.

2.4.2 expansion of vector expressions

For numerical implementation, we choose to rewrite the vector expressions in
terms of their components (for an introduction to curvilinear coordinates, see
Ref. [24] and also App. A), replacing the parallel gradient and the triple products
appearing in the drift terms by

∇‖ = b̂ · ∇ = êz · ez ∂

∂z
=

1√
gzz

∂

∂z
=
C
JB

∂

∂z

b̂×∇A · ∇B = b̂ · ∇A×∇B = b̂ · ∂i A∂jB
εijk

J
ek

=
gkz

J
√

gzz
∂i A∂jBεijk. (2.21)

In these equations, the covariant metric coefficients, defined as gij = êi · êj and the

Jacobian determinant, defined as J =
√

det
(

gij
)

appear as a result of evaluating
the vector expressions. The triple product expansion can be further rewritten by
using the Clebsch coordinate formulation of the magnetic field

B = C∇x×∇y, (2.22)

with a radially dependent constant C, leading to B2 = C2
(

gxxgyy − (gxy)2
)

, where

gij = êi · êj are the contravariant metric coefficients. We use the fact that

(
gij
)
=
(

gij
)−1
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and replace the metric element appearing in Eqs. 2.21 by

gzz = J2
(

gxxgyy − (gxy)2
)
=

J2B2

C2 .

Therefore

b̂×∇A · ∇B =
C

J2B

3

∑
k=1

gkz∂i A∂jBεijk.

Depending on what A and B are, often several terms drop out of this expres-
sion, since we order parallel wavenumbers of fluctuating quantities to be small in
comparison to the perpendicular ones. On the other hand, many of the involved
background quantities have non-zero derivatives only in the radial direction, lead-
ing to further simplifications.

The curl term appearing in the curvature drift can be expanded by employing
Ampére’s law and the MHD equilibrium condition ∇p = j× B/c, yielding(

∇× b̂
)
⊥

=

(
∇× B

B

)
⊥
=

(
4π

cB
j +

1
B

b̂×∇B
)
⊥

= −b̂×
[

b̂×
(

4π

cB
j +

1
B

b̂×∇B
)]

= b̂×
(∇B

B
+

β

2
∇p

p

)
.

After applying the aforementioned expansions, the Vlasov equation in terms of
vector components is finally given by

∂g1

∂t
= +

c
C

B
B∗‖

∂yχ1∂n,T
x F0 −

c
C

B
B∗‖

(
∂xχ1Γy − ∂yχ1Γx

)
+

c
C

B
B∗‖

[
µB + mv2

‖
qB

(
KxΓx − KyΓy

)
−

mv2
‖

q
β

2
∂x p

p
Γy

]
(2.23)

− C
JB

v‖Γz +
µ

m
C
JB

∂zB
∂ f1

∂v‖
+

c
C

B
B∗‖

µB + mv2
‖

qB
Kx∂n,T

x F0,

where we have introduced abbreviations for the frequently occurring expressions

Γ = ∇ f1 + q∇ψ1
F0

T0

Kx =

(
∂yB− gyz

gzz
∂zB
)

Ky =

(
∂xB− gxz

gzz
∂zB
)

.
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This last version of the Vlasov equation is the one with the closest correspondence
to its actual implementation in the Gene code, in which every expression has to
be computed in terms of its components. Note that in the derivation of the last
version of the Vlasov equation, extensive use has been made of simplifications
due to the parallel wavenumber ordering, which implies

b̂ · Γ ∼ ε‖ |Γ⊥| .

2.4.3 collisional gyrokinetic equation

The gyrokinetic Vlasov equation derived in the last sections—in conjunction with
Maxwell’s equations that will be discussed in Sec. 2.5—describes the interaction of
a many-particle system with its collectively generated electromagnetic field, while
neglecting the interaction of particles among themselves11. The latter can, at next
order, be taken into account by adding a collision operator to the collisionless
Vlasov equation Dg1j/Dt = 0 (D/Dt representing the total time derivative), such
that

Dg1j

Dt
= Cj(F) = ∑

j′
C(Fj, Fj′).

In the present work, a (linearized) Landau-Boltzmann collision operator will be
considered, which is of the form

C(Fj, Fj′) = ∇v · (
←→
D · ∇v − R)Fj,

where
←→
D is the diffusion tensor, and R a vectorial friction coefficient. A com-

plete account of the gyrocenter version of this operator as well as of its numerical
implementation in the Gene code can be found in Ref. [25].

2.5 maxwell’s equations

Solving the gyrokinetic equations of motion requires the evaluation of the electric
and magnetic fields that are self-consistently generated. These can be computed
from the particle distribution function via Maxwell’s equations

−∇2φ = 4πρ(x) = 4π ∑
j

qjnj(x) (2.24)

−∇2A =
4π

c
j(x) =

4π

c ∑
j

qjnj(x)uj(x). (2.25)

Note that the moments in the above equations will only be taken of the perturbed
distribution function and describe therefore only field perturbations; the equilib-

11 This approximation is actually the lowest-order truncation of the BBGKY hierarchy (see, e.g. [11]),
which exploits the fact that interactions among particles are weaker than particle-field interactions.
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rium is assumed to be quasineutral and is therefore not explicitly considered in
Maxwell’s equations. Accordingly, the background current enters only the station-
ary background field, and Ampére’s equation considers only current perturba-
tions. The usual fluid moments like density, average fluid velocity and tempera-
ture are defined in terms of the total particle distribution Fj by

nj(x) =

ˆ
Fj(x, v)d3v

uj(x) =
1

nj(x)

ˆ
vFj(x, v)d3v

Tj(x) =
1

nj(x)

ˆ
m
2
(
v− uj

)2 Fj(x, v)d3v.

2.5.1 pull-back operator

Maxwell’s equations as defined above are cast in terms of the particle distribution
function; we therefore require an explicit transformation to calculate the particle
distribution from a given gyrocenter distribution—which is the quantity evolved
by the gyrokinetic Vlasov equation. The pull-back operator T∗ which achieves this
is, to first order in εδ, given in terms of the generating functions Gν

1 by

T∗s = s + εδGν
1 ·

∂s
∂Zν
≈ s0 + εδs1 + εδGν

1 ·
∂s0

∂Zν
,

where the Zν are the gyrocenter phase space coordinates and we have employed
an expansion of the scalar function s = s0 + εδs1 as well as the Einstein summation
convention. Letting the operator act on the perturbed gyrocenter distribution f1
(i.e. we suppress the s0 term for the moment) yields

T∗ f1 = f1 + GX
1 · ∇F0 + G

v‖
1

∂F0

∂v‖
+ Gµ

1
∂F0

∂µ

= f1 −
b̂× A1

B∗‖
· ∇F0 +

Ω
B

B∗

B∗‖
·
(

A1 − b̂A1‖
) ∂F0

∂v‖

+
Ω
B

(
m
B

A1 · v⊥ +
∂S1

∂θ

)
∂F0

∂µ

}
.
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Here, we again neglected all derivatives of S1 except for the one with respect to the
gyroangle θ, which is of the same order as the other terms in the above equation.
Inserting Eq. 2.9, we arrive at

T∗ f1 = f1 −
b̂× A1

B∗‖
· ∇F0 +

Ω
B

B∗

B∗‖
·
(

A1⊥ − b̂A1‖
) ∂F0

∂v‖

+

(
Ω
B2 A1 · v⊥ +

1
B

[
qφ̃1 +

b̂
B∗‖
× Ã1 · µ∇B

−
qv‖

c
B∗

B∗‖
· Ã1 −

Ω
B

{
Ã1 · v⊥

}]) ∂F0

∂µ

If one chooses F0 to be a local Maxwellian (see Sec. 2.4.1), the expression reduces
to

T∗ f1 = f1 −
b̂× A1

B∗‖
· ∇F0 +

qv‖
c

B∗

B∗‖
· A1⊥

F0

T0
(2.26)

−
[

Ω
B

A1 · v⊥ + qφ̃1 +
b̂

B∗‖
× Ã1 · µ∇B

]
F0

T0
.

Note that when keeping only fluctuations of A1‖, all terms containing the electro-
magnetic potential vanish, and one arrives at the expression

T∗ f1 = f1 − qφ̃1
F0

T0
.

Keeping full electromagnetic fluctuations but dropping, on the other hand, all
terms of order εB inside the curled brackets of Eq. 2.26, we are left only with

T∗ f1 = f1 −
{

qφ̃1 +
Ω
B

A1 · v⊥
}

F0

T0

= f1 −
{

qφ̃1 − µB1‖
} F0

T0
. (2.27)

This last expression will be used in the following sections to derive appropriate
gyrokinetic versions of Maxwell’s equations, which will close the system of equa-
tions under consideration. According to the above derivation, this form of the
pull-back operator is, to first order in ε, valid for both local and global models
including electromagnetic fluctuations.

2.5.2 moments of the gyrocenter distribution

Introducing the delta- f splitting to the above moment equations separates their
definitions into a term containing the equilibrium distribution, and another term
containing the perturbed distribution. Since the former has a simple analytical
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form12, the moment evaluation is trivial. To calculate the parts containing the gy-
rocenter distribution f1, however, we have to perform the pull-back transformation
to guiding center phase space, as well as the transformation from guiding center
variables to the standard (x, v) phase space. An arbitrary velocity space moment
of the gyrocenter distribution is then expressed as

Mab(x) =
1
m

ˆ
δ(X − x + ρ)T∗ f1

(
X, v‖, µ

)
B∗‖v

a
‖v

b
⊥d3Xdv‖dµdθ,

using the pull-back operator T∗ in the appropriate limit as introduced in Sec. 2.5.1.
With Eq. 2.27, we can write

Mab(x) =
1
m

ˆ
δ (X − x + ρ)

[
f1 −

(
qφ̃1 − µB1‖

) F0

T0

]
B∗‖v

a
‖v

b
⊥d3Xdv‖dµdθ.

As has already been discussed, the parallel component of the effective magnetic
field can be written as

B∗‖ = B +
mc
q

v‖b̂ · ∇ × b̂,

which allows us to separate the previous expression into two terms

Mab(x) =
1
m

ˆ
δ (X − x + ρ)

{
Bva
‖

[
f1 −

(
qφ̃1 − µB1‖

) F0

T0

]
(2.28)

+
mc
q

va+1
‖ b̂ ·

(
∇× b̂

) [
f1 −

(
qφ̃1 − µB1‖

) F0

T0

]}
vb
⊥d3Xdv‖dµdθ.

For the fluid moments relevant to Maxwell’s equations, this yields

n(x) = M00(x) =
1
m

ˆ
δ(X − x + ρ)

{
B
[

f1 −
(

qφ̃1 − µB1‖
) F0

T0

]
+

mc
q

v‖b̂ ·
(
∇× b̂

)
f1

}
d3Xdv‖dµdθ (2.29)

n(x)u‖(x) = M10(x) =
1
m

ˆ
δ (X − x + ρ)

{
Bv‖ f1 (2.30)

+
mc
q

v2
‖b̂ ·

(
∇× b̂

) [
f1 −

(
qφ̃1 − µB1‖

) F0

T0

]}
d3Xdv‖dµdθ

n(x)u⊥(x) = M01(x) =
1
m

ˆ
δ (X − x + ρ) ĉ

{
B
[

f1 −
(

qφ̃1 − µB1‖
) F0

T0

]
+

mc
q

v‖b̂ ·
(
∇× b̂

)
f1

}√
2B
m
√

µd3Xdv‖dµdθ. (2.31)

12 In addition, we can neglect the difference between particle and gyrocenter position for the equilib-
rium distribution.
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In the last equation, the factor
√

2B/m arises from the substitution of v⊥ with
√

µ.
Note that in Gene the terms involving b̂ · ∇ × b̂ (which are of order O(εB) com-
pared to the other terms) are currently not taken into account, which simplifies
and partly decouples the field equation system.

2.5.3 gyrokinetic poisson equation

Combining Eqs. 2.24 and 2.29 and assuming a quasineutral equilibrium, the gy-
rokinetic Poisson equation can be written as

∇2
⊥φ = −4π ∑

j

qj

mj

ˆ
δ(X − x + ρ)

·
{

B

[
f1j −

(
qjφ̃1j − µB1‖j

) F0j

T0j

]} ∣∣∣∣
X

d3Xdv‖dµdθ

= −8π2 ∑
j

qj

mj

ˆ [〈{
B f1j

} ∣∣
x−ρ

〉
− qjφ1

〈{
B

F0j

T0j

} ∣∣∣∣
x−ρ

〉

+

〈{[
qjφ1j + µB1‖j

]
B

F0j

T0j

} ∣∣∣∣
x−ρ

〉]
dv‖dµ.

Here, we have applied the parallel wavenumber ordering to the Laplacian operator
and introduced the species label j. Note that in these equations, we have employed
the notation {· · · }

∣∣x−ρ , which implies that all spatially dependent quantities con-
tained in the curled brackets are to be evaluated at position x − ρ. In addition,
in the last line the integral over dθ has been replaced by gyroaverage brackets
〈· · · 〉. Note that φ̃1j(x − ρ) = φ1(x) − φ1j(x − ρ); therefore the term with φ1(x)
is not affected by the gyroaverage. This form of the Poisson equation shows that
consecutive gyroaverages have to be taken of the electrostatic potential and of the
parallel magnetic field perturbation in order to solve this equation. Furthermore,
the equilibrium quantities F0, T0 and B are kept within the gyroaverages here in
order to preserve the symmetry property of the field equation also in its global
version. Rearranging the above equation such that all terms involving φ1 are on
the left hand side, we can write the gyrokinetic Poisson equation as

∇2
⊥φ1 − 8π2 ∑

j

q2
j

mj

ˆ [
φ1B

F0j

T0j
−
〈{

Bφ1j
F0j

T0j

} ∣∣∣∣
x−ρ

〉]
dv‖dµ

= −8π2 ∑
j

qj

mj

ˆ [〈{
Bg1j

} ∣∣∣∣
x−ρ

〉
+

〈{
µBB1‖j

F0j

T0j

} ∣∣∣∣
x−ρ

〉]
dv‖dµ.

(2.32)

Note that we replaced the distribution f1j with g1j, since the latter is the quantity
evolved by the gyrokinetic Vlasov equation. This substitution does not alter the
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above Poisson equation due to the symmetry of the equilibrium distribution F0
with respect to v‖. In some of the above terms, it is possible to evaluate the velocity
space integration analytically. In particular,

ˆ ∞

0

ˆ ∞

−∞
F0jdv‖dµ =

n0jmj

2πT0j

ˆ ∞

0
e−µB/T0jdµ =

n0jmj

2πB
.

For the numerical solution of the Poisson equation, its left hand side can be re-
garded as an operator P [φ1], whose inverse is then applied to the right hand side
of Eq. 2.32 to yield the electrostatic potential. One complication arises due to the
fact that the parallel magnetic perturbation B1‖ must be solved for as well; when
the latter is kept, the above scheme must be extended to solve the coupled system
of equations for

{
φ1, B1‖

}
.

2.5.4 gyrokinetic ampere’s law

Employing the pullback operator and fluid moments introduced in the last sec-
tions, the parallel component of Ampere’s law can be written as

∇2
⊥A1‖ = −4π

c ∑
j

qj

mj

ˆ
δ (X − x + ρ) v‖

{
B f1j

} ∣∣x−ρ d3Xdv‖dµdθ

= −8π2

c ∑
j

qj

mj

ˆ
v‖
〈{

B f1j
} ∣∣x−ρ

〉
dv‖dµ.

Note that no current contribution from the equilibrium is taken into account, since
only the perturbed magnetic field is evolved and the equilibrium current is as-
sumed to be stationary and taken care of in the background magnetic field. As
in the Poisson equation, we replace the distribution f1j with its counterpart g1j,
which results in an additional term leading to

∇2
⊥A1‖ = −

8π2

c ∑
j

qj

mj

ˆ
v‖

〈{
Bg1j −

qjv‖
c

F0j

T0j
BA1‖j

} ∣∣∣∣∣x−ρ

〉
dv‖dµ.

Rearranging again the equation so that all terms containing A1‖ are on the left
hand side, we arrive at

∇2
⊥A1‖ −

8π2

c2 ∑
j

q2
j

mj

ˆ
v2
‖

〈{
F0j

T0j
BA1‖j

} ∣∣∣∣∣x−ρ

〉
dv‖dµ =

−8π2

c ∑
j

qj

mj

ˆ
v‖
〈{

Bg1j
} ∣∣x−ρ

〉
dv‖dµ. (2.33)



32 theoretical background

Similarly as for the Poisson equation, the left hand side operator A
[

A1‖
]

can
be numerically inverted to solve for the parallel magnetic potential. In all cases
considered here, this equation remains decoupled from the others.

Finally, we will also evaluate the perpendicular part of Ampére’s law in terms
of the magnetic field B1‖. We write

(∇× B1)⊥ =
4π

c
j⊥

and evaluate the curl expression to

∂yB1‖ê1 − ∂xB1‖ê2.

Introducing the perpendicular current from Eq. 2.31, we arrive at(
∂yB1‖
−∂xB1‖

)
=

2π

c ∑
j

qj

(
2

mj

) 3
2 ˆ

δ (X − x + ρ)

{
ĉB3/2

[
f1j

−
(

qjφ̃1j − µB1‖j

) F0j

T0j

]} ∣∣∣∣
X

√
µd3Xdv‖dµdθ

=
4π2

c ∑
j

qj

(
2

mj

) 3
2

·
ˆ 〈{

ĉB3/2

[
f1j −

(
qjφ̃1j − µB1‖j

) F0j

T0j

]} ∣∣∣∣
x−ρ

〉
√

µdv‖dµ,

where
ĉ =

∂â
∂θ

= − sin θê1 − cos θê2.

Again, we rearrange the equation such that all terms involving B1‖ appear on the
left hand side, yielding(

∂yB1‖
−∂xB1‖

)
− 4π2

c ∑
j

qj

(
2

mj

) 3
2 ˆ 〈{

ĉB3/2B1‖j
F0j

T0j

} ∣∣∣∣
x−ρ

〉
µ

3
2 dv‖dµ

=
4π2

c ∑
j

qj

(
2

mj

) 3
2 ˆ 〈{

ĉB3/2

[
f1j − qjφ̃1j

F0j

T0j

]} ∣∣∣∣
x−ρ

〉
√

µdv‖dµ.

(2.34)

The numerical solution of the coupled
{

φ1, B1‖
}

system of equations is described
in Ref. [25].
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2.5.5 simplified versions of the field equations

Depending on the problem studied, considerable simplifications can be applied
to the field equations.

Local version

In a local flux-tube model, all equilibrium quantities can be taken out of the gy-
roaverages, leading to simplified versions of Maxwell’s equations. Poisson’s equa-
tion is then given by

∇2
⊥φ1 − 8π2 ∑

j

q2
j

mj

B
T0j

ˆ
F0j

(
φ1 −

〈
φ1j

〉)
dv‖dµ

= −8π2 ∑
j

qj

mj
B
ˆ [〈

g1j
〉
+ µ

F0j

T0j

〈
B1‖j

〉]
dv‖dµ,

the parallel component of Ampere’s equation can be written as

∇2
⊥A1‖ −

8π2

c2 ∑
j

q2
j

mj

B
T0j

ˆ
v2
‖F0j

〈
A1‖j

〉
dv‖dµ

= −8π2

c ∑
j

qj

mj
B
ˆ

v‖
〈

g1j
〉

dv‖dµ,

and its perpendicular component is given by(
∂yB1‖
−∂xB1‖

)
=

4π2

c ∑
j

qj

(
2B
mj

) 3
2 ˆ [〈

ĉ

(
f1j − qjφ̃1j

F0j

T0j
+ µB1‖j

F0j

T0j

)〉]
√

µdv‖dµ.

Moreover, the gyrophase averages denoted by 〈· · · 〉 and · · · are identical in this
limit and can be represented by simple multiplications with Bessel functions (see
Refs. [25, 26]).

Adiabatic electrons

In this limit, the electrons are taken to be massless and therefore infinitely fast
along the magnetic field, and at all times there is a perfect balance between the
parallel electric field and the parallel pressure gradient13. The electron density
perturbation is then at each instant given by a modified Boltzmann response

n1e

n0e
=

e
T0e

(φ1 − 〈φ1〉FS) ,

13 This behavior is similar to that of a driven oscillator, where the oscillator is exactly in phase with
the driver if the driving frequency is very slow compared to the oscillator’s resonant frequency.
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so that Eq. 2.32 becomes

−∑
j\e

me

mj
q2

j

ˆ [
φ1

〈{
B

F0j

T0j

} ∣∣∣∣
x−ρ

〉
−
〈{

Bφ1j
F0j

T0j

} ∣∣∣∣
x−ρ

〉]
dv‖dµ

= Be2 n0e

T0e
(φ1 − 〈φ1〉FS)−∑

j\e

me

mj
qj

ˆ 〈{
Bg1j

} ∣∣∣
x−ρ

〉
dv‖dµ

or

−∑
j\e

me

mj
q2

j

ˆ F0j

T0j

(
φ1 −

〈
φ1j

〉)
dv‖dµ

= e2 n0e

T0e
(φ1 − 〈φ1〉FS)−∑

j\e

me

mj
qj

ˆ 〈
g1j
〉

dv‖dµ

in the local model. The Ampére equation for the electromagnetic field is not solved
in the adiabatic electron approximation, since the ion contribution to A1‖ is smaller
than that of the electrons by a factor me/mi and a Maxwellian velocity space
structure is assumed for the electron distribution, excluding any currents.

Adiabatic ions

A similar simplification, but taking the ion response to be adiabatic, is possible in
the limit of large wavenumbers14. In this limit, all ion gyroaverages evaluate to
zero, yielding the ion density perturbation

n1i

n0i
= −qiφ1

T0i

for each ion species. With this approximation, the Poisson equation takes the form

∇2
⊥φ1 − 4π

n0e

T0e
(1 + τ) φ1 +

8π2

me

ˆ [〈{
Bφ1

F0e

T0e

} ∣∣∣∣
x−ρ

〉]
dv‖dµ

=
8π2

me
e
ˆ [〈

{Bg1e}
∣∣
x−ρ

〉
+

〈{
µBB1‖e

F0e

T0e

} ∣∣∣∣
x−ρ

〉]
dv‖dµ. (2.35)

Here, the parameter τ = ZeffTe/Ti appears, which represents the effect of multi-
ple adiabatic ion species with equal temperatures and the effective charge num-
ber Zeff = ∑j q2

j n0j/n0e. Note that for adiabatic ions—in contrast to the adiabatic
electron limit—the adiabaticity constraint is also valid for the zonal flow mode,
which constitutes an important difference in the nonlinear saturation mechanism
between ITG and ETG instabilities [27]. In this limit, both the parallel and perpen-

14 In the driven oscillator picture, this time the driver (the electromagnetic fields) is much faster
than the characteristic frequency of the oscillator (the ion response), leading to an opposite phase
relation.
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dicular Ampére’s law are simply given by Eqs. 2.33 and 2.34, with the species sum
including only the electron species.

2.6 summary

In this chapter, the gyrokinetic system of equations has been derived, which will
form the basis for the numerical investigations performed in this work. The equa-
tions are accurate to first order in the generic ordering parameter ε and are suit-
able for studies of electromagnetic fluctuations in fusion plasmas with arbitrary
geometry, taking into account the radial variation of temperature and density
profiles. Simplified equations for studies in the limit of heavy ions or massless
electrons were given, as well as equations valid in the local limit, when the back-
ground profiles vary only weakly in the considered plasma region. The following
chapter will detail the numerical implementation of the equations in the gyroki-
netic turbulence code Gene.





3

N U M E R I C A L I M P L E M E N TAT I O N O F T H E G Y R O K I N E T I C
E Q U AT I O N S

3.1 overview

As has been discussed in the last chapter, the gyrokinetic turbulence problem can,
for realistic scenarios, only be solved by numerical methods. A widely used code,
developed at IPP since 1999, which implements the gyrokinetic equations is Gene

[25, 27, 28, 29]; the present chapter will give a detailed explanation of the numer-
ical methods employed in this code. In Sec. 3.2, the discretization schemes used
to represent the gyrokinetic Vlasov equation will be elucidated, paying particular
attention to the applied boundary conditions, and detailing also a newly imple-
mented numerical representation for the nonlinear term. Sec. 3.3 is dedicated to a
discussion of the gyroaveraging operations occurring in the global version of the
Gene code. As it turns out, the linearized gyroaveraging operator is not Hermi-
tian, and therefore the gyrophase averages appearing in the field equations and
the equations of motion have to be represented by different, but mutually ad-
junct operators. Sec. 3.4 is concerned with deriving the dimensionless forms of
the gyrokinetic equations, which are actually implemented in Gene. Furthermore,
Sec. 3.5 details the measurement of transport quantities in simulations, and in
Sec. 3.6, heat and particle sources for a controlled background profile evolution in
global simulations are introduced. Sec. 3.7, finally, elaborates on the implementa-
tion of equilibrium flow shear in Gene, taking into account both its perpendicular
and parallel components.

3.2 gyrokinetic vlasov equation

At the most basic level, Gene uses the method-of-lines approach, meaning that
spatial and temporal derivatives are discretized independently. Much attention
has always been paid to selecting discretizations which are computationally effi-
cient and which can be easily scaled to very large numbers of processors in the
range of 100,000 and more. Thus, well-established schemes like finite difference,
finite volume, finite element and spectral approaches are employed for the spatial
discretization, whereas a Runge-Kutta scheme is used to compute temporal deriva-
tives. Using these schemes, the Gene code has been shown to scale efficiently up
to tens of thousands of processors, and more [30, 31].

37
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3.2.1 field-aligned coordinates

The dynamics in gyrokinetic theory takes place in a five-dimensional phase-space
consisting of three spatial and two velocity-space dimensions. The boundary con-
dition for each of these coordinates is a very important property of the numerical
implementation, which determines the choice of discretization.

In Gene, the spatial dynamics are treated in a coordinate system which is
aligned to the background magnetic field, taking advantage of the highly anisotropic
particle mobility in a strongly magnetized plasma. This approach saves several or-
ders of magnitude in terms of computing resources as compared to using a mesh
which disregards the magnetic field structure. The spatial coordinates are labeled
x, y, and z, which represent the radial, the binormal and the parallel direction,
respectively. They are usually defined as

x = ρ

y = Cy [q (ρ) θ − ζ] (3.1)
z = θ.

Here, ρ is a flux surface label, θ is the straight field line angle, ζ is the toroidal
angle and q is the safety factor, which is a flux function. Cy is defined to be a
constant length factor, given by

Cy =
ρ0

q0
,

where the subscript ’0’ indicates that the respective quantity is to be taken at the
x0 = ρ0 position (usually the box center), which is used as the reference position
in Gene.

3.2.2 physical boundary conditions

Radial direction

In Gene, two different approaches are available to treat the radial direction and
its boundary conditions. In the classical flux-tube approach [32], one assumes the
simulation domain to model only a very thin annulus instead of the full plasma
volume, in which the background profiles can be taken to be constant, enabling
the usage of periodic boundary conditions and a spectral scheme.

In the global approach, the radial variation of the background profiles is taken
into account and thus other boundary conditions, i.e. Dirichlet or Von-Neumann
conditions have to be used. Here, the Dirichlet condition assumes the perturbed
distribution function to be zero outside of the radial domain; the latter uses the
same assumption, except that the flux-surface averaged distribution is allowed to
have a finite value at the inner border, with its derivative constrained to be zero.
Using this approach allows the simulation to adapt the profiles according the
specified heat and particle sources. To reduce potential effects of the boundary
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on turbulence, a Krook-type buffer zone (see Refs. [26, 33] for a more detailed
description) is introduced, which damps fluctuations in the vicinity of Dirichlet
boundaries.

Binormal direction

The boundary condition in the binormal direction is motivated directly by the
physical condition of periodicity in the toroidal angle ζ, which can be expressed
as

f (ρ, ζ, θ) = f (ρ, ζ + 2π, θ) .

Translating this to the Gene coordinates, this corresponds to the condition

f (x, y, z) = f
(
x, y− Cy2π, z

)
.

Therefore, the standard size of the simulation domain in y direction which cor-
responds to one full toroidal turn is given by Ly = 2πCy = 2πx0/q0. In many
cases however, turbulent correlation lengths are much smaller than a full toroidal
turn; then it is possible to allow for an additional degree of freedom by taking
the toroidal box extent to be an integer fraction of a full toroidal turn while still
assuming periodicity, so that we can write

Ly =
2πCy

n0
=

2πx0

n0q0

f (x, y, z) = f
(
x, y− Ly, z

)
with n0 as the lowest toroidal mode number. In both the local and the global ver-
sion of Gene, the toroidal direction is represented in Fourier space, with toroidal
mode numbers defined by

ky = jky,min = j
2π

Ly
=

jn0

Cy
.

Evaluating the last expression for j = 1, n0 = 1 gives the lowest possible wave
number of the system considered.

Parallel direction

In the direction along the field line, which is usually labeled by z = θ, the bound-
ary condition is determined by the physical condition of poloidal periodicity

f (ρ, ζ, θ) = f (ρ, ζ, θ + 2π) .
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Due to the mixed definition of the y coordinate, this boundary condition leads to
the shifted-periodic relation

f (x, y, z) = f
(
x, y + 2πqCy, z + 2π

)
= f

(
x, y + 2πq

n0

ky,min
, z + 2π

)
.

When representing the y coordinate in Fourier space, we can write

f (x, y, z) = ∑
ky

f
(
x, ky, z

)
eikyy = ∑

ky

f
(
x, ky, z + 2π

)
eiky(y+2πqCy),

which allows us to identify

f
(
x, ky, z

)
= f

(
x, ky, z + 2π

)
ei2π jn0q(x). (3.2)

The last expression is the parallel boundary condition as it is enforced in the global
code. In the local code, the radially dependent eikonal has to be recast in a form
that does not conflict with the periodic radial boundary conditions. We expand

q(x) ≈ q0 + (x− x0)
∂q
∂x

= q0

(
1 +

x− x0

x0
ŝ
)

with the magnetic shear parameter ŝ = (x0/q0) (∂q/∂x). Using the safety factor
expansion and representing also the radial direction in Fourier space yields

f (x, ky, z) = ∑
kx,ky

f (kx, ky, z)eikxx = ∑
kx,j

f (kx, ky, z + 2π)eikxxei2π jn0q0ei2π jn0 ŝ(x−x0)/Cy ,

where we have used Eq. 3.2 and the safety factor expansion in the last step. In
order to appropriately fulfill this condition, the radial grid has to be selected such
that

k
′
x = kx + 2π

jn0

Cy
ŝ = kx + 2πŝky

is a wavenumber which is present in the system. Therefore, we have to choose the
minimum radial mode number to be

kx,min =
2πŝky,min

N
with an (in principle arbitrary) integer number N ≥ 1, which guarantees that
mode numbers accessed through the parallel boundary condition are present in
the system. For local simulations, this leads to a quantization for the perpendicular
box dimensions, given by

N =
2πŝLx

Ly
.

Of course, one can only account for a finite number of kx modes in numerical
simulations, so the physical parallel boundary condition has to be replaced by a
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numerical one at the end of the resolved grid. Two different options are available
for this in GENE:

• Higher kx components of fields and distributions are set to zero. This type
of boundary condition conserves energy, but can in combination with finite-
difference derivatives lead to artificial zig-zag structures in the parallel di-
rection, requiring the addition of artificial hyperdiffusion terms [34].

• A dissipative ’floating’ boundary condition is applied, which leads to slightly
smoother parallel structures, but at the price of a slight nonphysical energy
sink that is (in contrast to hyperdiffusion terms) not directly adjustable by
the user.

Velocity space:

Within the delta- f approach, the perturbed distribution is assumed to retain an
approximately Maxwellian structure (i.e., it has to decay exponentially towards
large velocities); the largest velocities kept in the simulation then must be cho-
sen such that all important contributions of the perturbed distribution are con-
tained within the velocity domain. Under these assumptions, it is valid to assume
Dirichlet boundary conditions with zero perturbation outside of the domain for
derivatives with respect to the parallel velocity.

For the magnetic moment (µ) direction, usually no boundary condition is nec-
essary, since no derivatives are computed. When taking into account a collision
operator, the derivatives with respect to µ are computed in Gene using a finite
volume scheme assuming vanishing fluxes across the outer domain boundaries.

3.2.3 representation of derivatives

As laid out in the last subsection, periodic boundary conditions can only be ap-
plied in the binormal (y)—and in the local model also the radial (x)—direction, so
that these directions can be treated by a Fourier decomposition, yielding numer-
ical derivatives which are accurate up to machine precision. The parallel (z) and
parallel velocity (v‖) directions, on the other hand, have non-periodic boundaries
and the derivatives in these directions are therefore represented as finite differ-
ences. The terms containing derivatives in these directions are written in Eq. 2.23

as (
∂g1

∂t

)
z,v‖

= − C
JB

v‖Γz +
µ

m
C
JB

∂zB
∂ f1

∂v‖
.

Taking into account that

Γz = ∂z f1 + e∂zψ1
F0

T0
,

we can define the non-adiabatic part of the distribution function

h1 = f1 + eψ1
F0

T0
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and recast the above expression as(
∂g1

∂t

)
z,v‖

= − C
JB

v‖∂zh1 +
µ

m
C
JB

∂zB
∂h1

∂v‖
.

Noting furthermore that

v‖ =
1
m

∂H0

∂v‖

and µ∂zB =
∂H0

∂z

with the zeroth-order Hamiltonian H0, we can combine the parallel advection and
trapping term into the expression(

∂g1

∂t

)
z,v‖

= − C
JB

1
m

∂H0

∂v‖
∂zh1 +

C
JB

1
m

∂H0

∂z
∂h1

∂v‖
=

1
m
C
JB
{H0, h1}z,v‖

,

where we have defined the two-dimensional Poisson bracket

{F, G}x,y =
∂F
∂x

∂G
∂y
− ∂F

∂y
∂G
∂x

.

Some analytical conservation properties fulfilled by this bracket are given by
ˆ
{F, G}x,ydxdy = 0

ˆ
F{F, G}x,ydxdy = 0

ˆ
G{F, G}x,ydxdy = 0.

Traditionally, this parallel bracket has been discretized in Gene by using centered
differences both for the parallel velocity and the parallel spatial direction. Such a
treatment in general does not fulfill all the above properties of the Poisson bracket
[35], so that the conservation of quantities such as the free energy can be vio-
lated15.

Currently, Gene offers the option to both use separate fourth-order discretiza-
tions of (z, v‖) derivatives or the second-order version of the Arakawa scheme
given in the above reference, which employs a nine-point stencil in the (z, v‖)
plane for a unified representation of the parallel Poisson bracket. Note that the

15 Comparing linear and nonlinear results with both discretization schemes does in general not ex-
hibit significant differences in growth rates or transport quantities. Studies of turbulent energetics,
however should only be performed with schemes preserving the analytical conservation proper-
ties.
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derivatives of the equilibrium Hamiltonian H0 are also computed numerically in
this process to be consistent. By rewriting(

∂g1

∂t

)
z,v‖

=
1
m
C
JB
{H0, h1}z,v‖

=
TF0

m
C
JB

{
1
F0

, h1

}
z,v‖

,

the Arakawa term can be slightly modified to numerically conserve the local free
energy, which is given by

ˆ
h∗1
F0

(
∂g1

∂t

)
z,v‖

dzdv‖.

This last version of the parallel bracket is implemented in Gene.

3.2.4 discretization of the nonlinearity

The nonlinear terms can, similar to the parallel advection and the trapping terms,
be written in the form of a Poisson bracket. As in Eq. 2.23, the nonlinearity can be
written as

N = − c
C

B
B∗‖

(
∂xχ1Γy − ∂yχ1Γx

)
= − c

C
B
B∗‖

(
∂xχ1∂yg1 − ∂yχ1∂xg1

)
=

c
C

B
B∗‖
{g1, χ1}x,y .

In the local version of Gene, the conservation properties of the nonlinearity can be
fulfilled to all orders by employing the decomposition in kx and ky Fourier modes
together with the three-halves dealiasing described in Refs. [25, 36]. The deriva-
tives of g and χ1 are then computed in Fourier space, whereas their multiplication
is performed in real space to avoid the computationally expensive convolution
that would otherwise be required.

In the global version of Gene, on the other hand, the radial direction is treated
in real space; two choices for the discretization of the nonlinearity are currently
implemented: One scheme computes the radial derivatives using a fourth-order
centered difference scheme and performs a real-space filtering procedure [33]; the
other scheme (which is now the default setting) uses a mixed Fourier-space/real-
space version of the Arakawa discretization described above, similar to Ref. [37].
The exact term computed is

N =
1
3
{(

∂yχ1∂xg1 − ∂xχ1∂yg1
)
+ ∂y (χ1∂xg1 − g1∂xχ1)

+ ∂x
(

g1∂yχ1 − χ1∂yg1
)}

.

As before, the derivatives are, if possible, computed still using the Fourier de-
composition in ky (using a fourth-order centered difference stencil for the radial
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derivatives), but before performing the multiplications, the respective quantities
are transformed to x− y real space. Through the combination of the Fourier-space
dealiasing and the Arakawa discretization, the conservation properties of the Pois-
son bracket are preserved up to machine accuracy.

3.2.5 phase-shift dealiasing

As an alternative to the three-halves dealiasing scheme usually employed in Gene

[25], aliasing effects arising in the computation of the nonlinear terms can also be
avoided via the so-called phase-shift dealiasing scheme [38, 39], which was im-
plemented into the Gene code by F. Merz. This scheme avoids the computational
expense of having to compute the nonlinear terms with 50% more modes (per
Fourier dimension) than are actually advanced in the simulation.

The procedure can be understood (following Ref. [39]) by examining an aliased
product of two Fourier-decomposed quantities. For simplicity, we examine only
the one-dimensional problem

ck = ∑
m,n

m+n=k

ambn + ∑
m,n

m+n=k±N

ambn. (3.3)

Here, am and bn denote the Fourier components of the two quantities to be multi-
plied and ck the Fourier mode k of the product. In the Fourier decomposition of
each quantity, N modes are kept. The first sum in Eq. 3.3 is the aliasing-free part
of the result, since all combinations of m and n map back onto the mode k, which
is in the resolved range. The second sum, on the other hand, contains those terms
in which m and n combine into the wavenumbers k± N, but are misinterpreted
as contributions to the mode k. The latter sum therefore consists of all aliased
contributions to ck.

For the phase-shift dealiasing procedure, a phase factor eij∆ (j representing a
mode number) is added to both am and bn before multiplication, such that

am → ameim∆

bn → bnein∆.

Accordingly, the result ck must be shifted back to yield

ck = e−ik∆

 ∑
m,n

m+n=k

ameim∆bnein∆ + ∑
m,n

m+n=k±N

ameim∆bnein∆


= ∑

m,n
m+n=k

ambn + e∓iN∆ ∑
m,n

m+n=k±N

ambn

As can be seen from the last line, the alias-free part of the product is not affected by
this procedure; but the aliased part is—due to the misinterpreted wavenumber—
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(a) Relative CPU-time to compute a single
timestep, comparing phase-shift with three-
halves dealiasing for both collisionless and
collisional simulations.
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(b) Maximum linear timestep comparing the
equally weighted Runge-Kutta scheme to
the standard one.

Figure 5: Comparison of simulations employing the phase-shift dealiasing with ones us-
ing the three-halves dealiasing, scans over a large range of perpendicular resolu-
tions are shown.

left with a phase factor. Defining the shift as a half grid spacing ∆ = π/N, the
phase factor multiplying the aliased terms becomes

exp(∓iN∆) = −1.

This opens up the possibility to compute the product twice, using phase factors
that differ by ∆ (an obvious choice is taking (+∆/2,−∆/2)), and take the average
of both results; since the aliased contributions have opposite phase factors, they
drop out. Obviously, the price of this procedure is to carry out a second com-
putation of the product; in d spatial dimensions this amounts to computing the
product 2d times, which would require significantly more operations than with
the three-halves rule.

When using multi-stage timestepping schemes (e.g. Runge-Kutta) though, it is
possible to perform the second evaluation of the product (with −∆/2) during
the next stage of the scheme. Thus, only a single evaluation of the product per
stage is required, however at the price of removing the aliasing error only approx-
imately. Note, however, that the employed Runge-Kutta scheme has to use equally
weighted stages, which leads to a slightly narrower stability region and reduces
the timestep by a few percent.

To assess the overall efficiency of the scheme, a scan in perpendicular resolution
was performed, starting from a regular “Cyclone Base Case” parameter set [40],
but taking into account kinetic electrons and electromagnetic perturbations. The
scan ranged from a radial resolution of n(kx) = 8 up to n(kx) = 512, while setting
n(ky) = n(kx)/4. The other phase space resolutions were set to 24× 32× 8 for
the (z, v‖, µ) directions, respectively. For each resolution, 100 timesteps were com-
puted to provide sufficient statistics. Since the fraction of CPU time that is spent
on computing the nonlinearity is crucial to the overall gain, both collisionless and
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Figure 6: Overall efficiency of phase-shift dealiased runs, compared to simulations using
three-halves dealiasing. For collisionless runs, a gain of 15-20% can be expected,
while for collisional ones, it is usually of the order of 10%.

collisional simulations were performed. In the latter, the computationally expen-
sive collision operator reduces the fraction of total CPU time taken to compute the
nonlinear term.

The results of the scan are shown in Figs. 5 and 6. As can be seen, the pure reduc-
tion of CPU time per timestep is of the order of at least 10% (20%) for collisional
(collisionless) simulations. Due to the different timestepping scheme mentioned
above, however, the maximum linear timestep is—for the practically relevant reso-
lution range 103 < n(kx)n(ky) < 105—reduced by roughly 8%. In total (see Fig. 6),
this amounts to an efficiency gain of up to 10% (10-20%) for collisional (collision-
less) runs.

Note that we have assumed here that the reduction of the linear timestep car-
ries over to nonlinear runs, which does not have to be fulfilled in general, since
the timestep is adapted during nonlinear Gene simulations [25]. Especially for
the better-resolved runs performed here, the timestep adaptation scheme became
active already during the first 100 timesteps; in these cases, the adapted timesteps
using the equal-weights Runge-Kutta scheme were indeed smaller than the stan-
dard ones by ~5-10%, justifying the above analysis.

To demonstrate the preservation of physical accuracy when using the phase-
shift dealiasing, the timetraces as well as the average values of the ion heat flux of
a Cyclone Base Case simulation (using the corrected circular geometry instead of
the s-α model, however) are shown in Figure 7 for comparison, yielding excellent
statistical agreement.
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Figure 7: Comparison of heat flux timetraces for two simulations with (’td’) and without
(’no td’) phase-shift dealiasing.

3.3 gyrophase averaging

In the present section, the gyroaveraging operators that appear in both the Vlasov
and the field equations are derived for application in the global version of Gene. In
contrast to the local treatment, the gyroaveraging operator has to be distinguished
with regard to where the affected quantities are evaluated. This distinction has
been indicated in Sec. 2.5 by writing 〈· · · 〉 or · · · in the field equations. The former
version arises when taking velocity space moments of the distribution function,
while the latter one—as a consequence of the gyrokinetic reduction—appears in
the equations of motion and the pull-back operator.

3.3.1 implementation of the gyroaveraging operator

In the global version of Gene, gyrophase averaging is carried out by means of a
finite element interpolation, for which all considered quantities are expanded in
terms of a set of basis functions, e.g.

φ(x) = ∑
i

φ(xi)Λi(x) = ∑
i

φiΛi(x).

The coefficients φi are the corresponding finite element coefficients and are defined
to be the value of φ at the grid point xi.

The present description will focus on the difference between the two kinds of
gyroaverages discussed above. For more detail on the choice of the radial basis
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functions Λi(x) and the actual implementation, see Refs. [26, 33]. The gyrophase
averages appearing in the Vlasov equation are defined by

φ1(X) =
1

2π

ˆ
φ1(X + ρ)dθ.

In the combined Fourier and finite element expansion, we can write

φ1(Xk, Y, Z) =
1

2π

ˆ
∑
i,ky

eiky(Y+ρy)φiΛi (Xk + ρx)dθ,

where we have chosen a specific radial grid point Xk. The parallel direction enters
only as a parameter to determine the value of φi, since the gyroaveraging is a
purely perpendicular operation. We can rearrange the last expression to find

φ1(Xk, Y, Z) =
1

2π ∑
i,ky

eikyYφi

ˆ
eikyρy

Λi (Xk + ρx)dθ

= ∑
i,ky

eikyYφiGk,i = ∑
ky

eikyYG ·φ,

where we have defined the gyroaveraging matrix

Gk,i(ky, z, µ) =
1

2π

ˆ
eikyρy

Λi (Xk + ρx)dθ (3.4)

and the vector of the grid point values of φ

φ = (φ (x1) , . . . , φ (xn))
T .

Note that the gyromatrix contains only equilibrium quantities like the size of the
gyroradii and the basis functions, so that it need only be initialized once and
can then be re-used throughout the simulation. The vector components of ρ are
calculated from its definition

ρ = ρ(x, µ)â = ρ (cos θê1 − sin θê2) ,

but first the vectors ê1 and ê2 have to be related to the field aligned basis vectors
of the Gene simulation domain. We take

ê1 = êx =
ex
√

gxx

ê2 = ˆ̂b× ê1 =
1√

γ1gxx (eygxx − exgxy)
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and arrive at

ρx = ρ · ex = ρ
√

gxx cos θ

ρy = ρ · ey = ρ
1√
gxx [gxy cos θ −√γ1 sin θ] .

Now we will consider the gyroaverages occurring in the field equations, which
were denoted by 〈· · · 〉 in Sec. 2.5 and are defined as

〈φ1〉 (x) =
1

2π

ˆ
δ(X − x + ρ)φ1(X)d3Xdθ.

We apply again the expansion in Fourier and finite element coefficients to arrive
at

〈φ1〉 (xk, y, z) =
1

2π

ˆ
δ(X − xk + ρ)∑

i,ky

eikyYφiΛi (X)d3Xdθ

=
1

2π

ˆ
∑
i,ky

eiky(y−ρy)φiΛi (xk − ρx)dθ

=
1

2π ∑
i,ky

eikyyφi

ˆ
e−ikyρy

Λi (xk − ρx)dθ.

Exploiting the symmetry of the finite element basis functions, we can write

Λi (xk − ρx) = Λ0 (xk − ρx − xi) = Λ0 (xi + ρx − xk) = Λk (xi + ρx) ,

which allows us to recast the gyroaverage as

〈φ1〉 (xk, y, z) =
1

2π ∑
i,ky

eikyyφi

ˆ
e−ikyρy

Λk (xi + ρx)dθ

= ∑
i,ky

eikyyφiG∗i,k = ∑
ky

eikyyG† ·φ.

In this equation, we were able to re-use the gyromatrix defined in Eq. 3.4. Using
the Fourier space representation for the binormal direction, we can write

φ1
(
X, ky, z

)
= G ·φ1

〈φ1〉
(
x, ky, z

)
= G† ·φ1.

Note that the above derivation assumed that the metric coefficients do not vary
over the course of a gyroradius. This assumption may not be well-justified close
to the magnetic axis of a fusion device and in small devices. A possible alternate
scheme which takes into account variations of the metric up to second order has
been derived in Ref. [33]. When using the gyroaverage defined above, a similar
approximation also has to be made to the Laplacian operator in the field equa-
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tions in order to preserve the Hermiticity of the equations; in this case, only the
(strongly dominant) Hermitian part of the Laplacian is retained by taking

∆→ 1
2

(
∆ + ∆†

)
.

3.3.2 consecutive gyroaverages

The field equations derived in Sec. 2.5 contain terms where gyroaveraged quan-
tities are gyroaveraged a second time. Taking into account the results of the last
paragraphs, these can be expressed in terms of the gyroaverage operator as〈

φ1jPj

〉 (
x, ky, z

)
= G† ·

{
PjG · φ1

}
,

where Pj is a symbol for the profile factors (represented by diagonal matrices in
the discrete equations) appearing in the field equations. This ’sandwich’ form of
the double gyroaverage operator is necessary to preserve its analytical symmetry
(or Hermiticity in the Fourier representation) as can be seen by writing(

G†PG
)†

= G†P†G = G†PG.

Taking the profile factor out of the double gyroaverage—as is justified in case of
weakly varying equilibrium—, we would get(

PG†G
)†

= G†GP 6= PG†G,

which would violate the symmetry property and potentially lead to numerical in-
stabilities in simulations with kinetic electrons and low perpendicular wavenum-
bers.

3.4 normalization

3.4.1 definition of normalization rules

For easy comparison with characteristic physical quantities, all computations are
carried out in normalized units, which can afterwards be reintroduced in the post-
processing to allow for comparison with experimental cases. In Gene, the nor-
malization is usually chosen such that all dimensionless quantities should be of
order unity, avoiding the appearance of very large or very small numbers. The
rules as detailed below have been used in similar setups from the outset of Gene

development; the final version, however, has been developed and extended in
Refs. [25, 26].

For the phase space coordinates, the anisotropic spatial structure of turbulence
is taken into account by normalizing perpendicular distances to the small refer-
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ence gyroradius ρref, but keeping the dimensionless field line connection length
(along z) to be 2π ∼ O(1). In contrast to this setup, the velocity space normal-
ization must be species-dependent in order to account for potentially differing
temperatures. The normalization does not consider the radial dependence of the
temperature, however, so that the variation of the temperature has to be accounted
for by choosing an appropriate velocity space width and resolution. Written ex-
plicitly, the phase space coordinates are normalized as

x = x̂ρref y = ŷρref z = ẑ

v‖ = v̂‖v̂Tj
∣∣
x0

cref µ = µ̂T̂0j
∣∣
x0

Tref

Bref
t = t̂

Lref

cref
,

where normalized quantities are indicated by a hat and the composed quantities

cref =

√
Tref

mref
ρref =

mrefcrefc
eBref

v̂Tj =

√
2T̂0j

m̂j

have been introduced. The notation |x0 has been used to indicate evaluation at the
position x0. Standard choices for the reference quantities are

Tref = Te nref = ne mref = mi,

such that ρref = ρs and cref = cs. Furthermore, Bref is chosen to be the toroidal
magnetic field at the magnetic axis. Lref, on the other hand, is usually taken to be
the major (or minor) tokamak radius R (or a, ρmax etc.). For the field fluctuations,
the normalization is

φ1 = φ̂1
Tref

e
ρref

Lref
A1‖ = Â1‖ρrefBref

ρref

Lref
B1‖ = B̂1‖Bref

ρref

Lref
,

where the factor ρref/Lref accounts for the fact that the quantity being normal-
ized is a (small) fluctuating quantity. In order to reflect the gyrokinetic ordering
(Eq. 2.2) in the normalization, derivatives of fluctuating quantities are normalized
according to

∂

∂x
=

1
ρref

∂

∂x̂
∂

∂y
=

1
ρref

∂

∂ŷ
,

whereas derivatives of equilibrium quantities are normalized as

∂

∂x
=

1
Lref

∂

∂x̂
∂

∂y
=

1
Lref

∂

∂ŷ
.

By choosing this convention, the normalized versions of fluctuating quantities and
their derivatives are of the same magnitude as those of equilibrium quantities.
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Finally, the distribution functions16 appearing in the equations are normalized
as

F0j = F̂0j
nref

c3
ref

n̂0j

v̂3
Tj

∣∣∣∣
x0

f1j = f̂1j
nref

c3
ref

n̂0j

v̂3
Tj

∣∣∣∣
x0

ρref

Lref
.

Note that using this normalization, the single-particle kinetic energy, which ap-
pears, e.g., in the background Maxwellian, is given by

Ekin =
mj

2
v2
‖ + µB =

(
v̂2
‖ + µ̂B̂

)
TrefT̂0j|x0 = ÊkinTrefT̂0j|x0 .

The normalized equilibrium distribution therefore becomes

F̂0j(x, v‖, µ) =
n̂pj(x̂)

π3/2T̂3/2
pj (x)

e−Êkin(x,v‖,µ)/T̂pj(x).

Here we introduced the normalized temperature and density profiles T̂pj(x) and
n̂pj(x). The profile quantities are hence taken to consist of three parts, e.g.

T0j(x) = TrefT̂0j(x0)T̂pj(x).

The first part takes the dimension, the second part introduces the species depen-
dence at a reference position x0 (which is usually taken to be the box center), and
the third part introduces the radial dependence of the profile.

3.4.2 dimensionless equations

Vlasov equation

Applying the above normalization to the gyrokinetic Vlasov equation derived in
the last chapter (Eq. 2.23) yields the normalized equation

∂ĝ
∂t̂

= +
1
Ĉ

B̂
B̂∗‖

∂ŷχ̂1∂n,T
x̂ F̂0 −

1
Ĉ

B̂
B̂∗‖

(
∂x̂χ̂1Γ̂y − ∂ŷχ̂1Γ̂x

)
+

1
Ĉ

B̂
B̂∗‖

T0j|x0

qj

[
µ̂B̂ + 2v̂2

‖
B̂

(
K̂xΓ̂x − K̂yΓ̂y

)
− v̂2
‖

βref

B̂2

∂x̂ p̂
p̂

Γ̂y

]

− Ĉ
Ĵ B̂

v̂‖v̂Tj|x0 Γ̂z +
µ̂

2
Ĉ
Ĵ B̂

v̂Tj|x0∂ẑB̂
∂ f̂1

∂v̂‖
+

1
Ĉ

B̂
B̂∗‖

µ̂B̂ + 2v̂2
‖

B̂

T0j|x0

qj
K̂x∂n,T

x̂ F̂0.

The dimensionless quantity

βref =
8πnrefTref

B2
ref

,

16 The modified distribution functions g1 and h1 follow the same rule as f1.
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which indicates the ratio of thermal to magnetic pressure in the plasma, has been
introduced.

Field equations

The normalized Poisson equation (derived from Eq. 2.32) is given by

λ̂2
D∇̂2
⊥φ̂1 −∑

j
πq̂2

j
n̂0j

T̂0j

∣∣∣∣
x0

ˆ [
φ̂1B̂

F̂0j

T̂pj
−
〈{

B̂φ̂1j
F̂0j

T̂pj

} ∣∣∣∣
x−ρ

〉]
dv̂‖dµ̂

= −∑
j

πn̂0j|x0 q̂j

ˆ [〈{
B̂ĝ1j

} ∣∣
x−ρ

〉
+

〈{
µ̂B̂B̂1‖j

F̂0j

T̂pj

} ∣∣∣∣
x−ρ

〉]
dv̂‖dµ̂,

where we have introduced the normalized Debye length

λ̂D =
λD

ρref
=

√
B2

ref
4πnrefmrefc2 .

For the parallel component of the Ampére equation, we get

∇̂2
⊥ Â1‖ −∑

j
πβref

q̂2
j

m̂j
n̂0j|x0

ˆ
v̂2
‖

〈{
F̂0j

T̂pj
B̂Â1‖j

} ∣∣x−ρ

〉
dv̂‖dµ̂

= −∑
j

q̂jπ
βref

2
{

n̂0jv̂Tj
} ∣∣

x0

ˆ
v̂‖
〈{

B̂ĝ1j
} ∣∣x−ρ

〉
dv̂‖dµ̂.

Finally, normalizing the perpendicular component of the Ampére equation yields(
∂ŷB̂1‖
−∂x̂B̂1‖

)
−∑

j
π

βref

2
q̂j
{

n̂0jv̂Tj
} ∣∣

x0

ˆ 〈{
ĉB̂3/2B̂1‖j

F̂0j

T̂pj

} ∣∣∣∣
x−ρ

〉
µ̂

3
2 dv̂‖dµ̂

= ∑
j

π
βref

2
q̂j
{

n̂0jv̂Tj
} ∣∣

x0

ˆ 〈{
ĉB̂3/2

[
f̂1j − q̂j

ˆ̃φ1j
F̂0j

T̂0j|x0 T̂pj

]} ∣∣∣∣
x−ρ

〉√
µ̂dv̂‖dµ̂.

3.5 observables

For a meaningful analysis of gyrokinetic simulations, it is necessary to reduce
the amount of information contained in the distribution function by taking appro-
priate moments over velocity space or the total phase space. The velocity space
moments of the distribution function which had already been defined in Sec. 2.5
(see Eq. 2.28), are routinely computed in given intervals to provide the user with
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information about the turbulence properties of the system. The moments Mab are
defined as (see also Sec. 2.5.2)

Mab(x) =
1
m

ˆ
δ (X − x + ρ)

[
f1 −

(
qφ̃1 − µB1‖

) F0

T0

]
Bva
‖v

b
⊥d3Xdv‖dµdθ;

for the evaluation of fluxes caused by compressional magnetic fluctuations (only
in the local model), additional moments Nab are defined, in which the outer gy-
roaverage leads to a multiplication with µI1

17. These moments are given by

Nab(x) = π

(
2B
m

)b/2+1 ˆ [
f1 +

(
qφ1 + µB1‖

) F0

T0

]
µI1va

‖µ
b/2dv‖dµ

The normalized versions of both kinds of moments can be found in Ref. [41].

3.5.1 transport quantities

The ultimate goal of turbulence simulations is to predict and optimize the trans-
port of heat, particles and momentum in fusion-relevant plasmas, and measuring
the turbulent fluxes of these quantities therefore is of prominent interest. The
fluxes measured in Gene stem from the radial component of the fluctuating (gen-
eralized) E× B velocity vχ defined in Eq. 2.14, giving rise to the radial flux com-
ponents

Γx =

〈ˆ
vx

χ f1(x, v)d3v
〉

Πx
‖ = m

〈ˆ
vx

χv‖ f1(x, v)d3v
〉

Qx =
m
2

〈ˆ
vx

χ(v− u)2 f1(x, v)d3v
〉
≈ m

2

〈ˆ
vx

χv2 f1(x, v)d3v
〉

,

where the brackets 〈· · · 〉 denote the desired spatial averaging and Γ, Π‖, Q denote
the flux of particles, parallel momentum and heat, respectively. Note that the par-
allel momentum flux can be used as an approximation to the toroidal momentum
flux in usual tokamaks if Bφ � Bθ. The toroidal projection of this quantity can be
calculated by multiplying with qRC/JB, neglecting smaller contributions due to
curvature and grad-B drifts. Dividing vχ into its field components

vχ = vE + vA + vB‖ =
c
B

b̂×∇
(

φ1 −
v‖
c

A1‖ −
1
c

v⊥ · A1⊥

)
,

17 For the definition of I1, see Sec. 2.3.2.
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we can separate the above definitions into transport driven by electrostatic and
electromagnetic field fluctuations. Using the identity

b̂×∇ξ · ex = ex × b̂ · ∇ξ = −√γ1
∂ξ

∂y
= −B
C

∂ξ

∂y
,

we get

vx
E = − c

C
∂φ1

∂y

vx
A =

v‖
C

∂A1‖
∂y

vx
B‖ =

1
C v⊥ ·

∂A1⊥
∂y

As can be seen from the dependence on v‖ and v⊥, the fluxes generated by mag-
netic fluctuations depend on moments of the distribution function that are of
higher order in these velocities. Considering this, the particle flux is given by

Γx =

〈
− c
C

∂φ1

∂y
M00(x) +

1
C

∂A1‖
∂y

M10(x)− c
qC

∂B1‖
∂y

N00(x)
〉

.

the radial flux of parallel momentum can be written as

Πx
‖ = m

〈
− c
C

∂φ1

∂y
M10(x) +

1
C

∂A1‖
∂y

M20(x)− c
qC

∂B1‖
∂y

N10(x)
〉

,

and the heat flux is

Qx =
m
2

〈
− c
C

∂φ1

∂y
(M20(x) + M02(x))

+
1
C

∂A1‖
∂y

(M30(x) + M12(x))− c
qC

∂B1‖
∂y

(N20(x) + N02(x))
〉

Applying the normalization rules of Sec. 3.4, we arrive at the dimensionless parti-
cle flux

Γ̂x
j = − n̂0j

Ĉ

〈
∂φ̂1

∂ŷ
M̂00(x̂)− v̂Tj

∂Â1‖
∂ŷ

M̂10(x̂) +
T̂0j

q̂j

∂B̂1‖
∂ŷ

N̂00(x̂)

〉
,

given in units of ΓgB = nrefcrefρ
2
ref/L2

ref. The normalized momentum flux can be
calculated as

Π̂x
‖j = −

m̂jn̂0jv̂Tj

Ĉ

〈
∂φ̂1

∂ŷ
M̂10(x̂)− v̂Tj

∂Â1‖
∂ŷ

M̂20(x̂) +
T̂0j

q̂j

∂B̂1‖
∂ŷ

N̂10(x̂)

〉
,



56 numerical implementation of the gyrokinetic equations

the units being ΠgB = nrefmrefc2
refρ

2
ref/L2

ref. For the heat flux, we finally get

Q̂x
j = − n̂0jT̂0j

Ĉ

〈
∂φ̂1

∂ŷ
(

M̂20(x̂) + M̂02(x̂)
)

−v̂Tj
∂Â1‖

∂ŷ
(

M̂30(x̂) + M̂12(x̂)
)
+

T̂0j

q̂j

∂B̂1‖
∂ŷ

(
N̂20(x̂) + N̂02(x̂)

)〉

in units of QgB = prefcrefρ
2
ref/L2

ref. Expanding the reference quantities, one can
easily show that QgB ∝ T5/2

ref and therefore depends, for fixed dimensionless quan-
tities, very strongly on the reference temperature.

The derivation of the above quantities has so far concentrated on the contravari-
ant radial component of the fluxes. In general geometry, however, these are not
physically measurable quantities, since the length of the basis vector (see App. A)
can vary, and it can even carry its own dimension. Therefore, to compare with
experimental values, it is preferable to calculate the projection of the flux vectors
onto a radial unit vector. The physical cross-field fluxes are then given by

Ar =
Ax
√

gxx ,

and flux surface averaged diffusivities can then be calculated as

D = k
〈Ar〉
〈√gxx〉 .

Here k is a prefactor that depends on whether the considered diffusivity concerns
particles, momentum or heat.

3.6 heat and particle sources

Gene features a flexible set of sources and sinks, which allow for a variety of
different investigations of global turbulence physics. There are two conceptually
different approaches, the first of which allows to prescribe the plasma profiles,
using adaptive sources in order to approximately keep the initial state. This is
the so-called gradient-driven case, which is a global generalization of the local
ansatz to turbulence simulations. The other approach is to prescribe particle and
heat source profiles, and to allow the density and temperature profiles to freely
evolve towards a steady state configuration, which is in turn determined by the
specified sources. In this flux-driven case, the profiles may develop large enough
fluctuations that the delta- f approximation is violated during the simulation; in
that case, the background distribution can be adapted to accommodate the profile
changes and allow an accurate continuation of the simulation. In the present thesis,
however, we study only gradient-driven turbulence; therefore, we will focus on the
sources that are applied in this type of examinations.
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3.6.1 krook-type heat and particle sources

In order to allow studies with approximately fixed plasma profiles, Gene pro-
vides adaptive sources, which force the flux-surface average distribution func-
tion towards the initial profiles. With the delta- f splitting employed in the Gene

equations, this corresponds to forcing the perturbed distribution function towards
zero. The implementation of the Krook-type heat source was originally inspired
by Ref. [42]; its implementation, along with a slight modification due to Gene’s
different velocity space coordinates, was described in Ref. [33]. Here, another mod-
ification to that term is necessary, as we now focus on simulations which take into
account kinetic electrons and, possibly, also impurities. We delay the discussion of
this modification for the moment, since it is first necessary to introduce an entirely
new term: In the case of adiabatic electrons, the transport of particles vanishes
since the density and potential fluctuations are exactly in phase (see Sec. 2.5.5);
as soon as kinetic electrons are taken into account, however, the particle transport
will in general be finite, and therefore the density profiles will start to deviate
from their initial state. If simulations with fixed profiles are to be performed, ap-
propriate sources have to be introduced.

To achieve this, we introduce the particle source term

SP,j = −κP ·
(〈

f j

(
X,
∣∣∣v‖∣∣∣ , µ

)〉

−
∑i qi

〈´ 〈
fi

(
X,
∣∣∣v‖∣∣∣ , µ

)〉
dv
〉

qjnspec

〈´ 〈
FM,j

(
X,
∣∣∣v‖∣∣∣ , µ

)〉
dv
〉 〈FM,j

(
X,
∣∣∣v‖∣∣∣ , µ

)〉 (3.5)

to the right hand side of the Vlasov equation. Here, κP is a user-defined prefactor
and 〈...〉 indicates a flux surface average. The gyrocenter distribution f j(X,

∣∣∣v‖∣∣∣ , µ)

has been symmetrized with respect to v‖, which guarantees that SP introduces no
overall parallel momentum to the Vlasov equation. Here, nspec is the number of
species taken into account in the simulation, and dv is the velocity space volume
element. The second term in the brackets ensures that the overall charge density
introduced by the particle source vanishes, so that quasineutrality is preserved
and no artificial electrostatic potentials are introduced:

∑
j

qj

〈ˆ
SP,jdv

〉
= 0
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The heat source introduced in Ref. [33], on the other hand, is given by

SH,j = −κH

(〈
f j

(
X,
∣∣∣v‖∣∣∣ , µ

)〉

−

〈´ 〈
f j

(
X,
∣∣∣v‖∣∣∣ , µ

)〉
dv
〉

〈´ 〈
FM,j

(
X,
∣∣∣v‖∣∣∣ , µ

)〉
dv
〉 〈FM,j

(
X,
∣∣∣v‖∣∣∣ , µ

)〉 ,

where the second term is added to ensure that SH introduces no density perturba-
tion. This can be verified by calculating〈ˆ

SH,jdv
〉

= 0.

To avoid cluttered notation in the following paragraphs, we set

f = f j

(
X,
∣∣∣v‖∣∣∣ , µ

)
and FM = FM,j

(
X,
∣∣∣v‖∣∣∣ , µ

)
.

When calculating the v2 moment of the particle source term SP, it becomes clear
that this term will in general also add heat to the system. In order to compensate
for this effect, we can redefine SH with an adaptive coefficient κmod. The total heat
introduced by the SP operator is given by

QP = κP

〈ˆ
v2 SP

κP
dv
〉

,

where we expanded by κP to have it as a coefficient in front of the term. The total
heat introduced by the SH operator is in turn

QH = κH

〈ˆ
v2 SH

κH
dv
〉

.

In order to compensate for the heat contribution from the particle source, we
modify the coefficient of the heat source such that

SH,eff =
κeff

κH
SH ≡ ηSH

with QH,eff = ηQH = QH −QP

and therefore η =
QH −QP

QH
.
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According to this rule, we have to choose the coefficient

κeff = κH − κP

〈´
v2 SP

κP
dv
〉

〈´
v2 SH

κH
dv
〉

= κH − κP

[(〈
T̃
〉
− ∑i qi 〈ñ〉

qjnspec 〈n〉
〈T〉
)/(〈

T̃
〉
− 〈ñ〉〈n〉 〈T〉

)]
. (3.6)

In the last step, we substituted the source operators and employed the notation

〈n〉 =

〈ˆ
〈FM〉dv

〉
=
〈
nj(X)

〉
〈T〉 =

〈ˆ
v2 〈FM〉dv

〉
=
〈

Tj(X)
〉

〈ñ〉 =

〈ˆ
〈 f 〉dv

〉
=
〈
ñj(X)

〉
〈

T̃
〉

=

〈ˆ
v2 〈 f 〉dv

〉
=
〈

T̃j(X)
〉

.

Note however, that these expressions differ from the actual definition of the fluid
moments by taking additional flux surface averages and by using the symmetrized
distribution function; furthermore no pull-back operation is employed, so that the
moments are actually gyrocenter densities and temperatures. Reducing the last
expression of Eq. 3.6 by 〈T〉 allows us to write

κeff,j(X) = κH − κP

[(〈
T̃
〉

〈T〉 −
∑j qj 〈ñ〉

qjnspec 〈n〉

)/(〈T̃〉
〈T〉 −

〈ñ〉
〈n〉

)]
. (3.7)

Using this expression (the same is true for Eq. 3.6) to define the heat source coeffi-
cient, however, has the drawback of being numerically unstable for cases in which
the denominator in Eq. 3.7 becomes very small. In such cases, κeff will be set to
very large values, introducing large amounts of heat to very narrow radial regions
(often just one grid point). Therefore, we impose a lower limit on the denominator
and choose κeff,j(X) = κH in case the limit is violated. As a result, only large heat
contributions of the particle source will be compensated. The coefficients κP and
κH are specified by the user, while κeff is adapted accordingly. It is therefore possi-
ble to set, e.g. κH = 0; in that case, κeff will adapt such that no heat is introduced
to the system and SP + SH is almost exclusively a particle source.

Another form of the particle source which has been suggested [43], is given by
adding

Sp,j = −κP

〈
FM,j

〉
∑i 〈
´
〈FM,i〉dv〉∑i

〈ˆ 〈
fi

(
X,
∣∣∣v‖∣∣∣ , µ

)〉
dv
〉

= −κP
〈FM〉

∑i 〈ni〉∑i
〈ñi〉

(3.8)
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to the right hand side of the Vlasov equation. The latter form has the advantage of
providing a quasineutral source automatically, if the equilibrium is quasineutral
(which is always the case in Gene). Further, although the energy input may not be
negligible, the influence on the total temperature is small, since the added particles
have the same velocity distribution as the background Maxwellian. Therefore, it
is not vital to compensate the energy contribution using the heat source, which
avoids the complications of the above scheme.

3.6.2 localized heat sources

The most realistic way of treating heat sources in the Gene code is by prescribing
a fixed heat source profile, which is designed to model the experimental source.
This model is implemented by adding the term [29]

ŜlH = Ŝ0ŜxŜE

to the right hand side of the Vlasov equation. Here,

ŜE =
2
3

1
p̂0j(x)

(
Ê

T̂p(x)
− 3

2

)
F̂0j

with Ê = v̂2 = v̂2
‖ + µ̂B̂

is chosen such that no overall parallel momentum and no particles are introduced
to the system. The component Ŝx(x) allows the user to specify an arbitrary18 pro-
file, which is normalized such that

ˆ
Ŝx(x) Ĵ(x, z)dV̂ = 1.

The factor Ŝ0, finally, specifies the amplitude in units of n̂0j(x0)ρrefcref/v̂3
Tj(x0)L2

ref,
so that the total injected power is given by

Padd = S0

ˆ
dV̂
ˆ

dv̂ÊŜxŜE = Ŝ0nrefTrefρ
3
ref

cref

Lref
.

This type of heat source has the advantage—compared to the Krook type sources
shown in the previous section—that it does not unphysically remove heat in order
to keep the profiles fixed; on the other hand, reaching true steady-state profiles
is very expensive, since the simulations have to be run for transport times, which
are several orders of magnitude larger than the turbulent timescales. Further, the
accuracy of the presently available gyrokinetic equations in this limit has been
questioned [45], and higher order equations as derived recently in Ref. [46] may
be required to address these questions.

18 Actually, two specific choices are currently implemented in Gene, one being a Gaussian profile,
the other one [44] yielding a broader peak width.
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3.7 sheared equilibrium flows in gene

For many years it has been recognized that large-scale plasma flows can strongly
influence turbulent transport. Since the flows we are concerned with in this chap-
ter vary slowly in space and time, they are part of the equilibrium and can there-
fore be treated as input parameters, which do not vary over the course of a simu-
lation. The interaction of flows and radial electric fields in the plasma is described
by the radial force balance equation

Er =
∇p
Zne

+ vθBζ − vζ Bθ

As can be seen from this equation, radial electric fields can be caused by the pres-
sure gradient as well as poloidal and toroidal plasma flows. The most important
effect of flows on turbulence, however, is caused by their radial variation, termed
’flow shear’, which reduces the turbulence correlation lengths and therefore the
radial width over which heat and particles can be advected. To study this effect,
there are currently two implementations available in Gene. One implementation
(contributed by T. Görler) adds an externally imposed electrostatic potential of
defined amplitude and profile19 to the nonlinear E× B advection term.

The second implementation models a radially constant E× B shearing rate by
shearing the radial coordinate of the simulation domain in a time-dependent fash-
ion, as described in Ref. [47]. This implementation is geared towards the case
where the E× B flow is caused mostly by toroidal rotation, as is typically the case
in the core of tokamaks. In transport barriers, modifications due to the strong pres-
sure gradient can become important. To derive the Hammett E× B shear model,
we define the toroidal angle in the co-moving frame

ζ(x) = ζ0(x, t)−Ωtor(x)t,

with the radially dependent angular velocity Ωtor(x) and the angle ζ0(x, t) in
the laboratory frame, which is now time-dependent due to the rotation. For the
binormal coordinate, we obtain

y(x) = Cy · (q(x)θ − ζ(x)) = y0(x, t) + CyΩtor(x)t

in the co-moving frame. According to this equation, calculating the radial deriva-
tive in this frame will, through the chain rule, give

d
dx

=
∂

∂x
+

∂y
∂x

∂

∂y
=

∂

∂x
+

(
∂y0

∂x
+ CytΩ′tor

)
∂

∂y
.

The term ∂y0/∂x contains the magnetic shear, whereas the new term containing
the radial derivative of Ω′tor is due to the flow shear. As the y direction is treated

19 In the local code, only sinusoidal potential profiles are possible; in the global code, arbitrary pro-
files can in principle be defined.
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in Fourier space in the global as well as in the local code, we can modify the usual
radial derivatives by (

∂

∂x

)′
=

∂

∂x
+ ikyCytΩ′tor,

for the global code, and
k
′
x = kx + kyCytΩ′tor

for the local code. By changing to the rotating frame of reference, the time depen-
dence of y0(x, t) itself drops out; only the effect of the flow shear Ω′tor on the radial
derivatives remains in the equations.

In the actual implementation, it is prohibitive to use a time-dependent radial co-
ordinate grid, since many parts of the code would have to be re-initialized at every
timestep instead of only once at the beginning of the run. Instead, the distribution
and the electromagnetic fields are shifted on the stationary kx grid periodically in
time to achieve the same effect. In the local code, this has to be done in a discrete
fashion as the available kx grid points are discontinuous; therefore, on a grid with
spacing ∆kx, the distribution function is shifted to the next available kx once the
accumulated shift kyCytΩ′tor exceeds ∆kx/2. As can be seen, this operation occurs
at different times for different ky modes, so that small-scale modes experience
more shifts per time unit.

Since only a finite number of kx modes can be kept in a simulation, one has to
choose an appropriate boundary condition for the effect of the flow shear. In Gene,
the implementation is such that anything that is shifted beyond the available grid
is discarded, while anything that is shifted into the grid from beyond the grid,
is initially set to zero. Therefore, using the Hammett E× B model will introduce
some artificial dissipation to the system.

Of course, this discrete variant of implementing a time-continuous process has
limited accuracy, which is in this case determined by the kx grid spacing, the ky
mode number and the magnitude of the flow shear. When performing linear sim-
ulations of large-scale modes at low flow shear, it can for instance happen that the
linear growth rate fulfills Gene’s convergence criterion before even experiencing
the first shift in kx. Convergence studies are therefore necessary, which can be
done by increasing Lx (i.e. decreasing the kx grid spacing) and at the same time
increasing the number of kx modes accordingly.

The normalized input parameter for the Hammett E× B shear model is

γ̂E = −Cy
∂Ωtor

∂x
Lref

cref
= −x0

q0

∂Ωtor

∂x
Lref

cref
.

Parallel flow shear

In addition to the perpendicular flow shear discussed in the last paragraph, we
have to take into account that the Maxwellian equilibrium distribution now has
to include a mean velocity, given by the toroidal rotation. In the laboratory frame
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therefore, we enforce a Maxwellian distribution relative to the toroidal rotation
velocity, given by

F
′
0 =

n0j

π3/2v3
Tj

exp

−mj
(
v− RΩtorêζ

)2

2T0j

 .

The expression
(
v− RΩtorêζ

)2
can be expanded into

v2 − 2RΩtorv · êζ + R2Ω2
tor.

At this point, we introduce an additional ordering of the toroidal flow velocity in
order to be able to drop the quadratic term. We define the toroidal Mach number
M as

M =
vtor

vth
� 1,

which allows us to define the rotating Maxwellian as

Frot
0 = F0 exp

(
mjRΩtorv · êζ

T0j

)
≈ F0

(
1 +

mjRΩtorv · êζ

T0j

)
.

The toroidal component of the guiding center velocity is given by

vtor = v ·êζ =
(

v‖b̂ + v⊥ĉ
)
· êζ ≈

qv‖
|ez| |eζ | =

qRv‖√
gzz

,

where we dropped the perpendicular velocity term (which is oscillatory in the
gyroangle) and employed the equality ez · ∇ζ = q (see App. A). In the local de-
scription, we can change to the frame of reference rotating with Ωtor, so that the
above correction to F0 drops out. In the linear drive term, however, an additional
term arises due the parallel component of the flow shear Ω′tor. Taking the radial
derivative of the rotating Maxwellian gives the correction

∂Frot
0

∂x
=

∂F0

∂x
+

qR2
√

gzz
F0

mjv‖
T0j

∂Ωtor

∂x
.

In normalized Gene units, this corresponds to

∂F̂rot
0

∂x̂
=

∂F̂0

∂x̂
− γ̂E F̂0

qR̂2√
ĝzz

m̂jv̂‖v̂Tj

T̂0jĈy
.

The correction due to the additional term in the radial derivative of the equilib-
rium distribution constitutes an additional linear drive known as parallel flow shear
drive and can, particularly for conventional tokamaks, overcome the effects of per-
pendicular flow shear and prevent turbulence quenching [48, 49]. Note that the
quantity R̂ is not the major radius taken at the magnetic axis, but at the currently
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considered position in the plasma. If R̂ is not readily available for a given geome-
try model, it can be calculated from the metric coefficients using the expression

R̂ =

√√√√q2gzz +
1

C2
y

gyy − θ2
(

∂q
∂x

)2

gxx − 2q
Cy

gyz

−1

(3.9)

for geometries using z = θ, and using the expression

R̂ =
√

q2gzz
−1

for Tracer geometry with z = ζ/q. Note that for s− α geometry Eq. 3.9 is singular
because of the inconsistencies in that model (see also Ref. [50]). In that case, the
analytical expression for the normalized major Radius, given by

R̂ = (1 + ε cos θ) ,

can be employed instead. The description of rotation effects given in this section is
suitable only for local turbulence simulations. In a global model, no simplification
can be achieved by transforming to a rotating frame of reference, and it is then
preferable to choose a laboratory frame description. Further, the above derivation
is only valid for low rotation; at higher angular velocities, Coriolis and centrifugal
effects become increasingly important and the according drift terms should be
retained.

3.8 summary

In this chapter, a description of the numerical methods employed in the Gene code
was given. After introducing the field-aligned coordinate system, the boundary
conditions applying to local and global simulations were discussed. The robust-
ness of the global version of Gene was improved by treating the nonlinear terms
with a mixed real-space/Fourier-space version of the Arakawa scheme, which
provides a unified discretization of two-dimensional Poisson brackets, satisfying
their basic conservation properties. By means of this scheme, nonlinear saturation
is always found, even in absence of artificial small-scale dissipation. An option
to treat the parallel advection and trapping terms in such a fashion is also avail-
able, enabling the local code to conserve the gyrokinetic free energy to machine
precision.

The newly implemented phase-shift dealiasing scheme was described and tested
for efficiency in both collisional and collisionless local simulations, showing that
performance gains of up to 20% can be achieved. In global simulations with mul-
tiple particle species, it is necessary to employ both particle and heat sources to
control the evolution of the background profiles during the simulation. Two new
implementations of Krook-type particle sources in Gene were described, as well as
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the existing localized and Krook-type heat sources. Finally, one section described
the implementation of both parallel and perpendicular sheared background flows
in the code, allowing for the investigation of shear-quenching of turbulence.





4

O P T I M I Z E D T R E AT M E N T S O F M A G N E T I C G E O M E T RY

Over the past decade, plasma turbulence simulations have become increasingly
complex, taking into account many new physics effects such as kinetic electrons,
particle trapping, magnetic fluctuations, collisions and also the realistic geometry
of the magnetic background field. Experimentally, it has been known for a long
time that changing the shape of the plasma to a more elongated and/or triangular
form can have a significant positive influence on the overall confinement. To en-
able quantitative predictions of microstability and turbulent transport, plasma tur-
bulence codes therefore need to be able to take into account the effects of plasma
shaping.

While turbulence codes historically often relied on the analytical s − α model
[51], more realistic models including finite aspect ratio effects or even shaping
[50, 52] have been devised. The Gene code is currently able to analytically model
slab and s − α geometry, as well as the improved circular model. For more real-
istic geometries, the code includes interfaces to several established MHD codes20,
which can compute solutions to the magnetohydrodynamic equations based on
measurements. These solutions can then be used as a background equilibrium for
turbulence simulations with Gene. The following sections describe the implemen-
tation of a field line tracing module, as well as benchmarks validating its results.

In addition, a few methods will be described that are used to extend the lim-
its of standard approaches when dealing with extreme geometries as they occur
in strongly shaped plasmas. These methods include the shifted metric approach
[57] for dealing with large shear, as well as a rescaling method of the parallel
coordinate to compensate for the effect of strong shaping.

4.1 tracer-efit interface

Most of the simulations performed for the present thesis take into account realistic
numerical geometry. Initially, the geometric information was usually produced
externally by the Tracer code and then read by Gene to set up a simulation.
Over the course of this thesis, the core of the Tracer code has been integrated
into Gene, along with an interface to the widely used Efit G-Eqdsk files. This
section details some conversions that are performed on the output of the Tracer

20 In particular, interfaces to Chease [53], Efit [54], Gist [55], and Tracer [56] are supported.

67



68 optimized treatments of magnetic geometry

module, as well as a benchmark of three simulations using the global circular
geometry model, a circular equilibrium generated by Chease, and a circular Efit

equilibrium as processed by the Tracer-Efit module. Close correspondence of all
approaches is found, validating the implementation of the global Tracer module.

4.1.1 conversion to a radially independent binormal coordinate

The field-line tracing procedure (FLT) as described in Ref. [56] generates, by con-
struction, a coordinate system that is defined from the point of view of the local
flux surface. These local coordinates are given as

x = ρ

y = Cy(ρ) (qθ − ζ)

z =
ζ

q
,

where Cy(ρ) = ρ/q with both q and ρ defined on the local flux surface, is radially
dependent. The angles θ and ζ are the straight field line angle and the toroidal
angle, respectively. Following Sec. 3.2.2, having Cy depend on the radius would
correspond to a radially varying definition of the ky grid. For convenience and
comparability with the global circular geometry model described in [26, 33], we
choose to transfer this radial dependence onto the prefactor C in the definition
of the magnetic field (see Eq. 2.22). To achieve this, every geometric quantity that
depends on y is transformed by means of the chain rule with

∂y′

∂y
=

C′y
Cy

=
ρ0

q0

q
ρ

,

where the subscript ’0’ denotes evaluation at the reference flux surface x0. The
explicit transformation rules are

C ′ =
ρ

q
q0

ρ0

gxy′ = gxy ∂y′

∂y

gy′z = gyz ∂y′

∂y

gy′y′ = gyy
(

∂y′

∂y

)2

∂B
∂y′

=
∂B
∂y

(
∂y′

∂y

)−1

.
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A recalculation of the Jacobian determinant J = (det g)−1/2 is also performed. We
immediately drop the primes on the new coordinates to prepare for the final step,
which converts the parallel coordinate to the straight field line angle θ, giving the
coordinate system

x′ = x
y′ = y
z′ = θ.

This modification affects the orientation of the covariant ey basis vector, which is
defined as (see also App. A)

ey =
∂R
∂y

with the position vector R. The reason for this is that the derivative with respect
to y, keeping x and z constant, now leaves ζ as the only degree of freedom instead
of θ. After this final change, the coordinate system is defined exactly as in the
circular model, except for the more general radial coordinate. The rules for the
final transformation are obtained from an explicit representation of the metric
coefficients gij in terms of the coordinates ρ, θ and ζ. Thus,

gxz′ = ∇ρ · ∇θ =
1

Cyq
gxy − θ

1
q

∂q
∂ρ

gxx

gz′z′ = ∇θ · ∇θ =
1

C2
yq2 gyy −

(
θ

1
q

∂q
∂ρ

)
gxx − gzz − 2θ

1
q

∂q
∂ρ

gxz′

gyz′ = Cy∇(qθ − ζ) · ∇θ = Cyqgz′z′ + Cyθ
∂q
∂ρ

gxz′ .

In these equations, we made use of the fact21 that gθζ ≡ 0. For the components of
∇B, we obtain

∂B
∂x′

=
∂B
∂x

+
∂B
∂y

Cyθ
∂q
∂ρ

∂B
∂y′

= 0

∂B
∂z′

=
∂B
∂z

.

It would also have been possible to modify directly the differential equations in
the FLT procedure [56], but we choose to perform the above conversion as a post-
processing in order to have the original results readily available for comparison.

21 In the actual implementation, this is verified numerically by evaluating gθζ from the initial gyz

coefficient.
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Figure 8: Benchmark of the Gene-internal FLT module using an ASDEX Upgrade Efit file
as input against the geometry provided by the standalone Tracer code. Shown
are both the growth rates (a) and the real frequencies (b) for binormal wavenum-
bers between kyρs = 0.1, . . . , 2.0. At kyρs = 1.0, a mode transition from ITG to
ETG is visible.

4.1.2 local benchmark of the tracer-efit interface

Comparison to the original Tracer code

To verify the validity of the above conversions, a parameter scan over the binormal
mode number is performed in ASDEX Upgrade core geometry, retaining kinetic
electrons, electromagnetic fluctuations, and collisions. As an input we take the
MHD equilibrium from a high power ASDEX Upgrade discharge (#20431) and
choose the radial position ρtor = 0.59 with the temperature and density gradients
taken from a fit to the experimental profiles. The resolution taken for these linear
simulations was 16× 1× 32× 32× 8 in the {x, y, z, v‖, µ} directions. The result
of the comparison is displayed in Fig. 8, showing very good agreement between
the two versions of the Tracer code. This is of course to be expected, since the
numerical procedure used to compute the geometric coefficients is identical; there
are, however, differences in the method used to find the flux surface to be traced,
and in the setup of the initial condition for the computation, since the Efit input
file does not explicitly provide a grid in ρtor or the toroidal flux φ. Instead, the Efit

file provides, among other data, the poloidal flux ψ and the safety factor profile.
The relation

dφ

dψ
= q

is then used to obtain a ρtor(R, Z) grid via spline interpolation.
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Figure 9: Comparison of linear growth rates and mode frequencies between the different
geometry inputs.

Comparison with Chease and the circular model

To further verify the accuracy of the Efit interface and the implementation of the
FLT module, linear and nonlinear simulations were compared to ones, in which
the geometry was defined by the circular analytical model [50] or by input from
the Chease [53] code. The latter input file is based on the simplest case from a
recent gyrokinetic geometry benchmark [58]. The input files of that benchmark
are publicly available as Efit files under Ref. [59]; Chease format files can then
be produced by processing the Efit files with Chease itself. Using these three
variants of input, linear growth rate scans, and nonlinear turbulence simulations
are performed. We keep a simple adiabatic electron model for these runs and
focus on possible deviations due to geometry.

We choose a mid-radius position with x = 0.5, q = 1.41 and ŝ = 0.82, setting
the driving gradients to their Cyclone Base Case [40] values R/LTi = 6.92 and
R/Ln = 2.22.

The linear simulations involve a scan in the binormal wavenumber ky ranging
over the typical ITG-unstable wavenumbers, 0.1 ≤ kyρi ≤ 1.0. The results in terms
of growth rates and mode frequencies are displayed in Fig. 9. As can be seen, for
low ky there is good agreement between all three inputs. For wavenumbers larger
than kyρi ∼ 0.3, the analytical model delivers a significantly smaller growth rate,
while for kyρi & 0.5 there is also some deviation between the Chease and Efit

growth rates.
A close examination of the metric coefficients derived from the various models

reveals that the most likely reason for the strong deviation of the circular model is
the neglect of the Shafranov shift that is present in the realistic MHD equilibrium.
This is visible in Fig. 10, which shows that the metric component gxx, which mea-
sures the distance between flux surfaces, is assumed to be unity while it varies by
more than 20% in fact. More significantly, the maxima of the component gxz differ
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(a) Metric component gxx = ∇x · ∇x. The circular
model approximates this quantity to unity.

3 2 1 0 1 2 3
Straight field line angle

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

gx
z

EFIT
CHEASE
Circular

(b) Metric component gxz = ∇x · ∇z.

Figure 10: Neglecting the Shafranov shift in the circular model leads to significant devia-
tions in gxx and gxz from the realistic MHD equilibrium.

by almost 50% from the realistic value, showing that the angle between ∇x and
∇z = ∇θ deviates strongly. As a consequence of this, the parallel dependence of
the local shear value is modified, which can be seen by calculating

gxy = ∇x · ∇y = Cyqgxz + ŝθgxx.

Taking into account the definition of local shear,

ŝloc =
∂

∂θ

(
gxy

gxx

)
,

we can see that the parallel variation of the magnetic shear comes about due to
gxz and gxx, resulting in this case in a rather strong modification (see Fig. 11a). Es-
pecially at the outboard side (z = 0), where the microinstabilities typically peak,
the shear value is significantly larger in the circular model, providing some (unre-
alistic) stabilization. Indeed, when reducing the global shear in the circular model
simulation to match the realistic value of local shear at the outboard side, a much
better agreement on the growth rates is achieved (Fig. 11b).

For the nonlinear runs, the unmodified shear value was taken, since for the low
wavenumbers—which usually provide the largest transport—, there was reason-
able agreement in the linear growth rates. In these simulations, a resolution of
128× 24× 24× 32× 8 was chosen, which is, by experience, a well-converged res-
olution for this simple physical setting. We choose a square-sized box of (125ρi)

2

in the perpendicular direction, and the standard settings for velocity space. Since
the particle flux vanishes with adiabatic electrons, the main quantity of interest
is the heat flux. In addition, the volume-averaged fluctuation levels of density,
parallel and perpendicular temperature, and fluid velocity were measured and
time-averaged between t̂ ∈ [70, 350]. All these results are listed in Table 1.
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Figure 11: Parallel dependence of local shear (a); comparison of growth rates (b), taking a
modified shear value in the circular model simulation.

Input Qi
es 〈δn/n〉rms

〈
δT‖/T

〉
rms

〈δT⊥/T〉rms

〈
δu‖/vti

〉
rms

Efit 50.6± 7.8 12.3 19.4 20.8 13.7
Chease 51.9± 7.2 13.3 20.2 21.2 12.9
Circular 47.8± 8.3 12.4 19.5 21.1 12.7

Table 1: Simulation results for the geometry comparison between the circular model, Efit

and Chease input. Note that all fluctuation levels in the above table are given in
units of ρref/Lref.
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Figure 12: Comparison of turbulent heat flux with different geometry inputs, showing
very good statistical agreement.

As is obvious from these values and also from the time traces shown in Fig. 12,
the agreement between the different models is very good, the difference between
the heat fluxes being less than half of the standard deviation of the time traces. As
expected, the difference between the circular model and the realistic equilibria is
much reduced compared to the linear spectra.

4.1.3 global benchmark of the tracer-efit interface

The Tracer-Efit interface includes the capability to set up global simulations in
general tokamak geometry. To validate the output of the module for the global
case (especially with respect to the coordinate transformations described above),
a benchmark similar to the one discussed in the previous section was performed,
but this time including radially dependent profiles and geometry. For this bench-
mark, three simple comparison runs were set up, using the circular geometry in-
put files from Ref. [58]. Again, we restrict the simulations to the adiabatic electron
model, using a resolution of 64× 24× 16× 48× 16 in

{
x, y, z, v‖, µ

}
. The profiles

were chosen to have a temperature gradient peak value22 of a/LT = 6.92 and a
density gradient peak of a/Ln = 2.22, with ρi/a = 1/80 and a radial box width of
Lx = 60ρi. The full toroidal circumference of the torus is simulated, with a binor-
mal wavenumber grid of 0.035 < kyρi < 0.805. In Table 2 some spatially averaged

22 The gradients used in these simulations are motivated by the well-known Cyclone Base Case [40]
values, but are normalized to the minor instead of the major radius, and therefore almost a factor
of three larger than the Cyclone gradients.
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Input Qi
es 〈δn/n〉rms

〈
δT‖/T

〉
rms

〈δT⊥/T〉rms

〈
δu‖/vti

〉
rms

Efit 37.4± 7.0 9.20 25.7 25.3 19.0
Chease 36.3± 6.3 9.34 24.5 24.8 18.1
Circular 35.3± 5.7 9.23 25.7 25.0 19.6

Table 2: Simulation results for the global comparison between the circular model, Efit and
Chease input. Again, all fluctuation levels in the above table are given in units of
ρref/Lref and averaged over the whole spatial domain.
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Figure 13: Comparison of heat flux time traces for global simulations using Chease, Efit

or the circular model equilibrium.

heat flux and fluctuation levels are displayed for comparison, showing excellent
agreement between the various models. The same level of agreement is also obvi-
ous from Figs. 13, 14a, and 14b, which compare the heat flux time traces, radial
profiles, and binormal spectra, respectively. The applicability of the Tracer-Efit

module for global simulations can therefore be considered proven.

4.2 geometry treatment in strongly sheared plasma

regions

In the present thesis, turbulence simulations focus on transport barrier regions,
taking into account realistic magnetic geometry. While this is both an important
and a physically interesting research topic, it is also very challenging from a nu-
merical point of view: In both core (Ch. 5) and edge transport barriers (Ch. 6),
strong variations in the background current profile can occur, resulting in a strongly
sheared magnetic field. In this section, we will examine two established types of
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Figure 14: Comparison of spatial heat flux dependencies with different geometry input in
a global simulation.

field-aligned coordinate systems, their applicability to different types of turbu-
lence codes and their behavior in complex geometries. The main contents of this
section have been published in Ref. [60].

4.2.1 properties of field-aligned coordinate systems

As was already explained, it is common for plasma turbulence codes to employ a
spatial coordinate system which is aligned to the magnetic field, taking advantage
of the fact that in strongly magnetized plasmas all particles experience the Lorentz
force and their dynamics therefore become strongly anisotropic. In the literature,
numerous derivations of field-aligned coordinates (see, e.g. Refs. [24, 32, 57, 61])
can be found, which we will not repeat here. Instead we will give a description
of some properties of these coordinate systems. In addition to the standard field-
aligning approach, one of the aforementioned works [57] also defined a ’shifted-
metric’ approach, which differs from the former one in several aspects that will
be examined here.

Magnetic shear in straight and shifted metric

In the usual transformation from cylindrical to field-aligned coordinates, one de-
fines a set of three coordinates x, y, z, which represent the radial, binormal, and
parallel direction, respectively. For convenience, one often chooses the reference
position to be where the contravariant ex = ∇x vector is parallel to the cylindrical
er = ∇r, i.e. where the flux surface is perpendicular to the (cylindrical) radial
direction. For up-down symmetric geometries, this is the outboard midplane. The
ey vector, on the other hand, lies in the flux surface, perpendicular to the field
line direction. However, the x and y coordinate vectors are only orthogonal at the
aforementioned reference position, which can be seen as follows: Since the safety
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Figure 15: Orientation of contravariant basis vectors relative to a flux surface for different
parallel positions.

factor is not constant across the minor plasma radius, the pitch of the magnetic
field changes between different radii. At the reference position, where y (the field
line label) can be defined to be zero for all radial positions, a small step in direc-
tion of ex changes only the x coordinate. At a different parallel position, however,
a small step in x direction will in general be accompanied by a change of the y
coordinate, since the field lines with y = 0 that we started with are now at dif-
ferent poloidal angles due to the differing safety factor. This means that ey = ∇y
now has a radial component, so that gxy = ∇x · ∇y 6= 0 when departing from the
outboard midplane. Therefore, the perpendicular grid is only orthogonal at the
reference position where y is defined to be zero for all radial positions. As one
follows the field line, the angle between the ex and ey vectors increases according
to magnetic shear (or local shear, if its parallel dependence is taken into account,
see, e.g., Ref. [62, 63]). This situation is depicted in Fig. 15.
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The shifted-metric approach, which was first described in Ref. [57], avoids these
complications by introducing a different coordinate yk for every position zk along
the field line. yk is defined such that gxyk = 0 everywhere, which requires the
definition

yk = y− gxy

gxx

∣∣
kx, (4.1)

where the metric coefficient gxy is to be calculated with the unshifted y coordi-
nate, at position zk. Note that the above relation must be generalized in case of
radially dependent metric, which will be done here only after the local properties
of the shifted metric have been studied. The same transformation as above is also
applied in simulations employing the standard Clebsch approach, but only at the
parallel ends of the simulation domain, and then with the integrated coefficient
gxy/gxx

∣∣
π
− gxy/gxx

∣∣
−π

= 2πŝ. In the shifted metric case, on the other hand, the
shift of the y coordinate is split into as many pieces as there are parallel points in
the simulation.

Adaptation of parallel derivatives for shifted metric

Since each parallel position now has a different y coordinate, the calculation of
parallel derivatives must be adapted to account for the shifts, as has also been
shown in Ref. [57]. As various gyrokinetic codes like GS2 [64, 65], GKW [66], and
local Gene compute the perpendicular dynamics in Fourier space, a short repeti-
tion of the calculation for such cases is given. If the parallel derivatives are com-
puted via fourth-order centered finite differences, then the function values from
two neighboring points in each direction enter the computation. In the shifted
metric case, the coordinate system changes from point to point, so that in order
to calculate the derivative of f (z) at parallel position k, one has to perform the
following operation on data from position k + i: First execute an inverse shifted
metric transformation yk+i → y (changing from the coordinate system at point
k + i to the field-aligned reference system), then transform y → yk (back to the
shifted coordinate at position k). The complete transformation is therefore

yk = yk+i +

(
gxy

gxx

∣∣
k+i −

gxy

gxx

∣∣
k

)
· x ≡ yk+i + χki · x. (4.2)

Thus, when using a value of f from a parallel point k + i, we have to apply a shift
when calculating the derivative in terms of the coordinates at point k, given by

f (x, yk+i, zk+i)
∣∣
yk+i
→ f (x, yk − χki · x, zk+i)

∣∣
yk

. (4.3)

Here, the label
∣∣
yk+i

is used to indicate that the value has been calculated in the
coordinate system yk+i. Due to the discretization, in a real-space treatment an
interpolation will in general be required (especially in complicated geometries,
where χki can take arbitrary values) to evaluate the function values at the actual
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spatial grid points. Performing a Fourier transform only in the y direction on the
right hand side of the above condition yields

f (x, ky, zk+i)
∣∣
yk
=

Ly−χki·xˆ

−χki·x
f (x, yk − χki · x, zk+i)e

−ikyykdyk. (4.4)

Now we shift the yk coordinate to yk+i,

Lyˆ

0

f (x, yk+i, zk+i)e
−iky(yk+i+χki·x)dyk+i = f (x, ky, zk+i)

∣∣
yk+i

e−ikyχki·x. (4.5)

This equation implies that, when using function values from neighboring parallel
positions, these values have to be multiplied by a phase factor

f (x, ky, zk+i)
∣∣
yk
= f (x, ky, zk+i)

∣∣
yk+i

e−ikyχki·x. (4.6)

If the x direction is treated in Fourier space as well, the transformation reads

f (kx, ky, zk+i)
∣∣
yk
= f (kx + kyχki, ky, zk+i)

∣∣
yk+i

. (4.7)

Radial boundary conditions

According to Eq. 4.7, the shift in y is associated (in Fourier space) to a mode shift
in kx (see also Ref. [32]). Applying the shifted metric to a code which computes
both perpendicular directions in Fourier space is therefore only possible if all kx
modes that can occur due to the shifts are present in the system. While in the
standard field-aligned approach, the only kx shifts occur at the parallel ends of
the box, the shifts are much smaller in the shifted metric case. To ensure the same
radial resolution, a much larger number of kx modes would be necessary to allow
for the shifts. Furthermore, the shifts can be arbitrary in general geometry, so that
no straightforward implementation for local Fourier codes is possible.

If, on the other hand, only the y direction is treated in Fourier space, the shifts
in that direction become a multiplication with a phase factor (see Eq. 4.6), so that
in principle arbitrary shifts become possible. If one wants to emulate flux-tube
simulations with such an implementation, however, one has to take into account
that the phase shifts in general violate the radial periodic boundary condition
that is used in the flux-tube model [32, 57]. Since the phase factor depends on
ky, periodicity can only be fulfilled if the radial box extension Lx is chosen such
that the phase factor becomes a multiple of exp(iπ) at the radial boundary for
each ky mode. This can, depending on the shear value, enforce very large radial
box sizes (corresponding to the small kx shifts from above) in order to fulfill the
periodic boundary condition for every ky mode—in that case one would face the
same problem as in a fully spectral code. Note, however, that global simulations
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can anyway only be performed with non-periodic boundaries, e.g. of Dirichlet or
von-Neumann type, for which the shifted metric does not cause any problem.

4.2.2 numerical tests of standard and shifted metric

Since we intend to focus on very basic features of the numerical treatment, the
physical complexity in this study is kept low by using only one species (ions) and
considering the electrons to be adiabatic, neglecting effects like magnetic fluctua-
tions, collisions, and nonlocal effects. As discussed in Sec. 4.2.1, a straightforward
implementation of the shifted metric is only possible for the latter operation mode.
Therefore, all simulations with shifted metric have been carried out with the global
version of Gene, emulating, however, the local simulations without profile varia-
tion.

Effect of radial boundary conditions

To compare the convergence of both shifted and straight (standard) metric with
Dirichlet and periodic boundary conditions, linear simulations using a Cyclone
Base Case [40] parameter set were performed, choosing kyρi = 0.3 and increasing
the radial box size Lx and the number of radial points simultaneously in order to
keep the resolution constant. Fig. 16a shows the convergence behavior for periodic
boundary conditions. With this approximation, the flux tube simulation always
gives the same result, while the shifted metric simulation converges to within 10%
of the flux tube result for Lx & 50ρi. At a value of Lx ≈ 67ρi, the shifted metric
result is identical to the flux tube one, since with this Lx the periodic boundary
condition is exactly fulfilled. The same would also be visible at Lx ≈ 2 · 67ρi =
134ρi, but this setting is not included in the scan. For Dirichlet boundaries, on the
other hand (see Fig. 16b), the speed of convergence is almost identical for both
shifted and straight metric, reaching an accuracy of 10% as soon as Lx & 50ρi.
Thus, for global simulations, the impact of the radial boundary condition on the
simulation is the same for both the straight and shifted metric approach.

Nonlinear simulations with straight and shifted metric

In Ref. [57], it was shown that turbulence simulations employing standard field-
aligned coordinates become inaccurate when studying conditions with large (global)
magnetic shear: Although a sheared slab geometry was used, in which, due to the
absence of curvature effects, the heat flux at all parallel points should be equal,
it was found that parallel transport profiles yielded a ’ballooned’ structure, i.e.
the transport value decreased from the center towards the ends of the flux tube.
As a remedy, the shifted-metric approach was put forward, which was able to
eliminate the artificial structure. As we have seen above, however, for a flux tube
code with periodic boundaries (like the local Gene version), the shifted metric
approach cannot be easily implemented. Therefore, we will now study if the stan-
dard approach leads to similar problems in a Fourier treatment, and if there is a
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Figure 16: Convergence of linear growth rates with increasing radial box size, keeping the
resolution constant.

possibility to overcome them. In Ref. [57], a four-field model was employed that
described the nonlinear electron dynamics while assuming cold ions. The physical
model thus differs clearly from the kinetic ion/adiabatic electron model that we
employ in our study; as we will see, however, both models yield very compara-
ble results with respect to the geometric properties discussed here. For the first
simulation, we choose a grid of 60ρi × 20πρi in the perpendicular plane, with a
resolution of 32× 32× 16× 32× 8 grid points in the x, y, z, v‖ and µ directions,
respectively, keeping the same resolution as in the original simulations (but using
a smaller box in y direction). The gradients are selected such that ion temperature
gradient modes are unstable (L‖/LT = 10, L‖/Ln = 2.2), and global shear is set to
unity to match the metric from Ref. [57]. In Fig. 17a, the parallel heat flux profile
obtained from this simulation is depicted. Near the parallel boundaries, zig-zag
structures appear which indicate insufficient resolution. This result differs from
the one in Ref. [57] in that it can be clearly recognized as a numerical deficiency,
while in the original work, there was a smooth reduction in transport towards the
parallel boundaries, which is more difficult to be distinguished from the natural
ballooning effect one would expect in a toroidal geometry.

As will be illuminated in more detail in the following sections, increasing the
magnetic shear value will require an according increase in the radial resolution. In-
deed, as it turns out, the zig-zag structures found in the parallel heat flux profiles
vanish only when using four times the resolution compared to the initial setup,
yielding a completely flat profile (see Fig. 17b) then. For a shear value of ŝ = 2,
this is achieved at a resolution of nx = 192 (Fig. 18).

Influence of numerical schemes

To illuminate the origin of the numerical problems that arise at high magnetic
shear, we will first compare the numerical treatments of the perpendicular direc-
tion that were used in the original and our simulations: In the original work, a
second-order upwind scheme was employed [67], whereas the local Gene simu-
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Figure 17: Parallel heat flux profiles obtained from nonlinear slab simulation with global
shear ŝ = 1 at two different resolutions.
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Figure 18: Parallel heat flux profile with global shear ŝ = 2 and nx = 192. Note that the
temperature scale length has been increased to L‖/LT = 15 to compensate for
the stabilization due to the larger shear value.
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lation uses a Fourier treatment, which yields exact derivatives (limited only by
machine accuracy). The upwind scheme is intrinsically dissipative, which on the
one hand serves to eliminate detrimental aliasing effects by damping small-scale
structures. On the other hand, we will see that in combination with the field-
aligned coordinates, the dissipation of the scheme facilitates the appearance of
the observed spurious ballooning, while at the same time masking its numerical
origin.

As has been explained in Sec. 3.2.4, when using a Fourier space treatment of
the perpendicular plane, it is possible to perform a clean dealiasing of the nonlin-
ear terms. In contrast to this, the real-space treatment used in [57] requires—and
intrinsically contains—dissipation to avoid aliasing effects. To emulate the con-
ditions of these simulations with the Gene code, we add a fourth-order radial
hyperdiffusion term, which is available, but not normally used in the local ver-
sion of Gene. The term added to the right hand side of the Vlasov equation is
given by

Dx = −εx

(
1
2

∆xkx

)4

f1, (4.8)

where f1 is the distribution function. The expression in parentheses is chosen such
that the prefactor εx does not have to be adjusted when changing resolution, since
∆x = Lx/nx with the number of radial modes nx. Nonlinear simulations with
finite εx do indeed show smooth ballooning in the transport profile as well as
in the temperature, density, and potential fluctuation amplitudes, similar to the
simulation from Ref. [57]. In Fig. 19, a nonlinear scan over εx is shown, which
demonstrates a clear dependence of the magnitude of ballooning on the hyperdif-
fusion coefficient εx.

As these results show, although turbulence codes with a completely spectral per-
pendicular treatment cannot employ the shifted metric, correct simulation results
can be achieved even for highly sheared flux tubes, provided that a non-diffusive
dealiasing scheme, along with the necessary resolution, is employed. A lack of res-
olution, on the other hand, can be recognized rather easily in the parallel profiles.

Studies with real space treatment of the radial direction

In a global turbulence code, only the y direction can be computed in Fourier space,
so that the Orszag scheme cannot be applied to the radial direction anymore, and
different dealiasing mechanisms have to be employed. We study such a setup with
the global version of Gene, which computes radial derivatives using fourth-order
centered differences.

When emulating the Orszag dealiasing scheme in real space through Lagrange
interpolation to a finer grid, it achieves, unlike in Fourier space, only a partial
elimination of aliasing effects [68], but still it allows the use of a smaller coeffi-
cient for the hyperdiffusive term. A saturated nonlinear simulation without such
a term was not achieved, however. This difference in behavior can be attributed
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Figure 19: With increasing radial hyperdiffusion coefficient εx, the parallel heat flux pro-
file exhibits an increasing amount of unphysical ballooning.

to the local nature of the finite-difference scheme, which yields only finite-order
accuracy while the spectral derivatives are given through an expansion in global
basis functions, achieving arbitrary accuracy. In analogy to the Fourier version,
the real space hyperdiffusion term is given by

Dx = εx∆x4
(

d4 f1

dx4

)
. (4.9)

To quantify the amount of spurious ballooning found in a real-space simulation
with standard metric, a resolution scan was conducted. For simplicity, we chose
again a sheared slab geometry with a global shear value of ŝ = 2 and a radial box
length of Lx = 80ρi. This specific value of Lx was chosen to allow for the use of pe-
riodic radial boundary conditions for comparison with the shifted metric. For each
chosen resolution, a scan in εx was performed to find the lowest possible value
of hyperdiffusion with which a saturated simulation could be achieved. Figure 20

shows the results of the resolution scans with and without shifted metric. The
curves labeled only by nx are runs which use the nonlocal version of Gene with
standard metric, emulating the local code setup. As can be seen, increasing the ra-
dial resolution increases the accuracy with which slab modes are represented, but
completely flat heat flux profiles can, for this shear value and box length, not even
be achieved for 256 radial grid nodes, making converged simulations very expen-
sive. A sixth-order centered difference scheme was also tested in conjunction with
a sixth-order hyperdiffusion term, but this yielded only marginally better results
than the corresponding fourth-order runs.

With shifted metric, even for relatively low resolution an accurate representation
of the slab heat flux profile is obtained, shown here for three different radial
resolutions.
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Figure 20: Parallel heat flux profiles with and without shifted metric in the nonlocal code
version.

Influence of the nonlinearity implementation

Another test involved the implementation of the Arakawa-type nonlinearity de-
scribed in Sec. 3.2.4, which allows for stable nonlinear saturation even when run-
ning without an additional radial hyperdiffusion term, yielding very robust code
operation. However, in such simulations some spurious oscillations occur at the
smallest scales, which should be prevented by a small hyperdiffusion contribution
to yield more physical results.

The same resolution scan as mentioned above was done with the Arakawa-type
nonlinearity in order to find out whether this yields improvement over the stan-
dard treatment. The parallel heat flux profiles for different radial resolutions are
shown in Fig. 21. As can be seen, the spurious ballooning effect is not completely
avoided, but clearly reduced when compared to the standard implementation. In
addition, the transport values of the runs with the Arakawa representation are
somewhat closer to the converged values. Also shown in the figure is the com-
parison between the converged local (Fourier) simulation and the shifted metric
simulation at the same resolution, which coincide very well.

4.2.3 discussion of the numerical results

Understanding the origin of artificial ballooning

To shed some light on what causes the spurious ballooning induced by radial
hyperdiffusion, we will now examine a nonlinear slab run without radial hyper-
diffusion (conducted with the local Gene version)—i.e. a run where the transport
profiles found in our simulations are flat, as they should be. In the Gene post-
processing tool, one can produce z-profiles not only of transport quantities, but
also of the fields and various moments of the distribution function. Adding all
contributions, one arrives at flat profiles as expected; however, when fixing ky to a
single value and examining specific kx modes of the electrostatic potential, these
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Figure 21: Parallel heat flux profiles with an Arakawa-type nonlinearity, the Fourier-space
code version and the nonlocal version with shifted metric.

can be found to exhibit peaked parallel profiles with a relatively short parallel
correlation length. The peak position depends on the value of kx one is studying
(see examples in Figures 22a and 22b).

The peaked behavior of each perpendicular mode (kx, ky) is directly linked to
the drive that each of these mode pairs is subjected to: In Fourier space, the gy-
roaveraged potentials, which determine the strength of the gradient drive, are
calculated by just multiplying the potential with a Bessel function J0(k2

⊥ρ2). Here,
ρ is the gyroradius and k2

⊥ is given by

k2
⊥ = gxxk2

x + 2gxykxky + gyyk2
y. (4.10)

Since gxx = 1, gxy = ŝz, and gyy = 1 + ŝ2z2 in a straight metric slab, k2
⊥ is a

parabola. When varying kx, the position of the parabola’s apex at z0 = −kx/(ŝky)—
where the mode experiences the strongest drive—is shifted along the field line.
Thus, the ballooning caused by radial hyperdiffusion becomes understandable:
While the kx = 0 mode peaks at the center of the flux tube, the higher kx modes
that peak off the center are increasingly damped and the total profile becomes
peaked. As the shear is increased, modes which peak at a specific position z0
have an ever higher kx and therefore experience stronger damping, explaining the
stronger spurious ballooning effect.

Let us now examine Figures 22a and 22b more closely: Fig. 22a was done with
the local version of Gene and with a rather large value of hyperdiffusion, while
Fig. 22b was done with zero radial hyperdiffusion, as is standard in the code.
Both figures show, for kyρi = 0.75, the same kx modes with the values kxρi =
0,±0.942,±1.885, where the mode with central peak is the kx = 0 mode and
the other peaks depart from the center with increasing |kx|. As is clearly visible,
in Fig. 22a, with activated hyperdiffusion, the modes that peak off the center are
rather strongly damped and their peak positions altered, coinciding with a peaked
transport profile (solid line in the Figure). On the other hand, in Fig. 22b, where
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(a) Simulation with radial hyperdiffusion (εx =
10). Here, the parallel heat flux profile ex-
hibits a ballooned structure which is un-
physical in origin.
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(b) Simulation without radial hyperdiffusion
(εx = 0). The parallel heat flux profile is flat,
as expected for slab geometry.

Figure 22: Time-averaged electrostatic potential for kyρi = 0.75 and kxρi = 0 (dashed),
kxρi = ±0.942 (shorter dashes) and kxρi = ±1.885 (dotted) for simulations
with different hyperdiffusion coefficients, demonstrating their influence on the
parallel heat flux profile (solid lines).

hyperdiffusion is turned off, there is no damping of finite-kx modes and therefore
the resulting transport profile is flat.

Considering the impact hyperdiffusion has on modes with finite kx, one can ex-
pect a strong impact also on the heat flux spectra. Indeed, Figs. 23a and 23b show
some qualitative differences. While the kx spectra look very similar for kx . 1,
there is a significant change of behavior for kx & 1: Whereas the undamped spec-
trum decays in a roughly straight line, the fall-off of the damped spectrum is
strongly curved, so that the difference quickly becomes several orders of magni-
tude. This stronger fall-off is what disturbs the slab character of turbulence.

In the ky spectrum, although not directly affected by radial hyperdiffusion, there
are still some differences to be found: While the deviation of the x-damped spec-
trum from the undamped case is much weaker than in the kx spectra, the differ-
ence between both cases is still an order of magnitude at the high-k end of the
spectrum. On the other hand, the coincidence of the curves for lower ky values is
not as good as in the radial spectra. The transport peak is slightly shifted toward
lower ky, while the spectral heat flux density differs by up to a factor of two for
the lowest ky. The overall heat flux, however, is barely affected by these deviations:
For the ’clean’, unballooned case, we find an ion heat flux of 11.0±1.0 in units of
vtiρ

2
i /(niTiL⊥), while in the ballooned case the value is 10.7±1.2.

Applying these results to the situation of the local Fourier code, it is easy to
understand the origin of the zig-zag structures observed in Fig. 17a: Although
there is no explicit kx-dependent damping in the code, all unresolved modes are
set to zero. At too low radial resolution, as is the case in our first simulation, these
modes will couple strongly to the modes that are taken into account, affecting the
computation of parallel derivatives near the parallel boundaries.
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Figure 23: Heat flux spectra obtained from simulations with (ε = 10) and without (ε = 0)
radial hyperdiffusion.

Understanding the correction via the shifted metric

Having discussed the effect which radial hyperdiffusion has on turbulence simu-
lations in slab geometry, it is now straightforward to see how the shifted metric
approach can avoid peaked profiles even with a dissipative numerical scheme.
For easier understanding, we provide an explanation in terms of kx and ky modes
instead of viewing the problem in real space.

With the straight metric approach, magnetic shearing is taken into account via
the shape of the flux tube, i.e. the flux tube is twisted when following the field
line. Thus, when calculating parallel derivatives, one can use the values from
the same kx mode, since the shearing is automatically included. In the shifted
metric approach, however, the flux tube is not deformed, but the shearing must
’manually’ be taken into account by applying the kx shifts discussed above (see
Figures 24a and 24b for an illustration). The radial (hyper-)diffusion term, on the
other hand, is proportional to some (even-numbered) power of kx, regardless of
whether the straight or shifted metric is used. When using straight metric, the
dissipation for a particular kx mode, is equally strong over the entire parallel
length of the flux tube. With shifted metric, the same is true, but the kx value
used to refer to one sheared eddy depends on the parallel position, and thus the
damping of that mode also varies.

As shown above, the parallel transport profile in slab geometry consists of many
single peaks that are added up. With straight metric and hyperdiffusion, modes
with finite kx are damped, so that the transport profile is affected only off the
center position (since this is where the kx = 0 mode peaks). With shifted metric, on
the other hand, the metric is changed such that the modes which have a constant
finite kx in straight metric, pass through kx = 0 exactly where they peak. This
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(a) With straight metric, parallel derivatives fol-
low the sheared magnetic field automati-
cally when using the same kx mode, and a
large shift has to be applied at the ends of
the z domain in order to connect to beyond
the flux tube end.

(b) With shifted metric, a small kx shift has to
be applied from each parallel position to the
next in order to follow the sheared magnetic
field, and periodic boundary conditions suf-
fice to connect to the next flux tube. In
straight metric, the mode drawn in the pic-
ture would correspond to kx = 0 all along
the flux tube.

Figure 24: Illustration of parallel derivatives and boundary conditions with straight and
shifted metric.

way, the peak of one mode is always undamped; instead only its tails are damped,
resulting in a flat overall transport profile.

Another way to put it is that while with straight metric hyperdiffusion is aligned
with the modes (since the grid on which hyperdiffusion is applied is sheared
along with the eddies), with shifted metric, the hyperdiffusion is (as is the grid)
dealigned from the sheared modes and thus procures equal damping to each
mode and does not ’prefer’ particular ones.

A possibility to avoid introducing dependencies that are not present in the orig-
inal system is the usage of a dissipation term proportional to k2n

⊥ (n = 1, 2, . . . ),
since k⊥ is a physical wavenumber, independent of the coordinates used to de-
scribe the system. Furthermore, if only a radial dissipation is desired, one can
employ a term proportional to k2n

r = (kx + kygxy/gxx)2n.

4.2.4 invariance of physics

Finally, it should be noted that shifting the y coordinate does not change the
physics contained in the simulation. This can be seen when inserting the coordi-
nate transformation yk = y − x · gxy/gxx and the shifted k′x = kx + ky · gxy/gxx

into Eq. 4.10, which gives k2
⊥, the Fourier space counterpart to the perpendicu-

lar Laplacian which enters the Poisson and Ampère equations. Considering that
gρσ = ∇ρ · ∇σ for ρ, σ ∈ x, y, z, the shifts all cancel to yield the original depen-
dence. The same is true for the E× B nonlinearity and the perpendicular Jacobian
J−1 = gxxgyy − (g12)2 = |∇x|2|∇y|2 − (∇x · ∇y)2: One merely transfers part of
the z dependence from the metric coefficients to a new z dependence of the radial
derivative (giving the shifts in kx).
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Figure 25: Perpendicular plane at the reference position z = 0, where ex⊥ey both for
shifted and straight metric.

However, simulations using either of the two approaches differ in the set of
modes which make up the perpendicular plane. While with shifted metric, each
parallel position has a mode that points radially outward, with straight metric this
mode is in general only present at the reference position, where the grid is perpen-
dicular (Fig. 25). At all other positions, the mode labeled kx = 0 is tilted away from
the outward direction and the grid has a rhomboid shape (Fig. 26a). The direction
radially outward is in general only approximately contained in the simulation,
and if radial hyperdiffusion were used, this direction would be damped since it
is labeled with finite kx values. In an undamped simulation, on the other hand,
modes which follow the sheared field are not preferred and a correct treatment
of perpendicular dynamics is ensured. Note, however, that such simulations may
still require large radial resolutions to take into account all modes which generate
relevant transport.

With shifted metric, the situation is inverted: At the reference position, there is
no difference with respect to the standard metric, but when going to z 6= 0 the
grid remains perpendicular. Therefore, in a simulation with dissipation (which
is a likely setup for a shifted-metric simulation), the modes which point radially
outward are now preferred over the damped kx 6= 0 modes (Fig. 26b). Therefore
the parallel correlation length of structures which follow the sheared field will suf-
fer some artificial reduction. This is particularly important for small-scale eddies,
since the kx shifts (given by Eq. 4.7) are proportional to the ky wavenumber. A
small eddy in a heavily sheared magnetic field thus quickly connects to kx modes
which are not resolved anymore, and is damped to avoid aliasing. Therefore, in
situations with large local shear, it must be ensured via convergence tests that
the radial resolution is sufficient to represent the evolution of turbulent structures
along the field lines correctly.
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(a) Straight metric: Here, ex and ey are no
longer orthogonal. Radial hyperdiffusion
acts on modes with finite kx, which are tilted
with respect to ex.

(b) Shifted metric: ex and ey are still orthogonal,
so that radial hyperdiffusion now acts only on
modes which do not point radially outward.

Figure 26: Illustration of radial basis vector alignment at a finite parallel position z 6= 0,
for both straight and shifted metric.
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4.2.5 implications for turbulence simulations

In this section, the properties of two different variants of field-aligned coordinate
systems for numerical simulations of turbulence have been examined. The first
approach, which is the well-known field-aligning transformation, generates a co-
ordinate system whose perpendicular coordinates are nonorthogonal in the case
of sheared magnetic fields. The other approach is the shifted metric ansatz, which
yields a whole set of coordinate systems, one for each position along the field line,
each of which has orthogonal basis vectors in the perpendicular plane.

As was known from earlier work, turbulence simulations employing standard
field-aligned coordinates can exhibit spurious parallel dependencies when study-
ing highly sheared magnetic geometries. This effect was found to arise from a
lack of radial resolution, and can be amplified by the use of a radial hyperdif-
fusion term (or a dissipative numerical scheme), which is often used to prevent
aliasing effects caused by energy transfer to smaller scales than described by the
grid. It was studied how the creation of artificial parallel structures can be pre-
vented in different numerical treatments. Since flux-tube codes which compute
the perpendicular dynamics in Fourier space need to use periodic radial bound-
ary conditions, they cannot implement the shifted metric approach. However, such
codes may be run without hyperdiffusion, if an appropriate dealiasing scheme, e.g.
the three-halves rule, is used. Simulations performed in this way do not exhibit
the spurious ballooning observed in damped simulations, provided that the radial
resolution is high enough. A lack of resolution, on the other hand, leads to zig-zag
structures in the parallel profiles and is thus easily identifiable, a property that can
be important when there is also physical ballooning, e.g. in toroidal geometry.

In global codes, on the other hand, the radial boundary conditions can not be
periodic, excluding the use of Fourier schemes. Therefore, to avoid aliasing effects,
one has to resort to a numerical diffusion term, which can, as shown above, lead
to the creation of artificial parallel structure. Although this situation can again
be improved by increasing the radial resolution, while at the same time keep-
ing hyperdiffusion as low as possible (possibly using a nonlinearity scheme with
low dissipation like the Arakawa discretization), reaching a converged simulation
proves more expensive than with a Fourier code.

These codes, on the other hand, offer the possibility to implement the shifted
metric approach, which avoids the creation of spurious parallel structures. Still,
large local or global shear will lead to strong twisting of the simulated eddies with
respect to the box, resulting again in the need to perform convergence checks to
ensure sufficient radial resolution.
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4.2.6 generalization to global simulations

In the previous sections, all simulations used local geometry, i.e. no radial varia-
tion of the metric coefficients was considered when applying the shifted metric
transformation. Its generalization is given by

yk = y−
ˆ x

x0

gxy

gxx

∣∣∣∣
x′,zk

dx′,

satisfying the above requirement. When calculating parallel derivatives (Sec. 4.2.1),
again one has to consider shifts in the coordinate system. The transformation from
the yk+i to the yk coordinate reads in its global version

yk = yk+i +

ˆ x

x0

(
gxy

gxx

∣∣∣∣
x′,k+i

− gxy

gxx

∣∣∣∣
x′,k

)
dx′ ≡ yk+i + χki.

Note that under these circumstances, it is no longer possible to write the shift as
χkix, but the radial integration element is now contained in the above definition of
χki. Function values from neighboring parallel positions therefore are transformed
as

f (x, yk+i, zk+i) = f (x, yk − χki, zk+i) ,

or
f
(
x, ky, zk+i

) ∣∣
yk
= f

(
x, ky, zk+i

) ∣∣
yk+i

e−ikyχki ,

when using a Fourier decomposition in ky, which is the expression that is imple-
mented in Gene and will be used in Chapters 5 and 6.

4.3 treatment of strongly shaped plasmas

After having discussed the numerical impact of strongly sheared magnetic fields,
we now turn to the numerical implications of plasma shaping. In many modern
tokamaks, additional external coils are used to deform the plasma in an elliptical
and/or triangular fashion, yielding better confinement than the simple circular
cross-section of earlier devices. The strongest effects of these additional coils can
be expected in the plasma edge, since their fields have to penetrate the plasma
from outside. Furthermore, the edge is often characterized by very steep pressure
gradients, which lead to the Shafranov shift that had already been discussed in
Sec. 4.1.2, resulting in a compression of flux surfaces on the low field side.

For such a magnetic field geometry, when setting up the spatial grid using the
coordinate system as defined in the previous sections (specifically, using z = θ

or z = ζ/q as parametrization for the parallel coordinate), one effect that can be
observed is that the number of parallel grid points on the low-field side of the
plasma decreases significantly as one approaches the plasma edge. Due to the
fact that the turbulence ’balloons’, i.e. is most intense on the outboard side, this
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Figure 27: Distribution of parallel grid points using the standard parametrization and an
optimized parametrization of the parallel coordinate.

leads to strongly increased requirements in parallel resolution. The distribution
of the grid points is unfavorable, however, and a large number of grid points is
required to appropriately resolve the important dynamics. To counter this effect,
an alternative definition of the parallel coordinate may be used, leading to a more
favorable grid point arrangement (for illustration, see Figure 27).

For the new parallel coordinate, we choose

z′ =
1
N arsinh (kz) ,

where k is an arbitrary factor influencing the coordinate scale. N is a normaliza-
tion factor which ensures that z′ ∈ [−π, π] and is given by

1
N =

π

arsinh (kπ)
.

Using these definitions, it is straightforward to show that the parallel boundary
condition remains unchanged.



4.3 treatment of strongly shaped plasmas 95

(a) (b)

Figure 28: Dependence of z′ (a) and its derivative (b) on the original z coordinate. For
reference, the latter is also drawn as a black dashed line. The plots demonstrate
how the outboard resolution is increased at the expense of the inboard side
resolution.

The transformation to the z′ coordinate is achieved by applying the chain rule
to all metric coefficients involving the z′ coordinate, e.g.

gyz′ = ∇y · ∇z′ = ∇y · ∇z
∂z′

∂z
= gyz ∂z′

∂z
= gyz k

N
√
(kz)2 + 1

.

The coefficients to be transformed are gxz, gyz, gzz, the Jacobian determinant J and
∂B/∂z. Afterwards, all geometry coefficients are interpolated onto a grid that is
equidistant in z′ in order to suit the finite difference derivative schemes employed
in the parallel direction. To ensure an accurate interpolation, the geometry coeffi-
cients are generated on a very fine grid (using 1024 parallel grid nodes by default)
and then interpolated onto the comparatively coarse grid used for the simulation.
Note that using this procedure, the resolution on the low-field side is increased
at the expense of the resolution on the high-field side, which might not be de-
sirable in some cases (e.g. in the plasma core, where the grid points are already
adequately distributed). For illustration, Fig. 29 shows a scan over the parallel res-
olution for typical ASDEX Upgrade core parameters, using the above coordinate
redefinition for k = 0, 2, 4, where the label ’k = 0’ indicates that no optimization is
performed, and the original z = θ coordinate is used. Obviously, with increasing
parallel resolution the same result is achieved in all cases, but for these parame-
ters, there is little gain from using the optimized coordinate. Demonstration of a
case with significant improvement is deferred to Sec. 6.4.2.

Note that there exists also another approach detailed in Ref. [69], which uses
conformal coordinates to avoid the stretch-squeeze behavior of the considered
simulation domain, while at the same time employing a reduced form23 of the
shifted metric approach. As a drawback, due to the form of the coordinate def-

23 Only the global shear dependence is removed from the metrics, while the local shear dependence—
which can be very strong in edge plasmas—persists.
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Figure 29: Demonstration of convergence for the standard parallel coordinate θ (blue) and
the optimized coordinate, using k = 2 and 4.

inition, simulations must always keep the full flux surface and no truncation of
the toroidal domain is allowed. Simulations of hyperfine ETG turbulence as pre-
sented in this thesis would in general not be feasible with that constraint, which is
why we choose to perform all simulations using standard field-aligned or (fully)
shifted metric coordinates. Resolution requirements due to strong shaping are—
at least for the parallel direction—dealt with by employing the simple remapping
procedure outlined above.

4.4 summary

In this chapter, details of a newly implemented geometry interface to the widely
used Efit file format were described. In order to adapt the field line tracing pro-
cedure of the Tracer code to global simulations, a simple coordinate transforma-
tion was applied to both the binormal (y) and parallel (z) coordinate. Benchmarks
of the new interface were performed, comparing local simulations with shaped
geometry to the results obtained with the stand-alone version of Tracer. Further-
more, both local and global circular geometry simulations were compared using
the analytical circular model, a Chease input file, and an Efit input file, finding
good statistical agreement. Generally, it was found that nonlinear heat fluxes tend
to exhibit better agreement than linear growth rates and mode frequencies, since
small deviations between the various input methods appear less prominently at
the relatively low ky wavenumber driving the strongest transport.

In conclusion, the Tracer-Efit interface can be expected to deliver reliable re-
sults in both local and global cases. In addition, it is more convenient to use than
the interface to the stand-alone Tracer code, since it allows scans in the radial
position or radial/parallel resolutions without having to provide new input files,
facilitating parameter studies and convergence tests.
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In Sec. 4.2, the properties of the standard field aligned coordinate system were
compared to the shifted metric approach. For highly sheared geometries, it was
found that the shifted metric approach can relax the resolution requirements some-
what. In addition, the simulations showed that in the case of a lack of resolution,
the combination of a perpendicular Fourier space treatment with zero-boundary
conditions allows a clear distinction between simulations suffering from a lack of
resolution, or simulations exhibiting a naturally occurring ballooned mode struc-
ture. For this study, the shifted metric has been implemented into Gene in its
global version, and will be used for a number of simulations in both of the follow-
ing chapters.

In the last part of this chapter, a method for optimizing the distribution of grid
points in the parallel direction was described. As will be shown in Chapter 6,
this method yields significant savings in the parallel resolution required for the
accurate simulation of ETG turbulence in the plasma edge.





5

G L O B A L S I M U L AT I O N S O F I N T E R N A L T R A N S P O RT
B A R R I E R S

5.1 overview

The recent addition of global capabilities to the Gene code [26, 29, 33] opens
up the possibility to study plasma conditions in which the local approximation,
which had been the standard in earlier code versions, is no longer valid. Com-
monly, the transition from global to local turbulence is measured by the quantity
ρ∗, which denotes the ratio of a thermal ion gyroradius to the minor radius a of
the considered device,

ρ∗ =
ρi

a
.

Scans in this parameter usually find (see Fig. 30) that the heat diffusivities ob-
tained from global and local turbulence simulations agree well for ρ∗−1 & 300
[70, 71, 72], and that the heat diffusivity in this regime scales like the so-called
gyro-Bohm diffusivity, i.e.

χ ∝ χGB = ρ∗χB = ρ∗ρivti.

For smaller devices24, on the other hand, the diffusivity scales like the Bohm dif-
fusivity χB defined in the above equation. The impact of the diffusivity on the
energy confinement time can be estimated by (see, e.g., Ref. [75])

τE ∝ a2/ 〈χ〉 .

Therefore, the difference between gyro-Bohm and Bohm-like transport has a direct
impact on the scaling of the energy confinement with the device size. In the more
favorable gyro-Bohm case, we obtain τE ∝ 1/ρ∗, i.e. improved confinement in a
larger machine. Being able to evaluate the effects of the system size on turbulent
transport on a first-principles basis is therefore one of the primary benefits of
global gyrokinetic simulations.

24 The turnover point at 1/ρ∗ ∼ 300 corresponds to a tokamak with a size roughly between ASDEX
Upgrade [73] and JET [74].

99
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Figure 30: Scaling of the heat diffusivity with the system size parameter ρ∗. At about
1/ρ∗ ∼ 300, the transition from Bohm scaling to gyro-Bohm scaling can be
observed. Source: Ref. [72]

Of special interest with regard to the physics of transport barriers is a recent
study ([72], see also the discussion in Sec. 5.7), which has demonstrated that it is
actually the modified parameter

ρ∗eff =
ρref

∆r

to which the turbulent diffusivity is sensitive rather than to ρ∗. Here, ∆r represents
the width of the region where turbulence is driven, i.e. the characteristic width
of the (temperature/density) gradient profile. The diffusivity scaling with ρ∗ is,
of course, still valid if one is interested in the effect of transferring given input
profiles to a larger device (i.e. ∆r ∝ a).

As a consequence of the ρ∗eff scaling, even in large devices such as Iter, which
have small ρ∗, the local approximation will fail in regions of steep profile gradients
such as core and edge transport barriers, where ρ∗eff is large. Achieving a consistent
physical picture of such barriers is a highly important subject, as transport barriers
are crucial to the efficient operation of a future fusion reactor.

In the present chapter, comprehensive global simulations of internal transport
barrier discharges are performed in order to gain insight into the properties of tur-
bulent transport under such conditions. In Sec. 5.2, the experimental properties of
the relevant discharges are described, and a short overview on previous theoret-
ical results on this topic is provided. Sec. 5.3 details the setup of the simulations
and the input profiles and magnetic equilibria. In Sec. 5.4, the results obtained
from global simulations using the nominal parameters are presented. Sec. 5.5 is
dedicated to a sensitivity study assessing the robustness of the results from the
preceding section, and in Sec. 5.7, we provide some scaling arguments to explain
the simulation results. In Sec. 5.8, the results are summarized.
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5.2 experimental situation and previous findings

5.2.1 electron internal transport barriers in tcv

In the present work, we study so-called “electron internal transport barriers”
(eITB) obtained at the Tokamak à Configuration Variable (TCV) [76], which is
located in Lausanne, Switzerland. The TCV tokamak was constructed with the
aim to examine the effect of plasma shaping on the confinement quality and was
therefore designed with a flexible shaping system, allowing it to achieve plasmas
of very variable elongation and triangularity without requiring changes to the
hardware. In the beginning of the last decade, successful steady-state plasma dis-
charges were reported [77], in which the entire plasma current could be driven
solely by electron cyclotron current drive (ECCD), requiring no additional induc-
tive current drive by the central solenoid. Later, it was shown [78] that by im-
posing hollow current profiles, transport barriers in the electron temperature and
density could be triggered, drastically improving the energy confinement time
(characterized by a confinement improvement over TCV L-modes of a factor25

HRLW ∼ 3− 6). In the present chapter, we study a set of discharges, which differ
solely by the addition of a small ohmic current in the very core of the plasma
[81]. Depending on whether this current subtracts from or adds to the combined
bootstrap and EC-driven current, this slight modification allows a substantial im-
provement or degradation of the ITB quality.

In this chapter, we will examine two discharges, 29863 and 29866, which were
presented in Ref. [82] and were intended to study whether the presence of flux
surfaces with low-order rational safety factors had a significant impact on the for-
mation of the barrier. This was done by changing the total plasma current and
thereby varying the minimum of the q-profile. In the reference discharge 29867

(not separately simulated here), the current was fully non-inductive starting from
t = 0.5 s, from when the ohmic transformer current, which induces the plasma
current, is held constant (see Fig. 31 for the relevant timetraces). In contrast to
this, in discharge 29863 a loop voltage of +90 mV was induced (visible in the slow
decay of the transformer current), which enhanced the core plasma current and
led to a confinement degradation. Discharge 29866, on the other hand, had a neg-
ative induced loop voltage of −30 mV, driving a counter-current which resulted
in improved confinement.

Due to the relation between current and safety factor profile26, a hollow current
profile corresponds to negative magnetic shear values. The experimental results
therefore point to the conclusion that stronger negative shear in the core facilitates
the occurrence and enhances the strength of an internal transport barrier. In this
chapter, we will use the MHD equilibria and plasma profiles from two of the afore-

25 The factor HRLW = τE/τE,RLW gives the improvement of the confinement time over the empirical
Rebut-Lallia-Watkins scaling [79, 80] for the electron heat transport.

26 The poloidal magnetic field is determined by the enclosed plasma current and in turn, via´
Bζ /Bθdθ = q, defines the safety factor.
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Figure 31: Timetraces [82] of the plasma current Ip, the ohmic transformer current IOH
and the confinement scaling factor HRLW in the discharges studied here. See
text for more information.

mentioned discharges and verify the effect of this shear reversal on the turbulence.
In addition, the precise mechanisms determining the shape of the barrier will be
investigated.

In the above experiments, there is no external momentum source in the experi-
ment as the discharges have no neutral beam heating, and the electron momentum
associated with the EC-driven current is negligible. Plasma rotation does therefore
not appear to have a significant role in influencing the barrier steepness, and we
will initialize the simulations with zero rotation. The particle and heat sources
used in the present simulations (see Sec. 3.6) do not impose a torque, allowing a
free development of the rotation profile. The majority of our simulations will de-
scribe one ion species and electrons, thereby assuming a pure deuterium plasma.
The effect of the impurity content on turbulence is investigated in dedicated sim-
ulations.

5.2.2 previous theoretical results

In addition to the experimental investigations, several theoretical studies have
been conducted in the past to shed light on the physics of the electron ITB. The
first gyrokinetic study [83] of this type of discharge was performed using the lin-
ear global code LORB5

27. Employing a hybrid model composed of a drift-kinetic
treatment of the trapped electrons, and an adiabatic approximation for the passing

27 LORB5 has meanwhile been replaced by the nonlinear electromagnetic code ORB5/NEMORB,
which features similar capabilities as Gene, using however a particle-in-cell (PIC) approach as
opposed to the grid-based Gene code. See Refs. [72, 84] for benchmark results of both codes.
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electrons, it was shown that the most unstable modes in TCV eITBs are trapped
electron modes (TEMs). It should be noted that this model, due to the simplified
treatment of passing electrons, is unable to describe electron-scale instabilities
such as ETG modes.

A particularly striking experimental feature, namely the stationarity of the den-
sity barrier despite the absence of a core particle source, was later examined in
local quasilinear gyrokinetic studies [85, 86]. Therein, it was found that when ion
temperature gradient driven (ITG) modes and TEMs coexist, the particle flux van-
ishes due to a thermo-diffusive pinch28, so that the experimental ratio ηe = Ln/LTe
reaches a value of 2–3. The requirement of coexisting TE and ITG modes places
a constraint on the ion temperature profile, allowing also more precise theoreti-
cal studies of the heat flux. Nonlinear local studies under these conditions using
Gene were conducted in Refs. [33, 89] and confirmed the particle flux cancella-
tion found in the quasilinear studies. However, it was also found that—even for
weaker profile gradients—the local results for the heat flux substantially exceed
the expectation, implying the necessity of a global model.

Such an approach is pursued in the present work. As a consequence of the fact
that full radial profiles are considered, it is more difficult to achieve the condi-
tion of zero particle flux, since a coexistence of TE and ITG modes would have
to be achieved not only at a single radial position, but with radially varying pro-
files. This would either require appropriate input profiles which already fulfill
this condition (and which could have been determined, e.g. from a local quasi-
linear optimization) or a flux-driven simulation with freely evolving profiles that
is allowed to relax into such a state. For the discharges studied in the present
work, no measurement of the ion temperature profiles was available, giving rise
to considerable uncertainty in the profile shape. At present, we will thus focus on
the global description of the main actors driving the heat flux, and leave global
particle flux studies to future work.

5.3 setup of the simulations

5.3.1 some general remarks

When performing global simulations, the background temperature and density
profiles have to be specified in order to define the equilibrium Maxwellian which
serves as the zeroth-order solution to the system. While in Refs. [26, 33, 90], these
profiles were based on analytical formulae, Gene also supports an interface to ex-
perimental profile data, which allows the user to specify the latter using an input
file. Optionally, this information can also be used to automatically calculate the
dimensionless parameters βref, νref and λD,ref and to extract the reference temper-
atures and densities.

28 See Ref. [87] for a nonlinear scan in such a regime, and Ref. [88] for an introduction to particle
transport physics.
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Velocity space requirements

An important aspect that requires more consideration in global than in local simu-
lations is the definition of the velocity space grid. Currently, Gene uses a radially
independent velocity space grid which is normalized with respect to the refer-
ence position x0 (see also Sec. 3.4). As a consequence, the radial dependence of
the temperature must be taken into account when defining the extent and resolu-
tion of the velocity space grid. In local simulations, a usually sufficient choice is
Lv‖ = 3.0v̂Tj

∣∣
x0

cref and Lµ = 9.0T̂0j
∣∣
x0

Tref/Bref for the extent of the v‖ and µ grids,
respectively. In a global simulation, on the other hand, this choice will be only
valid at the reference position x0; regions with higher temperatures will contain
particles with larger velocities, while regions with low temperature will require a
larger number of grid nodes in order to properly resolve the local velocity space
dynamics.

In concrete numbers, this means that for the discharge with the strongest eITB—
and therefore the steepest temperature profile—we require a velocity space reso-
lution of nv‖ × nµ = 96× 64, while the exact values of Lv‖ and Lµ depend on the
temperature at x0. Since this position is generally not at the maximal temperature,
the velocity grid extent is usually larger in normalized units than its local coun-
terpart (e.g. L̂v‖ = 4.1, L̂µ = 17.2). Comparing these settings with the standard
velocity space resolution of 32× 8 used in local runs, it is clear that the CPU-time
requirements for these simulations will be more than 20 times as high (even ne-
glecting the according reduction of the timestep due to Courant-Friedrichs-Lewy-
type restrictions29).

Computational requirements

With these constraints, an average, well-converged global nonlinear simulation can
consume of the order of 100,000 CPU-hours. An exemplary timetrace of such a run
is depicted in Fig. 32. Nonlinear saturation occurs in all cases at times t < 10 R/cs,
and the simulations are usually taken well beyond 50 R/cs to ensure stationary
results. Fluxes are then averaged over a time window containing a significant
fraction of the total simulation time, up to the end of the simulation.

Heat flux profiles

In this chapter, radial profiles of the heat flux generated by the turbulence will be
evaluated. For this purpose, at each radius the physical heat flux components—
the projections of Q on the radial unit vector (see Sec. 3.5)—, are summed over all

29 To ensure the accuracy and even the stability of the timestepping scheme, the timestep should
be small compared to the characteristic rate of change of the distribution function. As a crude
estimate, the timestep has to be much smaller than the time it takes a particle to cross a given
phase-space cell.
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Figure 32: Time trace of a nonlinear global run with TCV parameters (for Case III, see
Sec. 5.3.2).

ky contributions, and averaged also in the parallel direction. The heat flux profile
is therefore given by

Qr(x) =

〈
∑
ky

Qx
√

gxx

〉
z

.

Multiplying this heat flux profile by the flux surface area AFS, defined as

AFS =

ˆ √
gxx Jdydz,

gives the total heat transport rate through a given flux surface

P(x) = Qr(x)AFS(x).

This can be compared to the experimental input power, which is, for the examined
discharges, Pext = 2.25 MW of EC-power. Of course, it should be considered that
the heat deposition is also a function of the radius, and P(x) therefore will, in
steady state, be an integral over the source profile. Assuming that all heat sources
have been deposited inside of a given flux surface, the heat flux at outer radii
should then be inversely proportional to the minor radius, Qr ∝ 1/r as the flux
surface area in a torus is AFS ∝ r.

It should be noted that in the gradient-driven approach to global simulations,
the radial profiles of the heat flux will not necessarily fulfill this condition. Due
to experimental uncertainty, the input profiles may differ from the profiles that
would develop in a self-consistent equilibrium of heat input and turbulent trans-
port. In a flux-driven simulation, the profiles would be free to adapt accordingly—
in the present case, on the other hand, the profiles are kept fixed and heat and
particles can also be removed from the system for this purpose, which does not
occur in the actual experiment. The resulting heat flux profile will therefore pro-
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(a) Electron temperature.
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(b) Ion temperature.

Figure 33: Comparison of the temperature profiles used in the different input datasets.
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(b) Monotonic and reversed safety factor pro-
files.

Figure 34: Density and safety factor profiles for the studies of the present chapter.

vide insight not only on turbulence properties, but also about the accuracy of the
input profiles.

5.3.2 input parameters

In the present chapter, several different electron profiles are studied and combined
with different ion profiles. To increase the clarity of the text, we assign each of
the cases a unique number. Table 3 contains all examined cases along with a
description of their properties.

In Fig. 33, both the Te and Ti profiles are shown. Note that in Fig. 33a, only the
black and red curves are taken from experimental measurements; these profiles
were generated from data measured during discharges 29866 and 29863, respec-
tively. The green curve, on the other hand, is an ad-hoc profile chosen to provide
an intermediate step between the two extreme cases. This profile will be used in
combination with the reversed-shear MHD-equilibrium from discharge 29866.
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Case Discharge Te Ti q-profile Figure

I 29866 steep high reversed

Te/Ti: 33a, 33b, ne: 34a, q: 34b

II 29866 intermediate high reversed
III 29863 shallow high monotonic
IV 29866 steep low reversed
V 29866 intermediate low reversed
VI 29863 shallow low monotonic
VII 29866 steep (relaxed) high reversed Te,ne: 45, Ti: 33b, q: 34b

Table 3: List of all studied input profiles and their properties.
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(a) Logarithmic gradients of the electron temper-
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Figure 35: Comparison of the electron and ion logarithmic temperature gradients.
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tonic and the reversed q-profile.

Figure 36: Comparison of gradient profiles and magnetic shear for the different eITB
cases.
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Due to the absence of neutral beam injection, no spectroscopic ion tempera-
ture measurement is available for the eITB discharges studied here. However, the
CNPA diagnostic (Compact Neutral Particle Analyzer [91]) provides a measure-
ment for the central ion temperature which lies at about 1.4 keV in the present
cases. Since the ions are not directly heated and have—due to the relatively low
density—only a weak thermal coupling to the electrons, the standard ion tem-
perature is assumed to be the same in all examined discharges, regardless of the
electron profiles. The corresponding profile is shown as a blue line in Fig. 33b. To
examine the sensitivity of the results with respect to the ion temperature, simu-
lations will also be performed for a lower ion temperature given by Te/Ti ≈ 10
(Fig. 33b), similar to what has been studied in earlier work [83].

Figures 35 and 36 shows a comparison of the temperature and density gradients,
and of the shear profiles for the cases studied here. It is noteworthy that even in
the weak barrier discharge 29863, there is still a region of increased gradients, but
it is much less pronounced and shifted to considerably smaller radii, so that a
much smaller plasma volume is affected. In the figures, the depicted logarithmic
gradients of a quantity x are defined as

R
Lx

= −1
x

∂x
∂ρ̂tor

R
ρmax

,

where ρtor =
√

Φtor/πBedge, ρ̂tor = ρtor/ρmax, and ρmax =
√

Φedge/πBedge. Fur-
thermore, Bedge is the magnetic field at the geometric major radius of the last
closed flux surface, Φtor is the toroidal flux, and ρmax can be regarded as a mea-
sure of the minor radius.

For all simulations in the present chapter, we use the realistic plasma shape
of the TCV discharges, which is imported into Gene using the interface to the
Chease equilibrium code, which was discussed and benchmarked already in
Chapter 4. Fig. 37 shows that the flux surfaces in the examined discharges are elon-
gated and have also a finite triangularity. All simulations in the present chapter
are performed using the shifted metric approach (see Sec. 4.2) to avoid resolution
problems due to the large negative and positive magnetic shear values occurring
within the simulation domain.

5.4 simulation results

5.4.1 linear simulations

For the initial studies, the nonlinear term in the gyrokinetic Vlasov equation
(Eq. 2.23) will be neglected, enabling a study of the linear eigenmodes present
in the system. Here, these simulations are initialized with a small perturbation
in the distribution function g1, and the time evolution of the equation system
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Figure 37: Flux surface shape in TCV discharge 29866. (32 points per flux surface, equidis-
tant in ρtor ≤ 0.9)

is solved30. All unstable eigenmodes will then grow exponentially; at late times,
when the amplitude of the most unstable mode dominates, its growth rate and
frequency can be accurately measured. The spectra of these quantities will be the
focus in the present section.

The linear simulations conducted in this chapter are both global and electromag-
netic, i.e. the fluctuations of the magnetic field due to the finite thermal pressure
of the plasma are taken into account. Realistic values are taken for the plasma
parameter βe (the ratio of thermal electron pressure to magnetic pressure), which
can reach up to 1.4 % at the position of largest pressure of the Case I/IV profiles.

Although the full turbulent simulation is characterized by a complex interplay
of both unstable and stable modes, there is often a close relation between the
physics of the dominant instability and the characteristics of the turbulent system
(see, e.g., Ref. [28]), allowing the development of quasi-linear models for the turbu-
lent transport. The numerical parameters used for the present linear simulations
are listed in Table 4.

First, the cases I-III are examined, considering the standard ion temperature pro-
file, which matches the experimentally obtained value from the CNPA diagnostic
(Ti(0) ≈ 1.4 keV). For this first study, the influence of impurities is neglected, and
only a single deuterium ion species is considered, along with a fully kinetic elec-
tron species. In Fig. 38a and 38b, the obtained growth rates and mode frequencies

30 Gene also offers the possibility to study the full eigenmode spectrum by solving for the eigen-
vectors and eigenvalues of the linear gyrokinetic operator instead of solving its time evolution.
Studies using this method have been published, e.g., in Refs. [87, 92, 93].
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Case nx nky nz nv nµ Lx Lv Lµ εz εv‖

I 128/256 1 24 96 64 25.588 3.2 10.5 2.0 0.2
II 128/256 1 24 96 64 40 5.2 27.0 2.0 0.2
III 128/256 1 24 80 48 67.54 5 25 2.0 0.2

Table 4: Numerical parameters for linear simulations.

are plotted versus the toroidal mode number. A conversion of toroidal mode num-
bers to binormal wavenumbers can be obtained by using the relations

Case I, IV: kyρs = 0.114n
Case II, V: kyρs = 0.080n

Case III, VI: kyρs = 0.076n.

Electron temperature gradient driven modes

An immediate observation is the presence of instabilities with fast growth rates
at high wavenumbers. In all three cases, these instabilities exhibit negative mode
frequency, i.e. the wave propagates in the electron-diamagnetic direction. Both this
feature and the large wavenumber are characteristics of an ETG instability, which
is primarily fed by the electron temperature gradient (ETG). The presence of such
modes is already a new feature which was not found in earlier studies, either
because of a simplified electron model (Ref. [83] used an adiabatic passing electron
model, which excludes ETG physics) or because ETG modes were stable for the
chosen parameters [89]. It will therefore be a primary concern of this chapter to
investigate whether the observed ETG instabilities play an important role also in
nonlinear simulations, and to examine their sensitivity with respect to parameter
changes.

Instabilities at low wavenumbers

Turning towards the large-scale modes, we obtain different results for all three
cases:

• In Case I, a rather pronounced instability exists, which dominates all mode
numbers up to n = 20, and which exhibits a positive mode frequency, i.e. the
mode rotates in the direction of the ion diamagnetic drift. This would be a
feature of ITG instabilities, which were predicted to be significant in earlier
studies [85, 89]; however, scanning the electromagnetic parameter βe about
its experimental value31, we find (for n = 6, see Fig. 39) a threshold behavior
typical of a kinetic ballooning mode (KBM), showing that the experimental
βe is roughly 20% beyond its critical value.

31 This scan is performed as a mere parameter variation, i.e. without considering the corresponding
change to the magnetic geometry.
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Figure 38: Linear growth rates and frequencies for high ion temperature, exhibiting promi-
nent ETG instabilities for all three cases.
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Figure 39: Global scan over the reference electron beta βe = βe(x0 = 0.45) with Lref = R.

• In Case II, the reduced steepness of the profiles, while keeping the magnetic
geometry constant, results in substantially smaller growth rates both in the
large and small scales. At low wavenumbers, the KBM is replaced by a TEM,
which dominates the spectrum up to n = 12, above which an ETG instability
again takes over. The latter then dominates up to the highest wavenumbers
studied.

• With Case III, we turn to both flatter temperature and density profiles as
well as to the monotonic safety factor profile. Interestingly, although there is
still an ETG branch at large wavenumbers, the spectra show no prominent
discontinuities in the frequency or growth rate. Instead, the ETG instability
is smoothly connected to the TEM dominating the low mode numbers.
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Summarizing the results obtained so far, it can be noted that the observed in-
stabilities are in all cases driven dominantly by the free energy in the electron
temperature profile—with the exception of the KBM, which feeds from the total
pressure gradient and is therefore driven by all profile gradients. These results
therefore agree well with the experimental situation of pure electron heating.

The observation of an unstable KBM in the steep barrier case (I) deserves some
additional discussion: In common scenarios32, these modes are associated with a
rather violent outflux of heat and particles, and it appears therefore unlikely that
the experiment should, for these parameters, be found clearly beyond the onset
threshold for these modes. A linear sensitivity study of the KBM indicates that it is
most sensitive to the magnetic shear and the ωTe parameter, and that small shifts
between the profiles and the magnetic equilibrium (still within the experimental
uncertainty) can stabilize it. Case I is therefore close to the KBM threshold, but
probably not beyond it. This observation agrees also with the experimental fact
that, when the confinement is still more improved by making the magnetic shear
even more negative, the gradients become so steep that the discharge disrupts
[81].

5.4.2 turbulence simulations

As a first approach to the nonlinear simulations, we use an electrostatic, colli-
sionless approximation. The former assumption is used in order to focus on the
electrostatic instabilities present for our nominal parameters, excluding the KBM
mode. Comparing the resulting transport levels with the experimental ones, one
can then assess the profile behavior, and conclude whether the KBM threshold
could be reached at all.

The collisionless assumption, on the other hand, is justified by the low density of
the eITB discharges, which, in combination with the relatively high temperatures
leads to collision frequencies of νee ∼ νei . 104 Hz, which is more than two orders
of magnitude33 below the electron bounce frequency ωbe ≈

√
εvth,e/qR ∼ 3 ·

106 Hz and at least one order of magnitude below the relevant mode frequencies,
and can therefore be expected to exert only weak damping on TEMs. Linear scans
and a nonlinear comparison run have been performed to validate this assumption.

In this section, we again study the Cases I-III from above, considering as before
a single deuterium ion species. The code parameters used for the nonlinear simu-
lations of these discharges are listed in Table 5. The coefficients to the Krook-type
sources (Sec. 3.6) were set to 0.5 cref/Lref, which is a factor of four (or more) be-
low the maximum linear growth rates. The values of the coefficients determine to
which degree profile relaxation is allowed and thus have some influence on the
resulting transport levels. For the present simulations, no qualitative changes in

32 See, e.g., literature [94] on the linear drive for edge-localized modes (ELMs), which periodically
thrust out a large fraction of the energy content of the edge pedestal.

33 Here, a temperature of 1 keV was assumed for both ions and electrons, and particles at thermal
velocity were considered.
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Case nx nky nz nv nµ Lx Ly Lv Lµ εx εz εv‖

I 128 64 24 96 64 25.588 40.14 3.2 10.5 1.0 2.0 0.2
II 128 48 24 80 60 40 80.574 5.2 27.0 1.0 2.0 0.2
III 128 32 24 80 48 67.54 82.51 5 25 1.0 2.0 0.2

Table 5: Typical numerical parameters for nonlinear simulations.

the results were observed when varying the source coefficients between 0.1 and
1.0. At lower values, however, the profile relaxation can become strong enough to
cause violations of the delta- f ordering, which should be avoided.

The (radially averaged) binormal electron heat flux spectra obtained from the
nonlinear simulations are plotted in Fig. 40a, and Fig. 40b shows the radial heat
flux profiles. In the latter figure, both Case I and II show clear stabilization in
the low/negative shear region within ρtor ≤ 0.45, demonstrating that the essential
physics is correctly captured by the simulations. Note that the heat flux curve for
the steep barrier case has been divided by 10 in order to fit all graphs into the
same diagram.

In the linear simulations of Sec. 5.4.1, it was observed that in all three cases,
ETG modes were unstable. The nonlinear simulations presented here confirm their
significance:

• In Case I, the ETG destabilization due to the steep electron temperature pro-
file is strong enough that the majority of the electron heat flux is produced
at the smallest scales present in the simulation. Unfortunately, it was not
possible with the available computer resources to extend the perpendicular
resolution enough to completely encompass both ion and electron scales.
Such a study is therefore left for future work. It is, however, possible to ap-
ply artificial hyperdiffusion to the smallest scales34 and thus suppress the
ETG contributions (blue curve in Fig. 40a). In such a simulation, the heat
flux exhibits a rather broad peak at n = 3− 10, driven by TEMs. The radial
heat flux profile for this simulation peaks preferentially around ρtor = 0.5,
where the drive of R/LTe is maximal, and shows a relatively strong decay
towards outer radii. The peak heat flux is 4 MW/m2, which corresponds (us-
ing AFS = 4.65 m2) to a total heat transport rate of 18.6 MW, which is in
significant excess of the experimental value, despite the artificial damping.

• In Case II, the overall picture is similar as in Case I: The electron heat flux is
mostly generated at the smallest scales, which are not sufficiently resolved
to treat the ETG modes adequately. On the other hand, this observation
indicates already that ETGs should be important even for this less-steep
version of the transport barrier.

34 In the present example, we set εx = εy = 3. See Section 4.2.2 for a description of the employed
hyperdiffusion terms.
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Figure 40: Heat flux properties for the simulations with high ion temperature.

• In Case III, even though the heat flux contribution at large mode numbers
is clearly subdominant, there is a small amount of ’spectral blocking’ (a pile-
up at the smallest scales), indicating a weak contribution due to the unstable
ETGs observed in Sec. 5.4.1. Indeed, when doubling the binormal resolution
to ny = 64 modes, the heat flux peak around ρtor = 0.25 increases by ∼ 50 %
due to the increased high-k contribution. The heat flux at this position, taken
from the profile depicted in Fig. 40b, is Qe = 0.75 MW/m2, giving a total
heat transport rate (with AFS = 2.0 m2) through the flux surface of 1.5 MW,
which is close to the experimental input power of 2.25 MW. Interestingly,
the gap visible around ρtor = 0.5 in the electron heat flux profile is, for these
parameters, almost exactly filled by the ion heat flux, which dominates in
this region. For these parameters, turbulent transport in this discharge is
therefore dominated by TEM around ρtor = 0.25, by ITG around ρtor = 0.5,
and by TEM again towards the edge.

Obviously, all of the cases studied so far exhibit substantial transport contribu-
tions from ETG modes for the present parameters. A sensitivity study is how-
ever required to assess the robustness of this result. Summarizing the observa-
tions from the nonlinear simulations obtained so far, there are several possibilities
which could lead to an overestimation of the heat flux contribution due to ETGs
and will therefore be investigated in the following:

• In a fully saturated state (which is difficult to reach once high-amplitude
ETG turbulence has developed, due to the accompanying timestep reduc-
tion), ETG turbulence might be suppressed to some extent by interaction
with the larger scales through E × B shearing of ETG streamers—if they
are present. A first attempt at investigating this issue is shown in Sec. 5.5.4,
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but ultimately, a fully self-consistent multi-scale simulation will be required,
which is left for future work.

• The contribution of ETG turbulence may be smaller when it is fully resolved.
As mentioned above, in the present simulations it was not possible to cap-
ture the ETG spectra adequately. However, it is possible to conduct single-
scale simulations which include only electron scales, in order to answer this
question—neglecting, of course, the interaction with ion scales. This is done
in Sec. 5.5.3.

• Even when suppressing the ETG contribution in Case I, the heat flux at
ρtor = 0.5 is overestimated. Sec. 5.5.5 deals with the question, to which de-
gree this could be caused by a too steep input profile.

• The contribution of ETG turbulence might be reduced when taking into ac-
count the presence of impurities in the plasma. This question will be ad-
dressed in the framework of global adiabatic ion simulations (see Sec. 5.5.3),
considering only electron-scale turbulence.

• As noted before, the exact ion temperature profile is unknown for the ex-
amined discharges, leaving some degree of freedom in the question of ETG
stability (see also Sec. 6.4.4). This question will be addressed both by the
above mentioned ETG simulations in Sec. 5.5.3, as well as by repeating the
simulations shown up to now, but with a substantially reduced ion temper-
ature. This point will be tested in the following section.

5.5 sensitivity study of etg stability

The present section is dedicated to investigating the robustness of the ETG con-
tributions found in Sec. 5.4.2. As a first step, we repeat the linear and nonlinear
studies from before, this time imposing low ion temperature profiles (Fig. 33b)
given in each case by Ti/Te = 1/10.

5.5.1 linear simulations at low ion temperature

We begin, as before, with a linear study of the Cases IV-VI described in Table 3.
These are identical to Cases I-III, except that they are all performed with low
ion temperature. The mode number spectra of growth rates and frequencies are
plotted in Fig. 41a and 41b, respectively.

• The small mode numbers for the Case IV parameters are still KBM unstable,
as were those of Case I. As the Ti/Te ratio was already low to begin with,
and the ion contribution to the pressure gradient is therefore small anyway,
this is not too surprising. At the high wavenumbers, is becomes obvious that
the plasma is still clearly ETG-unstable, in spite of the stabilizing effect of
low ion temperature.
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(a) Growth rate spectrum.
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(b) Mode frequency spectrum.

Figure 41: Linear spectra for Cases IV-VI, conducted with the low ion temperature as-
sumption.

• In Case V, at least for the studied wavenumbers, the ETG instability appears
to be stabilized by the low ion temperature, and only a TEM remains at the
largest scales. Its growth rate peaks at n = 22, but does not decay completely
until n = 50, which is as far as the linear study extends.

• In Case VI, as could be expected due to the weak gradients, the ETG insta-
bility is also completely stabilized under the low Ti assumption. Similarly as
for Case V, a broadly peaked TEM dominates the spectrum, which exhibits
its maximum growth rate at n = 10. Up to n = 14, the dominant insta-
bility peaks at ρtor = 0.3, where also the heat flux maximum in Sec. 5.4.2
was found; above n = 15, another TEM becomes dominant, which peaks at
ρtor = 0.8, where another maximum in the density and temperature gradi-
ents can be found.

5.5.2 nonlinear simulations at low ion temperature

We now turn to nonlinear simulations of the low-Ti cases IV-VI. These were per-
formed using the same typical numerical parameters as given in Table 5. Fig-
ure 42a shows the radially averaged electron heat flux spectra for all three profiles
versus the toroidal mode number.

In Fig. 42b, the radial heat flux profiles are plotted. For the heat flux peaks in the
present cases, we can again evaluate the heat transport rates as shown in Table 6.

• For the steep barrier case (IV), although there was some hint of unstable
ETG modes in the linear results, we find no substantial high-k contributions
to the electron heat flux. Only at the highest wavenumbers, a slight knee in
the flux spectrum can be observed, which indicates the presence of ETG con-
tributes at high k. At lower wavenumbers, we find the same broad transport
spectrum as for the damped Case I simulations, which was essentially flat
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(b) Radial profile of electron heat flux.

Figure 42: Nonlinear results for electron heat flux for Cases IV-VI.

Case ρtor Qe/(MW/m2) Area/m2 P/MW P/Pexp

IV 0.5 2.91 4.65 13.5 6.01

V 0.52 0.31 4.75 1.50 0.67

VI 0.25 0.61 2.0 1.22 0.54

Table 6: Heat flux evaluations for the heat flux peaks found in three TCV simulations
at low ion temperature. For Pexp, the experimental input power of 2.25 MW was
assumed.

from n = 3 up to n = 10, though at a slightly lower level than in Case I.
Despite the missing ETG contribution, the heat flux concentrates in the mid-
radius region and still amounts to 2.91 MW/m2, roughly six times as much
as expected in the actual discharge.

• For Case V, we also find no ETG contribution left at small scales, but only
a heat flux peak due to TEMs around n = 5. The heat transport rate at
mid-radius is found to be 1.50 MW. This value is below the experimental
expectation—of course, the input profile is not directly based on experimen-
tal measurements, and has weaker gradients than those of the actual profiles.

• For the monotonic q case VI, the heat transport rate at the heat flux peak
at ρtor = 0.25 is Pout ≈ 1.22 MW, corresponding to 54% of the experimental
input power. This result, including the radial heat flux profile, is very similar
to that of Case III, except that the ETG contribution at large wavenumbers
has disappeared.

5.5.3 pure etg turbulence simulations

In the previous sections, it was not possible to encompass electron gyroradius
scales in the simulations. In the present section, electron-scale simulations are per-
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formed in order to assess the transport generated by pure ETG turbulence. These
simulations make use of the adiabatic ion approximation introduced in Sec. 2.5.5,
which—while not explicitly evolving the ion distribution functions—allows to
take into account the effects of impurities and the ion/electron temperature ra-
tio on ETG turbulence.

The simulations are global, but take into account only a small radial region
centered around x0 = 0.48, where the ETG heat flux peak was found in Sec. 5.4.2.
We vary the adiabatic ion parameter τ = ZeffTe/Ti and examine the ETG-driven
turbulent transport for τ = 1, 3, 10. To fully cover the ETG-unstable part of the
spectrum, we restrict to the range above kyρe ≥ 0.08 (corresponding to multiples
of n = 40), taking 24 toroidal modes. The electron temperature varies by a factor
1.5 over the radial box width Lx = 200ρe ≈ 3.3ρs. Since this is a rather weak
variation compared to the full-radius case, we keep the standard local velocity
space resolution 32× 8 in

(
v‖, µ

)
, while using 128 points in the radial direction.

In Fig. 43, the decrease of the ETG generated electron heat flux with increasing
impurity content and decreasing ion temperature is shown. As can be inferred
from Fig. 33, the ratio between electron and ion temperature is roughly 3 in the
relevant radial region. In combination with an effective ion charge Zeff ∼ 3 (similar
to what is used in Refs. [86, 89]), the experiment is situated in the far right of
Fig. 43, where the ETG-driven heat flux is lowest. At τ = 10, the flux still amounts
to 1.7 MW/m2, corresponding to a power of ∼ 8.5 MW passing through the entire
flux surface. Therefore, even when considering the effect of impurities and low ion
temperature, ETG turbulence is capable of driving four times the experimental
heat flux.

On the scale of Fig. 43, the simulations of Sec. 5.4.2 would be situated roughly
at τ = 3, since the temperature ratio was taken into account, but not the impu-
rity content of the plasma. According to the results of the present section, this
corresponds to a difference in the resulting heat fluxes of a factor 2.

An interesting comparison is also possible with the ion-scale simulation of Case
IV, which did not exhibit ETG contributions at large wavenumbers. That simula-
tion corresponds to the τ = 10 run of this section, which does show finite heat flux
due to ETGs. This apparent contradiction can be solved by examining the spectra
of both simulations. Indeed, the τ = 10 run has its heat flux peak at kyρs ≈ 18,
well beyond the resolution maximum of the Case IV simulation. This is therefore
an example where ion and electron scales are clearly separated.

5.5.4 interaction with large-scale turbulence

One factor which could be able to reduce the ETG-driven transport beyond tem-
perature ratio or impurity effects is the quenching of the small-scale ETGs by
large-scale turbulence, which imposes a fluctuating perpendicular velocity shear
on ETG eddies, reducing their correlation length and therefore their radial trans-
port efficiency. Such an effect cannot be considered in the adiabatic ion simulations
of the previous section, as the large-scale turbulence is missing.
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Figure 43: Effect of impurities and temperature ratio on ETG-generated heat flux.
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Figure 44: Timetraces of a nonlinear global simulation, which was started up with artificial
damping terms. At t = 12.5 R/cs, these terms are switched off, and explosive
ETG growth sets in.

In order to test this conjecture, a simulation of the steep barrier case described
above was set up, using both kinetic ions and electrons, but starting with artifi-
cial damping terms. After saturation of the remaining large-scale turbulence, the
damping was released, the idea being that the already established low-k turbu-
lence would suppress the growth of ETG instabilities.

However, such a behavior was not observed in the simulation (see Fig. 44a). In-
stead, after releasing the damping, an apparently unhampered ETG growth set
in, resulting in a more than tenfold increase of the electron heat flux until sat-
uration of the ETG flux occurred. It is also possible that a quenching of ETG
turbulence would occur only after a longer time, when an equilibrium between
the large and small scale turbulence has developed. However, as the ETG-driven
fluctuations develop large amplitudes, the timestep must be adapted to very low
values (Fig. 44b), making a continuation of the simulation computationally expen-
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sive. Such a study is outside the scope of the current work, and is left for future
multi-scale simulations.

5.5.5 effect of experimental uncertainty

Like all measurements, the profiles of temperatures and densities obtained from
the experimental diagnostics have a given error margin. Turbulence is especially
sensitive to these uncertainties, as it delicately depends on the profile gradients,
and also on the derivative of the safety factor. In the previous sections, indepen-
dently of the ion temperature, all heat fluxes—TEM or ETG—obtained for the
steep barrier profile (Case I/IV) were above the experimental values.

In order to test the sensitivity of both large- and small-scale turbulence, we
repeat some of the above studies with modified electron temperature and density
profiles, which will be designated as Case VII (see Table 3). These are obtained
by applying a transformation to the radial coordinate, which stretches the region
around the barrier somewhat and compresses the radii outside this region for
compensation, resulting in the profiles depicted in Fig. 45. As can be seen, the
profiles are slightly35 shifted towards inner radii, so that the steepest gradient is
at a position with lower magnetic shear. In addition, the steep gradient region
is wider than in the original profile, and the maximum gradient is accordingly
reduced from R/LTe = 52 to R/LTe = 33. The maximum and minimum values of
temperature and density are unchanged, and the ion temperature profile (we use
the standard Ti with Ti(0) = 1.4 keV) is also not modified.

The linear growth rate and frequency spectra obtained with these profiles are
shown in Figs. 46a and 46b in comparison to the original scans. As can be seen, a
clear stabilization of both the low-k KBM and the ETG mode can be obtained by
a rather small change to the input profiles which is within the experimental error
bars, emphasizing the delicacy of microinstability physics under transport barrier
conditions.

Repeating the adiabatic ion ETG simulations from Sec. 5.5.3 with the relaxed
profile, it is found that indeed the electron heat flux generated by ETG turbulence
is reduced by roughly a factor 2 throughout the studied range of the τ parameter—
see Fig. 47. At the relevant range of τ ∼ 9, the heat flux is now roughly a factor 2

above what would be expected in the experiment, showing that even for a relaxed
profile and including impurity stabilization, a significant ETG contribution to the
experimental heat flux is to be expected.

Next, we study the influence of the relaxed profile on the TEM-generated heat
flux. For this, we restrict the simulation again to ion scales. In order to suppress the
significant ETG contributions, it is again necessary to apply artificial dissipation
to the smaller perpendicular scales. We set εx = 2 and εy = 2, which proves to
be sufficient in this case. Using these settings, we obtain the heat flux spectrum
and profile shown in Figures 48a and 48b. The maximum heat flux, measured at

35 The shift is approximately ∆ρtor = 0.03. This corresponds to less than one centimeter in real space,
and is just below the resolution of the Thomson scattering system used to obtain the profiles.
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(a) Electron temperature profile.
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(b) Logarithmic electron temperature gradient
profile.
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(c) Electron density profile.
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(d) Logarithmic electron density gradient profile.

Figure 45: Comparison of original and slightly relaxed profiles. The black and gray curves
give the original and modified profiles, respectively.
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(a) Growth rate spectrum.
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(b) Mode frequency spectrum.

Figure 46: Comparison of the growth rate and frequency spectra of the original and the
modified profile.
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Figure 47: Comparison of the electron heat flux generated by ETG turbulence in a global
simulation of the barrier region for the original profile (black line), as well as
for the modified profile (gray line).
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(b) Radial profiles of electron heat flux.

Figure 48: Comparison of heat flux results for the profiles of Case I and Case VII.

ρtor = 0.5, amounts to Qe = 1.87 MW/m2, which is—like the ETG result—still
above the experimental value, but reduced by a factor two from the Case I result.
At the present parameters, neglecting the electron/ion scale interaction, the TEM-
generated heat flux is roughly 50 % larger than the ETG contribution. Adding both
parts, the overall heat transport rate is, at ∼ 13.8 MW, still above the experimental
value, providing further evidence that ETG and TEM turbulence will limit the
barrier steepness before the KBM threshold is exceeded.

While the discrepancy between the simulated and experimental heat fluxes is
still substantial, this is already a significantly better agreement than is often ob-
tained in local gyrokinetic studies. In the next section, it is demonstrated that the
use of a global model is crucial to even obtain heat fluxes of a similar order of
magnitude as the experiment.
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Case: I V VI

Q̂e/Q̂i local 17.2 11.8 8.55

Q̂e/Γ̂ local 13.4 8.2 6.6
Q̂e/Q̂i global 22.0 10.0 9.33

Q̂e/Γ̂ global 8.8 10.8 6.02

Plocal/MW 299 13.3 4.98

Plocal/Pglobal 15 9 4.1

Table 7: Comparison of fluxes obtained in local and global simulations.

5.6 comparison to local simulations

In the present section, we examine the capability of the local version of Gene to
model the ITB discharges studied in the present chapter. We run simulations for
Case I, Case V, and Case VI, using again the electrostatic assumption. The obtained
heat fluxes are compared, but as a measure of qualitative agreement, we examine
also the ratios between heat and particle fluxes for both ions and electrons, as
these indicate the type of turbulence dominating the system. All values are given
in Table 7.

• In Case I, the local simulation (restricted to the large scales, as in the global
run, and using also εx = εy = 3) obtains a heat flux of 63 MW/m2 at
ρtor = 0.5, corresponding to 299 MW of power passing through that flux sur-
face, which is more than two orders of magnitude above the experimental
value, and roughly a factor 15 above the global result. The ratios between the
obtained fluxes agree with those of the global simulation to within ∼ 30 %.
When run without perpendicular hyperdiffusion, the local simulation, like
the global one, finds substantial heat flux at the smallest scales, implying the
necessity of electron-scale resolution.

• For Case V, the overall heat flux is found to be Qe = 2.79 MW/m2. This
corresponds to a heat transport rate of 13.3 MW, exceeding the experimental
input power by a factor ~6 (but using a weaker profile than measured). In
addition, the global heat flux result at that position is exceeded by a factor
~9 even in this ’flat barrier’ case. The ratios between the fluxes agree with
their global counterparts to within 20 %.

• Case VI was compared at ρtor = 0.25, where the heat flux peaked in the
global simulation. At this position, the heat flux amounts to Qe = 2.49 MW.
In combination with the flux surface area AFS = 2.0 m2, we arrive at a heat
transport rate of 4.98 MW. Again, this result is significantly higher than both
the global result, as well as the experimental input power. The flux ratios,
are accurate to 10 %, for this parameter set.
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Case ρtor q ŝ ωTe ωTi ωn Ti/Te

I 0.5 3.11 0.66 48.0 11.70 14.0 0.333

V 0.5 3.11 0.66 22.25 21.87 8.68 0.106

VI 0.25 1.77 0.44 11.75 11.38 5.02 0.103

Table 8: Physical parameters for local TCV simulations.

Case nkx nky nz nv nµ Lx Ly Lv Lµ εx = εy εz εv‖

I 128 64 32 32 8 120.37 62.83 3.0 9.0 3 0.5 0.2
V 128 48 32 32 8 120.37 62.83 3.0 9.0 0 5 0.2
VI 128 48 32 32 8 136.97 125.66 3.0 9.0 0 2 0.2

Table 9: Numerical parameters for local TCV simulations.

The parameters of the local simulations used for this comparison are shown in
Tables 8 and 9. Summarizing the results of the present section, we observe that
the local simulations do not match the heat fluxes of the global runs well, even for
the case without an ITB. A clear improvement of the situation towards decreas-
ing gradients can be observed, however. The qualitative agreement of the results
regarding the ratios between ion/electron heat and particle fluxes is quite reason-
able, providing a validation of earlier local studies on the particle flux properties
of eITB plasmas (see also Sec. 5.2).

5.7 discussion of the simulation results

In this section, a theoretical explanation is proposed for the prominent role of
ETG instabilities under the eITB conditions. Studying the existing literature, one
can find scalings of the heat diffusivity versus the driving gradient R/LT (for
brevity denoted here as κ). Examples of such scalings are plotted in Fig. 49 for
heat diffusivities due to ITG , TEM, and ETG turbulence.

As can be observed in these figures, both for ITG and TEM turbulence, the
effective heat diffusivity χeff, defined by

χeff = −
Q

n |∇T| = Q
R

nTκ
,

starts with the value 0 at the nonlinear critical gradient κc. It then rises steeply
and exhibits a rollover towards larger values of κ. This is consistent with an offset-
linear Q(κ) dependence, which can phenomenologically be written as

Q(κ) = m (κ − κc) H(κ − κc).

Here, m is the slope or the stiffness of the heat flux above the critical gradient. It is
a measure of the amount of heat input that is required to achieve a given profile
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(a) Scaling for ITG turbulence [40].
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(b) Scaling for TEM turbulence (adapted from
Ref. [95]).

4 6 8 10 12 14 16 18
Logarithmic temperature gradient R/LTe

0

10

20

30

40

50

60

70

80

90

H
ea

td
iff

us
iv

it
y

χ
/

(ρ
2 ev

Te
/

R
)
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(c) Scaling for ETG turbulence at different mag-
netic shear (adapted from Ref. [96]).

Figure 49: Scaling of the heat diffusivity in gyro-Bohm units versus the driving gradient
for different turbulence types.
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(a) Scaling of ITG heat diffusivity versus ρ∗eff. (b) Different widths of the drive profile for the ρ∗eff
scan.

Figure 50: Heat diffusivities and input profiles of a nonlinear scan over the ρ∗eff parame-
ter. As the width of the driving profile approaches the gyroradius scale, the
diffusivity decreases strongly. Source: Ref. [72]

gradient. H(x) is the Heaviside step function, which is 1 for positive argument,
and zero otherwise.

In the diffusivity scalings given in Fig. 49c for ETG turbulence, two distinct
regimes are visible: For positive shear, ETG turbulence exhibits a large diffusivity
(due to radially elongated streamers), which quickly rises with the gradient. For
negative shear, on the other hand, the diffusivity appears to increase weakly with
the gradient, at rather low values. For the present considerations, we will regard
this behavior as a constant diffusivity. Translating the above observations to heat
fluxes, one obtains for large κ

QITG ∝ κ − κc

QTEM ∝ κ − κc

QETG(ŝ = −1) ∝ κ − κc

QETG(ŝ = 0.8) ∝ (κ − κc)
2 .

One would therefore expect that towards large gradients, the heat flux due to
ETG turbulence increases at least as strongly as that of ITG or TEM. Another ef-
fect that must be considered, is given by global effects, which become important
more quickly at steeper gradients. Considering the ρ∗eff scaling from Ref. [72] (see
Fig. 50), it is obvious that, as the width of the driving profile approaches the gyro-
radius scale, the generated diffusivity decreases accordingly. In a transport barrier
situation, the width ∆r of the driving profile can be considered to be proportional
to the scale length of this profile, i.e. ∆r ∝ LT ∝ κ−1. With this reasoning, global
effects can be assumed to reduce the χeff(κ) scaling by a factor κ−1.
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If we now consider again the situation for large-scale turbulence like ITG/TEM
and small-scale ETG turbulence, there is a crucial difference in that the gyroradius
scale of the latter is smaller by a factor

√
me/mi, which is—for deuterium ions—a

factor of 1/60. The diffusivity reduction due to finite profile width is therefore
only relevant for large-scale turbulence, but not for ETGs, as these are, in the plot
of Fig. 50a, located at very large values of 1/ρ∗eff. Applying the simple reasoning
from above and examining the scaling at large κ, one then arrives at

QITG ∝ 1
QTEM ∝ 1

QETG(ŝ = −1) ∝ κ − κc

QETG(ŝ = 0.8) ∝ (κ − κc)
2 .

Therefore, at steeper gradients, the heat fluxes of ITG and TEM are limited despite
the increasing gradient, while those of ETG turbulence would keep increasing36

and thus be the limiting factor in the steepness of a barrier.
The above considerations are crude, of course, and the situation in a real trans-

port barrier is not exactly the same as in the scan depicted in Fig. 50. In reality,
the gradient outside the barrier will not be zero, since the injected heat flux must
be transported outward by some kind of turbulence. The latter is therefore not ex-
clusively active in the region of the steepest gradient. As an example of a realistic
barrier profile, consider that of Case I in Fig. 33a, which has a rather narrow ∆r,
but a finite gradient at outer radii.

Also, the above estimates are valid in the large κ limit. On the other hand,
when κ approaches the critical value κc, the ETG contributions (especially when no
streamers are present) can be small, and at a given heat flux, the rise of the profile
gradient may already be limited by large-scale turbulence before the contribution
due to ETGs grows to significant values.

Still, the present discussion offers some insight why ETG turbulence is expected
to become important in the regimes studied here. It is also well supported by
the simulation results of the present chapter, which showed the most dominant
appearances of ETG turbulence exactly in the regions of steepest gradients. In
addition, the discrepancy between the heat fluxes obtained from local and global
runs is understandable in light of the ρ∗eff scaling, since all cases studied in this
chapter are—due to the small size of TCV—in a range where ρ∗eff is substantially
larger than 1/100.

5.8 summary

In the present chapter, the global Gene code was applied for the first time to
discharges exhibiting an electron internal transport barrier, performing the most

36 Of course, at sufficiently steep gradients, global effects would start to affect also ETG turbulence.
This would happen earlier for streamer-dominated ETGs at positive shear; but due to their rather
large heat flux, it is questionable whether the gradient could even rise to a sufficiently high level.
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comprehensive simulations to date of such a scenario. The discharges studied
were fully non-inductive, but with minor imposed current perturbations to tweak
the magnetic shear profile, with implications on the barrier strength. Two such
discharges from the TCV tokamak were examined here, and an additional set of
profiles was used as an intermediate case.

As expected, the simulations found a turbulence-free region in the core plasma
of the reversed-shear cases. Unlike in previous studies, unstable ETG modes were
found in the linear simulations for both the reversed-shear parameters with an
eITB, as well as for the monotonic q parameters without an ITB. In the nonlinear
runs, these ETG instabilities persisted, and enforced the usage of artificial damp-
ing of small-scale modes in order to achieve converged simulations. While this
is unsatisfactory from a physical point of view, it also demonstrates that ETGs
apparently can contribute a large fraction of the electron heat flux.

To substantiate this result, a comprehensive sensitivity study was carried out.
Using a significantly lower ion temperature, the ETG contributions could be stabi-
lized in all cases except the eITB case (IV), where linearly unstable ETGs persisted.
In the nonlinear regime, it was found that even at this lower ion temperature, the
transport driven by ETG turbulence was large enough to explain the experimental
electron heat flux. It was also shown that while the presence of impurities reduces
the ETG-driven heat flux, it remains large enough to surpass the experimental
fluxes. The most realistic heat flux levels for the steep eITB, which were obtained
with slightly relaxed electron profiles, had a contribution of 40 % driven at ETG
scales, underscoring their importance.

Due to restrictions of the computational resources, it was not possible in the
present work to study the interplay of large-scale and small-scale turbulence in a
simulation encompassing both ion and electron scales. Such a study is thus left
for future work. From the presently available evidence, and also theoretical scaling
arguments, we conclude that ETG turbulence is a key player in eITB physics.



6

E L E C T R O N T E M P E R AT U R E G R A D I E N T D R I V E N
T U R B U L E N C E I N T H E P L A S M A E D G E

6.1 overview

In the present chapter, the Gene code is used to study instabilities and turbulence
for plasma conditions found in the edge of ASDEX Upgrade. As input, we use
profile and equilibrium data from a particular ASDEX Upgrade discharge, which
is described in Sec. 6.2. As will be shown in Sec. 6.3, the linear growth rate spectra
exhibit ETG instabilities, which dominate over a large part of the spectrum. Con-
sidering the common notion that large-scale turbulence is suppressed by E × B
shear flows in the edge, ETG turbulence could play an important role in driving
the residual electron heat transport in the H-mode pedestal, since it exists at very
small spatial scales and is therefore not affected much by equilibrium flows.

Section 6.4 gives a detailed account of the numerical setup employed in the
present ETG studies, as well as extensive nonlinear convergence studies, demon-
strating the accuracy of the obtained results. Issues regarding the initialization of
such simulations, as well as the application of different numerical and physical dis-
sipation mechanisms are discussed. Furthermore, an improvement of the parallel
resolution through the optimized coordinate definition (Sec. 4.3) is demonstrated,
and the validity of the adiabatic ion approximation is examined. By comparison
against simulations using the shifted metric (Sec. 4.2), it is shown that the strong
variation of the local magnetic shear at the edge is accurately described also in the
standard local simulations.

In Section 6.5, nonlinear simulations of ETG turbulence for realistic ASDEX
Upgrade edge parameters are shown. The physical effects studied in the present
chapter include the radial dependence of the heat flux and heat diffusivity gen-
erated by the ETG turbulence. It is observed that ETG turbulence in the edge is
very strongly localized around the outboard midplane, where the magnetic shear
is low or even negative. This, together with the strong Shafranov shift, suppresses
the generation of streamers and leads to isotropic eddy structures at all examined
radial positions. Beyond the standard parameter set, another important question
related to edge plasmas is the influence of impurities and varying temperature
ratios on the heat flux. This issue, although related to ion physics, can be accom-
modated within the adiabatic ion framework used for the majority of the ETG
simulations presented here. Some of the linear results reported in the present

129



130 electron temperature gradient driven turbulence in the plasma edge

0.80 0.85 0.90 0.95 1.00
Radial position ρtor

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Te
m

p.
/k

eV
,D

en
si

ty
/1

019
m
−

3

Ti

Te

ne

(a) Temperature and density profiles.

0.80 0.85 0.90 0.95 1.00
Radial position ρtor

−2

0

2

4

6

8

10
Safety factor
Magnetic shear

(b) Safety factor and shear profiles.

Figure 51: Profiles for ASDEX Upgrade discharge #20431.

chapter have been published in Ref. [97], and first nonlinear simulations of edge
ETG turbulence for these conditions were reported in Ref. [98].

6.2 discharge 20431

The plasma discharge primarily studied in the present chapter is a Type-I ELMy
H-mode discharge with a plasma current of 1.0 MA and a toroidal magnetic field
of 2.4 T. In this discharge, a scan over the input power delivered by neutral beam
injection (NBI) was performed, increasing from 5.0 to 10.0 MW in three phases,
while a constant ICRH power of 3.4 MW was applied throughout the discharge.
The studies in this chapter focus on the first phase with 5.0 MW of NBI heating.

The ion and electron temperature and density profiles (assuming a pure Deu-
terium plasma) are plotted in Fig. 51a, showing the pedestal shoulder roughly
at ρtor = 0.94 (corresponding to ρpol ∼ 0.97). The MHD equilibrium for this dis-
charge was reprocessed in Cliste [99], taking into account the additional boot-
strap current generated by the steep profile gradients at the edge. This leads to
a local flattening of the safety factor profile (Fig. 51b) and even a slight shear
reversal in the top half of the pedestal.

6.3 instabilities in the plasma edge

To get a first impression of the relevant physics under specific plasma conditions,
it is generally advisable to study the linear properties of the system, as in many
cases observations from such simulations help to understand the characteristics
of the fully developed turbulence. The studies shown in this section have partly
been published in Ref. [97], but are revisited and more thoroughly investigated
here. In particular, some findings that appear unusual when compared to core
plasma results can be explained when taking into account edge geometry effects.
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6.3.1 linear simulation results

In the present chapter, we study instabilities and turbulence properties in the
edge of an H-mode discharge, which exhibits a very steep pedestal in the density
as well as the ion and electron temperatures. Extensive linear studies for this case
have already been published in Ref. [97]; here, we focus only on the key results
regarding the role of ETG instabilities and turbulence in the edge. In Fig. 52a, the
growth rate and mode frequency spectrum obtained for the flux surface ρpol =
0.98 (ρtor = 0.957) is displayed, showing a prominent kinetic ballooning mode
(KBM) peak at wavenumbers between 0.01/ρs and 0.1/ρs, followed by a rather
weak microtearing instability between 0.1/ρs and 0.2/ρs. Note, that in Ref. [97] the
KBM peak was mislabeled as an „ITG-like” instability; a scan over βe (see Fig. 52b)
shows, however, a clear dependence on this parameter. The results for such very
low wavenumbers should, however, be considered with some caution, since all the
simulations in this chapter were carried out using the local approximation.

A striking feature of the growth rate spectrum in Fig. 52a is the observation
that an ETG mode becomes the dominant instability at rather low wavenum-
bers around kyρs ∼ 0.25. A closer examination of the ETG modes with such low
wavenumbers reveals furthermore that they do not peak at kx = 0, as is usually the
case for core simulations, but at some finite radial wavenumber. This translates,
in the parallel direction, to a peak at the top or bottom of the plasma (Fig. 53),
depending on the sign of the radial wavenumber. For both positive and negative
radial wavenumber, separate peaks at the same ky can be found, leading to the
two branches of ETG growth rate spectra displayed in Fig. 52a.

The strong parallel localization of the ETG modes observed here allows for
linear scans in two dimensions, varying both kx and ky while examining only a
single kx mode at a time, instead of the usual procedure of having several parallel
connections. Such a scan leads to a growth rate spectrum as displayed in Fig. 54a,
which exhibits two branches of ETG modes for each ky, one of which peaks at the
top, the other at the bottom of the plasma. Such a scan was first shown in Ref. [98].

As it will turn out, however, the heat flux generated by ETG turbulence, peaks
at kx ∼ 0, in apparent contradiction of the linear results. Performing again a 2D
linear scan (see Fig. 54b), but for the ky wavenumbers that dominate nonlinearly
(kyρs & 50), reveals that for these larger ky the ETG modes again tend to peak
closer to the outboard midplane, and around kx = 0, in close agreement with the
nonlinear results that will be shown below.

6.3.2 geometric considerations

As explained previously, the effect of plasma shaping affects the edge region most
strongly, and it is therefore worth taking a closer look at the changes to the field
geometry occurring there. For this analysis, we will study the geometric coeffi-
cients of a flux surface situated in the edge pedestal of discharge #20431. The
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Figure 53: Peak of the electrostatic potential amplitude at the bottom of the plasma for
negative kx.

geometric coefficients were generated using the Tracer-Efit interface described
in Chapter 4, based on a Cliste MHD equilibrium.

As explained before, the Shafranov shift and the elongation of the plasma lead
to a stretch-squeeze deformation of the flux tube, which is especially pronounced
in the plasma edge. This behavior is shown in Fig. 55: The blue line shows the
radial compression of the flux surfaces, while the green line shows the compres-
sion of the flux tube in the direction perpendicular to the field and to the radial
direction (labeled by ê2 in Sec. 3.3). These two factors are given by (see App. A)

cx =
kx(ky = 0)

k1
=

1√
gxx ,

cy =
ky

k2
=

√
gxx

γ1
=

√
gxx

gxxgyy − (gxy)2 .

Note that the product of these two compression factors is proportional to the
magnetic field strength (red line in the figure) and therefore varies slowly along
the field line, but each direction by itself can experience a rather strong com-
pression. The curves in Fig. 55 can serve as a direct translation from physical
wavenumbers in the radial or binormal direction (k1 or k2, respectively) to the
wavenumbers37 in the field-aligned coordinate (kx and ky). Considering this effect,

37 The expression for the physical radial wavenumber contains, due to magnetic shear, an additional
term proportional to ky (see App. A), so that cx should best be regarded as the factor modifying
the distance between the flux surfaces.
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binormal wavenumbers appear to be much larger at the outboard side, while ra-
dial wavenumbers appear to be smaller. Conversely, at the bottom of the plasma,
radial wavenumbers are scaled to larger values, and the binormal wavenumbers
to smaller ones. This largely explains why ETG modes at the bottom of the plasma
appear for very small ky, and why they can at the same time peak at very large kx.

Taking into account these factors, ETG modes at the bottom of the plasma ap-
pear at k2ρs ∼ 0.75, and the growth rate peak at the outboard side (at kyρs ∼ 120)
moves down to k2ρs ∼ 35. As is obvious from the figure, at the top of the plasma
the modification of the wavenumber is small, so that ETG modes there indeed
appear for k2ρs ∼ 0.5. Some reduction of the low-ky cutoff can, however, also be
expected due to the very steep gradients in the edge; an estimate for the cutoff
wavenumber of toroidal ETG modes is given roughly [100] by the wavenumber at
which the transit frequency and the diamagnetic frequency are equal,

ky,cutoffρe =

√
Te

Ti

LTe

qR
.

Using edge values (see Table 10), this leads to an estimated ky,cutoffρs ∼ 0.15.
As can be seen from the linear simulation results (Figure 52a), ETG-type insta-

bilities dominate large parts of the growth rate spectrum, indicating their possible
importance under these conditions. The small-scale nature of ETG turbulence fa-
cilitates a local description even in the edge transport barrier, despite the narrow
radial extent of the latter. We will therefore perform local nonlinear simulations
to study the transport properties of ETG turbulence in the edge. Note, however,
that this can only be done in a single-scale fashion, excluding the physics of low
wave numbers. The reason for this restriction is the extreme spread of the edge
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growth rate spectrum, which exhibits unstable modes from the very lowest pos-
sible (see Sec. 3.2.2) wave numbers around kyρs ∼ 0.01 to extremely large wave
numbers of kyρs & 100, which would require extremely large simulations in order
to involve both ion and electron scales38. Furthermore, for most of the simulations
we are going to employ the adiabatic ion approximation, whose validity will be
examined in several dedicated simulations. Careful numerical convergence tests
will be performed in order to verify that the grid resolution is sufficient. Before we
elaborate on the results of these simulations, however, a short historical overview
on ETG turbulence properties will be given.

6.3.3 brief history of etg turbulence

From the early descriptions of electron temperature gradient modes [102, 103] un-
til the late 1990s, the prevalent opinion on ETG modes was that their contribution
to turbulent transport should be negligibly small, and that the latter should be de-
termined by ion temperature gradient-driven turbulence (ITG) and trapped elec-
tron mode turbulence (TEM). This opinion was based on the well-known mixing
length estimate, which states that the heat diffusivity caused by temperature gra-
dient driven turbulence is roughly given by χj,ml = ρ2

j vTj/LTj, where the species
index j stands for either ions or electrons. This estimate is based on assumptions
about the eddy sizes and eddy turnover times relevant to the respective turbulence.
Inserting the numbers, one can easily see that the ion heat diffusivity exceeds its
electron counterpart by a factor of

√
mi/me ≈ 60. Another theory [104] suggested

that ETG transport should be dominantly electromagnetic, leading to a heat dif-
fusivity scaling like χe ∼ χe,ml/β, or that radially elongated streamers could raise
the effective heat diffusivity to experimentally relevant levels [61, 105].

In 2000, nonlinear gyrokinetic simulations showed [27, 65, 96] that ETG turbu-
lence in toroidal geometry (as opposed to a curvature-free slab) indeed exhibited
pronounced streamers, generating an electron heat flux close to experimentally
observed levels. This result was later challenged by further nonlinear gyroki-
netic simulations [106] conducted with a particle-in-cell (PIC) code, which did
not find the same large transport levels and suggested that streamers could—
even if present—not affect the overall transport. As was subsequently shown
[107, 108, 109, 110], however, these simulations were dominated by noise, inval-
idating their results. Improved noise handling in modern PIC codes allowed to
resolve these issues. A recent theoretical investigation [111], on the other hand,
examined the dynamics of particle motion in radial streamers, reinforcing again
the result that streamers can cause a significant transport enhancement.

A particularly interesting development in the context of ETG physics is the ad-
vent of multi-scale simulations (see Refs. [26, 101, 112]), allowing for investigations
of the coupling between ITG- and ETG-scale turbulence. Therein it was, among

38 Of the order of 10, 000 binormal modes would be required, and roughly the same number of radial
modes. For comparison consider the multi-scale runs presented in Ref. [101] for core parameters,
with a perpendicular resolution of 768× 384 modes.
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other things, found that ETG streamers persist also in the presence of large-scale
turbulence. It was shown that they can provide a significant or even dominant
contribution to the electron heat flux; in the case of strongly driven low-k turbu-
lence, ETG-driven transport can be limited due to shearing of the streamers by the
large-scale turbulence.

As we will see in the following sections, however, in the plasma edge, ETG
turbulence does not exhibit streamers due to the properties of the background
geometry, making them more robust against the background modulation due to
large-scale turbulence. The absence of streamers in this case does not imply neg-
ligible transport: Due to the large gradients in the edge, even the electron mixing
length estimate is already comparable to the diffusivities of χ . 1 m2/s observed
in the edge.

6.4 numerical setup and convergence

6.4.1 initializing a nonlinear etg simulation

When performing ETG runs for edge conditions, it has proven advantageous to
choose a slightly different initialization for nonlinear simulations. The standard
scheme in Gene is to start from a g1 distribution which has all perpendicular
modes initialized, with their amplitudes proportional to k−1

x k−1
y J2, where J is the

Jacobian determinant. When using the optimized parallel coordinate detailed in
Sec. 4.3, it proves to be more advantageous to choose the parallel dependence
of the initial distribution proportional to a Gaussian, since this is closer to the
resulting fluctuation profiles.

Furthermore, when initializing with powers of -1 in perpendicular Fourier space,
the nonlinear timestep adaptation of Gene [25], which accounts for timestep re-
strictions due to nonlinear E× B drift velocities, immediately reduces the timestep
to a small fraction of the linear timestep limit upon startup, making the initial
phase of the simulation very slow. When initializing the simulation with powers of
-2 in both kx and ky, on the other hand, the timestep remains at the linear timestep
limit for a much longer time, so that the saturated state is reached faster (in wall-
clock time). These modifications of the initial condition can be achieved in the
Gene parameters by setting init_cond=’ppg’, init_aux_x=2, and init_aux_y=2.

In Fig. 56, nonlinear time traces of the lowest-order moments as well as the trans-
port quantities are shown for a nonlinear simulation with adiabatic ions. Note that
by definition, the particle fluxes are zero, as for adiabatic ions the cross-correlation
between density and potential fluctuations vanishes. Furthermore, the electromag-
netic contribution to the heat flux is roughly three orders of magnitude below the
electrostatic one; we still keep electromagnetic fluctuations in all simulations, since
there is little computational gain in neglecting them.
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Figure 56: Time traces of normalized RMS amplitudes and normalized fluxes for a typical
nonlinear ETG simulation under edge conditions.

6.4.2 optimized parallel coordinate

In Sec. 4.3, an optimized parallel coordinate was introduced in order to counter
the decreasing grid point density on the outboard side as one approaches the
edge. Agreement with the standard coordinate was shown in that section, but
a demonstration of a case with significant resolution savings is still missing. In
the present section, we study the effect of the optimization on linear edge ETG
modes, setting kyρs = 50, which is roughly where the most nonlinearly relevant
modes are situated. The optimization parameter k, which determines the degree
of optimization, is set to 0 (i.e. the standard parallel coordinate is used), 2, and 4,
and resolution scans in the parallel resolution are performed.

Figure 57 shows the results of this scan for a parallel grid point number of 64
points. Clearly, without optimization of the parallel coordinate, this resolution is
insufficient39 to correctly represent the parallel mode structure. For this case, the
correct mode structure is achieved only with 256 parallel points. With k = 2, the
result is for 64 points already close to the converged result40, although the profiles
are somewhat jagged—this effect disappears for 96 parallel points. With k = 4, on
the other hand, smooth parallel profiles are achieved already with 64 parallel grid
points.

The growth rate and frequency convergence with increasing parallel grid point
number, on the other hand, is demonstrated in Fig. 58. Here, it is visible that the
convergence is much smoother with k = 2 and k = 4 than without any optimiza-
tion of the parallel coordinate.

For the nonlinear runs performed in this chapter, we choose to set k = 2, and we
usually run with a parallel resolution of 64 grid points. A resolution scan in the
parallel grid point number will be performed below to show that this is adequate.

39 The jaggedness of the parallel mode structure at insufficient resolution is an effect of the finite
difference scheme used to compute parallel derivatives.

40 Note that the apparent stretching of the mode structures is not caused by insufficient resolution,
but by the different definitions of the z′ coordinate at given k.
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Figure 57: Parallel amplitude profiles versus z′ for k =′ 0′, 2, 4 with 64 parallel grid points.
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Figure 58: Growth rate and frequency convergence for increasing parallel resolution

6.4.3 role of dissipation

Although the effect of collisions on ETG turbulence is usually considered to be
weak, most of the simulations presented in this chapter will nevertheless be per-
formed with realistic collisions in order to provide a sink for the free energy in-
jected into the system. Usually, in collisionless Gene simulations, hyperdiffusion
terms [34] take this role. In particular, the parallel velocity and parallel spatial
derivative terms are supplemented by a dissipative part, which is usually of fourth
order, i.e. the damping rate scales with the wavenumber k‖ or kv‖, respectively, to
the fourth power. Similar terms are also available for the other phase space coor-
dinates, with the general form

Dn
λ f = −ελ

(
∆λ

2

)n ∂n f
∂λn ,

where n is the (even) order of the derivative and ελ is the coefficient to the dissi-
pation term of the coordinate λ. The prefactor ∆λn is introduced in order to make
the coefficient independent of the resolution.

When computing linear growth rates for varying damping coefficient, a plateau
regime is usually found, in which the introduction of the hyperdiffusion operator
remedies deficiencies of the numerical scheme (e.g. spurious zig-zag structures on
the grid scale) but does not significantly alter the physical system. This property is,
at least for parallel hyperdiffusion, not well fulfilled for the ETG turbulence cases
here due to the strong parallel localization of the underlying linear instabilities.
Instead, when varying the parallel hyperdiffusion coefficient εz, it is found that
the resulting nonlinear heat flux can differ greatly: For too low values (εz = 2 in
ion units) no saturated turbulence level is found; in this case, the sinks are too
weak to balance the free energy input from the drive terms. For larger coefficients
(5 < εz < 20), saturation is consistently found, but the resulting heat fluxes vary
by almost an order of magnitude.

To resolve this unsatisfactory situation, other types of dissipation, including per-
pendicular hyperdiffusion terms, as well as electron self-collisions at realistic col-
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lisionality were examined. In these tests, it was found that when using collisions
and a low parallel hyperdiffusion of εz = 2, saturation was found (in contrast to
the collisionless runs), and a similar transport level as for εz = 10 was reached.
Also, for radial hyperdiffusion with εx = 10, good agreement was found, giving
confidence in the validity of the nonlinear fluxes for collisionless runs with mod-
erate hyperdiffusion coefficients. For the convergence tests detailed below, the
approach with collisions and εz = 2 is used to exclude possible resolution effects
on the hyperdiffusion terms.

6.4.4 numerical convergence criteria

As mentioned already in Sec. 4.3, due to the extreme shaping and magnetic shear
in the plasma edge one has to ascertain numerical convergence of the simulations.
In this section, we will describe the criteria that have been used for the present
study of edge ETG turbulence.

For our convergence studies, we can deduce several implications from Fig. 55:

• The radial box size is most critical at the outboard midplane (z = 0), as
the flux tube is most strongly compressed there. To ensure sufficient radial
box size with periodic radial boundary conditions, we will measure the tur-
bulence correlation lengths at the outboard midplane and verify that the
autocorrelation of the electrostatic potential φ decays to zero within the ra-
dial box. A scan in radial box size shows that this condition is well satisfied
for Lx ∼ 3ρs, and a converged correlation length is achieved for this choice.

• The binormal (y) direction is most strongly stretched at the outboard mid-
plane, therefore at this position the ky spectra will be shifted to the high-
est values. An appropriate resolution can then be ensured by verifying that
the ky spectra of all quantities decay sufficiently well at the outboard mid-
plane. In practice, this turns out to be the case for ky grids extending up to
kyρs ∼ 250, which will be used as a constraint for the following simulations.

Using the above two constraints (and some experience from earlier simulations of
the same case), we can set up a reference simulation with sufficient perpendicular
resolution at the outboard midplane, where turbulence usually is strongest. From
this initial setup, we will perform convergence tests to find whether this resolution
is sufficient also for other parallel positions; for this scan, we have to increase the
radial resolution and extend the binormal box size to account for the deformation
of the flux tube at positions other than the outboard midplane.

Note that the aforementioned procedure does not explicitly deal with the impli-
cations of large magnetic shear. However, the latter automatically enters into any
radial resolution test, and can ultimately be dealt with by verifying the standard
simulations against shifted metric runs.



142 electron temperature gradient driven turbulence in the plasma edge

ρtor ρpol q ŝ ωTe ωn βe/% λD,ref/10−3 νref/10−2

0.957 0.98 4.599 0.745 24.79 11.17 0.164 4.50 1.47

Table 10: Physical parameters for the ETG convergence test.

nkx nky nz nv nµ Lx Ly Lv Lµ εz

128 128 64 32 8 3.35 3.14 3.0 9.0 2.0

Table 11: Numerical parameters for the ETG convergence test. The spatial resolutions nkx,
nky and nz printed in this table are the converged values that are used for all
following physics scans at ρpol = 0.98. For other positions, the parameters are
slightly varied from this setup.

Basic parameter set

All convergence studies shown here are performed with the physical parameters
taken from the H-mode (low power) phase of ASDEX Upgrade discharge #20431,
the profiles having been averaged over the time window from t ∈ [1.65 s, 2.0 s].
The electron temperature and density diagnostics were sufficiently well resolved
in time to select only values from before the onset of ELMs. The physical and
numerical parameters for the convergence tests are summarized in Tables 10 and
11, respectively.

Radial resolution

We start from a baseline case with 64× 32 modes in the perpendicular plane and
increase the number of radial modes sequentially by factors of two, keeping the
radial box size Lx = 2.85 constant.

Figures 59a and 59b show the radial and binormal spectra of various fluctu-
ating quantities with increasing resolution. Plotted are the electrostatic potential,
density, and parallel/perpendicular temperature fluctuations in black, green, blue,
and yellow color, respectively, with solid, dashed and dash-dotted linestyles de-
noting the different resolution levels in increasing order.

In the radial spectra, all of the aforementioned quantities show—as could be
expected—changes mainly in the smallest radial scales; namely, the contributions
at small-scales decrease significantly when increasing the resolution. In the binor-
mal spectra, the same effect can be observed at the smaller scales. In both direc-
tions, the difference between 64 and 128 modes is much larger than the difference
between 128 and 256, indicating more satisfactory convergence for the 128-mode
case. The same is also visible in Figs. 59c and59d, which display the radial and
binormal heat flux spectra. The spectra for 64 modes differ—in their level, not so
much in their shape—significantly from the other two resolution cases.

Finally, the parallel heat flux profile is shown in Fig. 60a, and the overall flux
levels in Fig. 60b. Again, the parallel profile shape is similar for all radial res-
olutions, but the overall heat flux level is ~30% higher when comparing lowest
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Figure 59: Amplitude and heat flux spectra for increasing radial resolution. The solid,
dashed and dash-dotted lines represent radial resolutions of 64, 128 and 256

modes, respectively.

(a) Parallel heat flux profile. Solid, dashed and
dash-dotted lines correspond to 64, 128 and
256 radial modes.
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Figure 60: Parallel heat flux profile and total heat flux dependence on radial resolution.
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and highest resolutions. From the results of this section, we can conclude that 128

radial modes should suffice to resolve the features of edge ETG turbulence.

Binormal resolution

In the present section, we study the effect of the binormal box size, setting the
radial resolution to nx = 64 modes. As has been stated in Sec. 6.4.4, the outboard
midplane position is most challenging for the binormal resolution, since the flux
tube is—due to the edge geometry—stretched significantly, reducing the effective
wavenumbers contained in the grid. By earlier experience, the baseline parameter
set is chosen such that the maximum wavenumber is ky,maxρs ∼ 250 (correspond-
ing to a physical wavenumber of k2ρs ∼ 80). As was shown in the linear studies
of Sec. 6.3, for lower ky edge ETG modes tend to peak at the top or bottom of the
plasma. To study their influence, we increase the binormal box size by lowering
the minimum ky limit sequentially, starting from ky,minρs = 8, and decreasing it
in factor-2 steps. In order to keep the resolution constant, at the same time the bi-
normal mode number is increased from 32 (baseline) to 64 and 128 modes, respec-
tively. The radial box size in this case is chosen slightly differently, Lx = 3.35ρs, in
order to fulfill the radial periodic boundary condition for the lowest ky,min value.

Note that in this convergence study, when displaying binormal spectra, we mul-
tiply the spectral contributions by a factor of 2 (4) for the case with 64 (128) modes.
This is necessary due the fact that, in our definition, the spectra are actually the
contributions of specific modes to the overall value [113], given by the form

Atot = ∑
ky

Aky .

Therefore, when we increase the binormal box size, the spacing between the
modes is reduced by a factor of 2, keeping Atot constant. The relative contribu-
tion of each Aky is therefore also reduced by a factor of 2, which we choose to
compensate in the plots for better comparability of the spectra.

Figures 61a and 61b then show, as before, the root-mean-squared spectra of φ,
n, T‖ and T⊥ fluctuations for the three different resolutions. The radial amplitude
spectra show remarkable agreement for all three resolutions, indicating that all
significant contributions are already included at the lowest resolution. Also the
binormal spectra overlap very well, except that the cases with larger box size have
additional contributions at the largest scales. It is noteworthy that at these scales,
the heat flux decreases although the fluctuation amplitudes do not; therefore the
decrease in heat flux must be attributed to less favorable cross-correlation of the
fluctuating quantities.

Also, the parallel profiles (Fig. 62a) show no significant dependence on the bi-
normal box size. Accordingly, the overall heat flux levels barely change between
the different cases. From the results of this section, we can conclude that quanti-
tatively, the case with 32 modes and a minimum wavenumber of kyρs = 8 seems
to be sufficiently well-resolved. However, the subsequent simulations will still be
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Figure 61: Amplitude and heat flux spectra for increasing binormal box size. The solid,
dashed and dash-dotted lines represent resolutions of 32, 64 and 128 modes, re-
spectively, with proportionally increasing box size Ly. In the binormal spectra,
the relative contributions of the modes have been scaled for better comparabil-
ity of the curves (see text).

(a) Parallel heat flux profile. Solid, dashed and
dash-dotted lines correspond to 32, 64 and 128

binormal modes.
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Figure 62: Parallel heat flux profile and total heat flux dependence on binormal box size.



146 electron temperature gradient driven turbulence in the plasma edge

100 101 102

Radial wavenumber kxρs

10−5

10−4

10−3

10−2

10−1

100

〈|A
2 |〉

φ

n

T‖
T⊥

(a) Radial amplitude spectra

101 102

Binormal wavenumber kyρs

10−5

10−4

10−3

10−2

10−1

100

〈|A
2 |〉

φ

n

T‖
T⊥

(b) Binormal amplitude spectra

100 101 102 103

Radial wavenumber kxρs

10−3

10−2

10−1

100

101

H
ea

tfl
ux

Q
es

n(z) = 16

n(z) = 32

n(z) = 64

n(z) = 128

(c) Radial heat flux spectrum

100 101 102 103

Binormal wavenumber kyρs

10−3

10−2

10−1

100

H
ea

tfl
ux

Q
es

n(z) = 16

n(z) = 32

n(z) = 64

n(z) = 128

(d) Binormal heat flux spectrum

Figure 63: Amplitude and heat flux spectra for increasing parallel resolution. The solid,
dashed, dash-dotted, and dotted lines represent resolutions of 16, 32, 64, and
128 grid points, respectively.

performed with 64 or 128 modes, in order to catch the decrease of the heat flux
levels towards large scales.

Note also that the present studies have been conducted using the adiabatic ion
approximation. Dropping the latter, more significant changes can be expected to
occur when considering larger scales in the computation; see below for a discus-
sion of this topic.

Parallel resolution

In this section, we check for convergence in the parallel resolution, taking k = 2
for the degree of optimization in the parallel coordinate. The perpendicular grid
is kept fixed at 128 × 128 modes in {x, y} during the scan, and in the parallel
direction we examine simulations with 16, 32, 64, and 128 grid points, which are
again distinguished in the figures by the linestyle; solid, dashed, dash-dotted, and
dotted curves correspond to 16, 32, 64, and 128 points, respectively.
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(a) Parallel heat flux profile. Solid, dashed, dash-
dotted, and dotted lines correspond to 16, 32,
64 and 128 parallel grid points.
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Figure 64: Parallel heat flux profile and total heat flux dependence on parallel grid resolu-
tion.

In this scan, the parallel hyperdiffusion coefficient is kept fixed at εz = 2. As de-
scribed in Refs. [114, 34], the coefficient is defined such that the maximum damp-
ing rate applied remains unchanged with the resolution scan, but the affected
parallel scales become ever smaller with increasing resolution.

As can be seen in Figures 63a and 63b, the fluctuation amplitudes decrease sig-
nificantly with parallel resolution, only at 64 points the results can be considered
well-converged. The same is true for the heat flux spectra depicted in Figs. 63c and
63d: For low parallel resolution, especially the low-ky contributions to the heat flux
are overestimated. Beyond the heat flux maximum, on the other hand, the agree-
ment is good for all resolutions. The overall heat flux levels are overestimated by
30% at nz = 16, but from 32 points onwards, the agreement with the converged
result is better than 10%. All subsequent simulations are performed with 64 par-
allel points to achieve good convergence not only in the heat flux levels, but also
in the fluctuation spectra.

Velocity space resolution

In contrast to the global simulations of the previous chapter, the local nonlinear
runs of the present chapter do not require a significantly increased velocity space
extent or resolution. Simple convergence tests have shown that the standard Gene

settings for the normalized velocity grid size, Lv‖ = 3.0 and Lµ = 9.0, are sufficient
for the presently studied ETG cases, as well as the standard resolutions of n(v‖) =
32 and n(µ) = 8.

Adiabatic ion approximation

In this section, the validity of the adiabatic ion approximation for the present edge
ETG simulations is discussed. For comparison, we examine simulations with ki-
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Figure 65: Comparison of amplitude spectra with different degrees of kinetic ion treat-
ments. The solid, dashed, dash-dotted and dotted lines correspond to adiabatic
ions, kinetic ions with zero gradients, kinetic ions with only the density gradi-
ent, and kinetic ions with all gradients and the realistic temperature ratio.

netic ions with different settings. Figure 65 depicts the radial and binormal fluctu-
ation amplitude spectra for adiabatic ions, kinetic ions with zero gradients, kinetic
ions with only the density gradient, and full kinetic ions. As can be seen, the spec-
tra do not change a lot for the first three cases; but when including the ion tem-
perature gradient and the realistic temperature ratio, significant destabilization
occurs at the lowest wavenumbers of the system, indicating turbulent activity also
at large scales. It should, however, be kept in mind that the large-scale dynamics
would be incompletely described even if its scales were completely included in the
present simulations, since the effects of profile variation and the E× B background
flow are not taken into account. In the radial spectra (Fig. 65a), upon adding the
ion temperature gradient, peaks appear at kxρs ∼ 9, which is due to the fact that
this mode is the first parallel connection of the

(
kx = 0, ky,min

)
mode, which leads

to a coupling of these wavenumbers.
The heat flux spectra do not react to the inclusion of „undriven” ions, but upon

adding the ion density gradient, there is an increased flux over a large part of the
spectrum. When adding also the ion temperature gradient and the realistic tem-
perature ratio, the flux is still increased, but some more emphasis is on the largest
scales of the system. With respect to what generates the residual turbulent trans-
port found in the edge, it is also interesting to examine the particle flux generated
by ETG turbulence in a two-species simulation. In the simulations performed in
this section, this contribution was negligible, providing only a particle diffusivity
of D ∼ 0.007 m2/s with only the density gradient, and D ∼ 0.002 m2/s when
adding the ion temperature gradient and the temperature ratio. This is a further
indication that ETG turbulence at the scales studied here is probably not the only
contributor to edge transport.

Fig. 67 depicts the changes in overall heat flux when going from the adiabatic
ion model to increasingly realistic ion treatments. Similar to what could be ob-



6.4 numerical setup and convergence 149

101 102

Radial wavenumber kxρs

10−3

10−2

10−1

100

101
H

ea
tfl

ux
Q

es
AI
KI (no grads)

KI (only ωn)

KI (full)

(a) Radial spectrum

101 102

Binormal wavenumber kyρs

10−3

10−2

10−1

100

H
ea

tfl
ux

Q
es

AI
KI (no grads)

KI (only ωn)

KI (full)

(b) Binormal spectrum

Figure 66: Comparison of heat flux spectra with different ion treatments.
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Figure 67: Heat flux varying with increasingly realistic ion models. The label ’AI’ refers
to adiabatic ions, while ’KI nograd’, ’KI dens’ and ’KI full’ refer to kinetic ions
with no drive, only the density gradient, and full kinetic ions, respectively.

served already in the spectra, there is no change when introducing „passive” ions
with no drive. Upon adding the density gradient, the overall heat flux increases
by ~25 %. This is not changed when adding also the temperature gradient and
temperature ratio, but the added heat flux is then driven at larger scales.

6.4.5 verification against shifted metric simulations

One striking observation from the nonlinear ETG simulations is the pronounced
localization of the heat flux on the outboard midplane. Considering the discussion
of the shifted metric in Sec. 4.2, the suspicion arises that this ballooning might not
be a natural property of the turbulent system, but rather a numerical artifact due
to insufficient resolution. In that respect, it is rather comforting that this should
have become obvious in the radial convergence tests performed in Sec. 6.4.4; but
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Figure 68: Comparison between shifted metric and standard metric simulations of edge
ETG turbulence.

an even better way to validate this result is to compare these simulations to ones
using the shifted metric.

As was discussed in Sec. 4.2, the shifted metric can not be straightforwardly
implemented in local Gene, since it would in general violate the periodic radial
boundary condition. One possibility, however, is to run the global version of Gene,
using all the assumptions of the local code, including radially constant geometry
and profiles, but with Dirichlet boundary conditions (plus the radial buffer zones).
The results of such a simulation are displayed in Fig. 68. Both the parallel heat
flux41 profiles as well as the heat flux spectra show good agreement between the
local and shifted metric simulations, confirming that the pronounced ballooning
of ETG turbulence is accurate. There is, however, a 20% decrease in the transport
level, which can be attributed to the fact that the averaging procedure used to
obtain this value included also the buffer zones, which by definition have strongly
reduced flux levels.

6.5 physical properties of edge etg turbulence

6.5.1 radial dependence of the electron heat flux

This section is devoted to the question of how the electron heat flux caused by
ETG modes in the plasma edge depends on the radial position. As can be seen
in Fig. 69a, the nominal input profiles show a systematic decrease of the ratio
between the density and temperature length scales, defined as

ηe =
Ln

LTe
=

R/LTe

R/Ln
=

∂ ln Te

∂ ln n
.

41 The curves in Fig. 68 show the contravariant radial component of the heat flux (instead of the
physical value); the comparison between the two simulations is, however, not affected.
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Starting from ρtor = 0.915, which corresponds to ρpol = 0.96 (the pedestal shoul-
der), this ratio decreases from a value of 4.37 to 1.61 for ρtor = 0.978 (ρpol = 0.99).
The total power passing a given flux surface, on the other hand, increases at first,
finds a maximum of ∼ 2.2 MW at the ρtor = 0.936 (ρpol = 0.97) flux surface, and
starts to decrease again towards the lower half of the pedestal. For our standard
flux surface at ρpol = 0.98, we find a heat transport rate of 1.38 MW. Therefore,
ETG turbulence transports about 20− 40 % of the total input power (of which a
large part heats the ions) in the region 0.91 ≤ ρtor ≤ 0.96.

For ρpol = 0.99 and the nominal profiles, we find a heat transport rate of
only 0.1 MW. Considering, however, that there is significant uncertainty regard-
ing the exact values of ηe, a scan over that parameter was also performed to ex-
amine whether the observed decrease is just due to the parameters being closer
to marginality. Indeed, the scan reveals that even for this radial position, when
increasing ηe to 2.5 (roughly the nominal value for ρpol = 0.98) by raising the
electron temperature gradient, the heat transport rate reaches again a value of
about 0.76 MW, indicating that even at lower temperatures ETG turbulence can
still contribute a relevant fraction of total transport. Nevertheless, a decrease of
the heat flux level towards the separatrix is visible. This could be an indication
that at the foot of the barrier, another turbulence type—possibly situated at lower
wavenumbers—becomes an important contributor.

A transport modeling study, focusing on heat and particle transport in the
pedestal of the DIII-D tokamak can be found in Ref. [115]. In that study, interpre-
tive transport codes were used to deduce the transport coefficients required to ex-
plain the experimental profiles. In addition, predictive transport codes, which em-
ploy analytical estimates for various turbulence types, neoclassics, as well as the
paleoclassical transport mechanism (which is theoretically disputed, see Ref. [116]
and comments), were used to match the experimental profiles. In these analyses, it
was found that a combination of ETG transport in the top part of the pedestal, and
paleoclassical transport in the lower part of the pedestal was able to achieve the
best agreement. While it is beyond the scope of this thesis to discuss the paleoclas-
sical transport mechanism, we can compare the ETG estimates of Ref. [115] to the
present results. In Fig. 69b, the radial dependence of the electron heat diffusivity
is shown in units of the gyro-Bohm diffusivity χgB = ρ2

s cs/a. In the upper part of
the pedestal, i.e. up to ρtor = 0.96, χ/χgB is roughly constant. The physical mean-
ing of this proportionality becomes obvious when noticing that χgB ∝ T3/2

e , i.e. the
turbulent diffusivity decreases strongly towards the separatrix. For the heat flux,
this leads to

Q = −nχ∇Te ∝ neT5/2
e

χ

χgB

1
LT

.

Therefore, at constant χ/χgB and constant temperature scale length LT, the heat
flux would decrease like T5/2

e towards the separatrix. In Ref. [115], it is argued
that due to this behavior, ETG turbulence is unlikely to contribute strongly to
the transport in the lower pedestal. As can be seen in Fig. 69a, however, this is not
necessarily true—Te changes by more than a factor 2 from ρtor = 0.91 to ρtor = 0.96,
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Figure 69: ETG turbulence results for different radial positions.
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while the heat flux remains at roughly the same levels. The reason for this is the
strong reduction of the profile scale length towards the edge, which thus competes
with the decreasing diffusivity. In addition, the ratio ηe = Ln/LT is found to
have a strong effect on the precise value of χ/χgB (even at the outermost position
examined, see Fig. 69b), making a general statement concerning the significance
of ETG turbulence at the bottom of the pedestal difficult, given the very sensitive
dependence on the background profiles.

6.5.2 absence of streamers

In Figure 70, a contour plot of the electrostatic potential fluctuations in the perpen-
dicular plane is shown. Interestingly, there are no clear streamer-like structures,
and the eddies appear rather isotropic. As described in Sec. 6.3.3, it is usually
assumed that streamers are a necessary ingredient to raise ETG heat fluxes to ex-
perimentally relevant levels; in contrast to this, the present simulations show that
in the edge, isotropic ETG turbulence prevails, and is able to deliver experimen-
tally relevant transport levels.

A more analytical way of measuring the degree of anisotropy is to compare the
turbulence autocorrelation lengths in the perpendicular plane. Figure 71 shows
the perpendicular correlation lengths of the electrostatic potential deduced from
simulations at the same radial positions as in the previous section. Note that here
the output from the Gene Diagnostics Tool (GDT) had to be post-processed,
as it contains the correlation lengths in the field-aligned coordinates. In order to
compare the physical lengths, the obtained radial correlation length has to be
divided by

√
gxx, while the binormal correlation length must be divided by42√

gyy—see App. A for a more detailed description of the reasons for this step. As
is obvious from Figure 71, the radial and binormal correlation lengths are almost
identical for every radial position examined, and lie between 4− 6ρe.

A likely explanation for the absence of streamers is the magnetic field geometry
at the edge: In an earlier study [27], it was shown that the appearance of streamers
is determined by the interplay of magnetic shear ŝ and the Shafranov shift parame-
ter α = −q2Rβ′, such that no streamers appear for large α and low shear, resulting
in lower heat flux. While α is indeed large in the edge due to the strong pressure
gradients, the role of magnetic shear is less clear, since it can take very large val-
ues due to the proximity of the separatrix. This issue can be resolved, however,
by examining the details of the simulation results: As is obvious from the parallel
heat flux spectra (e.g., 64a), the vast majority of the overall flux is generated in a
rather narrow parallel region close to the outboard midplane. In turn, we examine
the parallel dependence of the local shear43, given by ŝloc = ∂θ (gxy/gxx). Figure 72

shows this quantity for the examined radial positions. One can observe that the

42 Note that the division by
√

gyy is only valid at the z = 0 position, where the perpendicular
coordinate vectors are orthogonal.

43 The local shear is plotted here in terms of the straight field line angle instead of the optimized
parallel coordinate.
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Figure 70: Contour plot of the electrostatic potential fluctuations generated by ETG turbu-
lence in the perpendicular plane z = 0. The axes are plotted to physical scale,
so that the eddy shapes are realistic—the radial size of the box is, however, only
1.1ρs or 1.8 mm.
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Figure 71: Radial dependence of the radial and binormal turbulence correlation lengths
in physical units, showing statistical isotropy in the perpendicular plane.
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Figure 72: Parallel dependence of local magnetic shear for four radial positions close to
the separatrix. The edge divergence of the magnetic shear is localized around
the X-point.

edge divergence of the magnetic shear is mainly caused by the peak appearing
at the bottom of the plasma, in the vicinity of the X-point. The outboard side, on
the other hand, where the heat flux peak is found, is characterized by low or even
negative shear. This, together with the large Shafranov shift, provides a viable
explanation for the absence of streamers in the plasma edge.

6.5.3 influence of impurities and temperature ratio

Due to the proximity to the material walls, the concentration of impurities is usu-
ally significantly larger in the plasma edge than in the plasma core. As had been
shown in Sec. 2.5, in the adiabatic ion approximation the influence of the ions
only enters in the Poisson equation. For equal ion temperatures, this reduces to
the adiabatic ion parameter τ = ZeffTe/Ti, which is unity for a pure hydrogen
plasma with equilibrated electron and ion temperatures. In the local framework,
the normalized adiabatic ion Poisson equation (solved for φ, and neglecting B‖
fluctuations) can be written [25] as

φ1 =
πqen0e

´
J0

(
vTe
Ωe

k⊥
√

µB
)

g1edv‖dµ

k2
⊥λ2

D + n0e
T0e

[
1 + τ − Γ0

(
Temek2

⊥
B2

)] .

As can be seen from this form of the equation, the τ parameter directly taps into
the feedback loop of the instability, as it decreases the fields resulting from a given
density perturbation. One can therefore expect a weakening of ETG instabilities
and the corresponding turbulence by impurities and also by a large temperature
ratio Te/Ti.
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Figure 73: Dependence of electron heat flux on the adiabatic ion parameter τ. The nor-
malized heat fluxes in the graph correspond to power flows of about 1–1.5 MW
through the entire flux surface.

In the present section, the parameter τ is varied, which can be considered a com-
bined study of the influence of impurities and the electron/ion temperature ratio.
As a reference, we use the converged result for the ρpol = 0.98 flux surface with
τ = 1. In ASDEX Upgrade, the edge values of Zeff can range from 1.5–4 [117], and
the temperature ratio tends to be close to unity. For the nominal profiles of the dis-
charge studied here (#20431), the ion temperature at ρpol is almost a factor of two
larger than the electron temperature, pushing the τ parameter back towards unity.
Fig. 73 depicts the spatio-temporally averaged heat flux determined from several
nonlinear simulations with varying τ, exhibiting a rather weak dependence on the
adiabatic ion parameter.

Fig. 74 shows the radial and binormal spectra of density, electrostatic potential
fluctuations and the heat flux, where the curves for increasing τ are plotted with
an increasingly sparse linestyle. As can be seen in the figures, with increasing τ

the density fluctuations are enhanced, especially at the larger scales. The potential
fluctuation level, on the hand, decreases in the whole spectral range, which in
combination leads to a heat flux reduction mostly at larger scales. Overall, this
picture corresponds well to the simple picture drawn from the Poisson equation,
with the nonlinear modification that both density and potential fluctuation levels
change, rather than one staying fixed with varying τ.

6.6 summary

In the present chapter, microinstabilities and turbulence in the edge of an actual
ASDEX Upgrade discharge have been analyzed. In linear simulations, it was found
that an ETG instability dominates a large part of the spectrum, while the largest
scales are close to the threshold of kinetic ballooning modes. Studying further
the properties of the linear ETG instabilities, it turned out that, especially for
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(d) Binormal heat flux spectrum

Figure 74: Amplitude and heat flux spectra for varying adiabatic ion parameter τ. Solid,
dashed, dash-dotted and dotted lines correspond to τ = 0.5, 1, 2, and 3, respec-
tively.
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low ky, the modes can peak away from the outboard midplane, and even at the
top or bottom of plasma. For higher wavenumbers (kyρs & 50), the modes are
again more unstable at the outboard midplane than at other positions, and are
so strongly localized there that they can still exist in spite of the negative shear.
This strong parallel localization is reflected also in the nonlinearly generated trans-
port, and encouraged the use of the optimized parallel coordinate introduced in
Sec. 4.3. Extensive numerical convergence tests were performed to ensure an accu-
rate treatment of the turbulent system. These tests involved the radial, binormal,
and parallel resolution.

Varying the radial position about the initially studied flux surface, it was found
that ETG turbulence can generate a significant fraction of the electron heat trans-
port across the entire edge region. Towards the lower part of the pedestal, some
decrease in the heat flux was found, indicating the possibility that other turbu-
lence mechanisms take over towards the scrape-off layer. The stabilizing influence
of impurities and low ion temperature was found to be rather weak for edge ETG
turbulence.

A striking feature of edge ETG turbulence is that relatively high transport levels
were found even in absence of radially elongated streamers, which were so far
assumed to be a necessary ingredient for relevant ETG turbulence. In the edge,
however, ETGs peak preferentially around the outboard midplane, where—due to
the strong shaping—the local magnetic shear is very low, or even negative, even
though the global shear may reach large values. At the same time, the Shafranov
shift is strong in the edge due to the large pressure gradient. The combination
of both low shear and large Shafranov shift is likely to be the reason for the
suppression of streamers in the edge. While this reduces the ETG transport levels,
the smaller radial extent of the ETG structures makes this kind of turbulence more
robust with respect to global effects due to background profile variation or drive
modulation due to coexisting large-scale turbulence.



7

C O N C L U S I O N S

The primary goal of the studies presented in this thesis was to examine the physics
of plasma turbulence in transport barriers, which provide substantial improve-
ments to both energy and particle confinement in modern fusion experiments.
The description and control of transport barriers is thus a key physics problem
on the way to the efficient operation of future fusion power plants. In the present
thesis, transport barrier discharges of two different experiments were examined
in detail in the framework of gyrokinetics, which is regarded as the most com-
plete physics model of low-frequency dynamics in magnetized plasmas. The gy-
rokinetic equations were derived and discussed, and their implementation in the
plasma microturbulence code Gene was described in detail. This code was then
applied to discharges of the TCV tokamak exhibiting a core transport barrier, as
well as to a discharge of the ASDEX Upgrade tokamak featuring an edge transport
barrier. The main aspects of this work are described in the following.

7.1 summary

code development

During the present thesis work, the plasma microturbulence code Gene was en-
hanced with several features, greatly improving the ability of the code to describe
plasma turbulence in transport barriers. The nonlinear terms in the global version
of the code are now discretized using a conservative Arakawa scheme, enabling
stable nonlinear saturation even without artificial dissipation in the plane per-
pendicular to the magnetic field. In simulations which take into account kinetic
electrons, the particle transport due to E× B advection becomes finite, requiring
the inclusion of a particle source in order to maintain the initial density profile.
Therefore, two different types of Krook-type particle sources have been imple-
mented. The first one is coupled to the Krook-type heat source, so that the energy
introduced by the particle source is removed again by the heat source. This ap-
proach thus provides separate knobs to adjust particle and heat sources. The sec-
ond type of particle source is simpler, but introduces finite energy to the plasma.
Both of these sources are constructed such that the introduction of artificial fields
is avoided and that the overall parallel momentum is conserved.
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A significant improvement to both local and global simulations was achieved
by including an interface to the widely-used Efit G-Eqdsk files. These contain
a spatially resolved grid of the poloidal flux, along with profiles of the current
and the safety factor. From this information, the metric coefficients which enter
the gyrokinetic equations are generated via a field-line tracing approach. This
approach, which is implemented in both the Tracer [56] and Gist [55] codes,
was integrated directly into Gene, making the user interface very convenient and
enabling at the same time also global simulations with realistic tokamak geometry.

As the physics of transport barriers is intimately related to the shape and the
current profile of the plasma, measures were taken to overcome the challenges
arising from the geometry of the background field. In order to deal with strongly
sheared fields, the shifted metric approach was implemented for use in the global
code. This scheme employs an alternative definition of the binormal coordinate,
which results in an orthogonalization of the perpendicular grid, yielding resolu-
tion savings in the case of strong magnetic shear. For strongly shaped plasmas,
an optimized definition of the parallel coordinate was devised, which provides a
more even grid point distribution at the plasma edge and thus provides significant
resolution savings for the turbulence studies in the present thesis.

A further important feature required for many studies of realistic experimental
cases is the consideration of sheared flows of the background plasma. These terms,
which use a low-Mach-number ordering and consider both the perpendicular and
parallel components of a sheared toroidal rotation of the plasma in a co-moving
frame, were included into Gene during this work.

global simulations of electron itb plasmas

Using these improvements, the Gene code was employed to perform the most
comprehensive simulations to date of electron internal transport barriers (eITB),
which exhibit steep gradients in both the electron temperature and density, yield-
ing improved confinement properties in a significant part of the plasma volume.
Two separate discharges were studied, which differed in the character of their
plasma current profile. The first discharge had pronounced negative magnetic
shear in the plasma core, and a very steep eITB, while the second one had a
monotonic q-profile (with positive magnetic shear) and reduced confinement.

At the nominal parameters, all examined cases exhibited linearly unstable ETG
instabilities at the smallest scales, which were found to persist also in nonlinear
simulations. For the dataset with the steepest profiles, due to the presence of the
ETGs it was impossible to achieve a converged simulation of ion-scale turbulence,
unless an artificial damping term was applied to suppress the small scale turbu-
lence, indicating that ETGs are not negligible. Simulations of pure ETG turbu-
lence then revealed that when sufficiently resolved, ETG turbulence can generate
enough heat flux to easily explain the experimental values present in the barrier.
In all examined cases, the large-scale TEM turbulence remained important, but
40 % of the electron heat flux obtained for the most realistic dataset stemmed from
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ETG turbulence. This situation was found to be robust with respect to changes in
the profiles and the impurity content, leading to the conclusion that electron-scale
turbulence is a crucial component of turbulence in internal transport barriers.

etg turbulence in the plasma edge

These studies were then extended to edge transport barriers, focusing on a lo-
cal description of instabilities and turbulence in the edge of an ASDEX Upgrade
H-mode discharge. In linear simulations, it was again found that an ETG insta-
bility dominates a large part of the spectrum, while the largest scales are close
to the threshold of kinetic ballooning modes, in agreement with common models
for edge localized modes (ELMs). The strong shaping of the plasma, in concert
with the steep background gradients, leads to a strong parallel localization of
the linear instabilities, allowing for unusual spatial mode structures and placing
high resolution requirements on numerical simulations. These requirements were
subsequently examined in a detailed nonlinear convergence study, proving the
validity of the numerical description.

Low ion temperature and the presence of impurities provide, as in the ITB
simulations, a stabilizing influence on ETG turbulence, which was examined in
the framework of adiabatic ion simulations. For experimentally relevant impurity
concentrations and ion temperatures, the ETG-driven transport remained at sig-
nificant levels.

Varying the radial position about the initially studied flux surface, it was found
that, even though radially elongated streamers are absent, ETG turbulence can
generate a significant fraction of the electron heat transport across the entire edge
region. Towards the lower part of the pedestal, some decrease in the heat flux was
found, indicating the possibility that other turbulence mechanisms take over at
the foot of the edge transport barrier, where the transition to ’open’ field lines
intersecting with material plates occurs.

7.2 outlook

The prominent role of ETG turbulence in both edge and core transport barriers
raises the question of how the ion and electron scales interact in such situations.
This question can, in principle, be answered by means of simulations involving
both spatial scales at the same time, but these are very challenging computation-
ally and beyond the scope of the present thesis. To further increase the accuracy
of transport predictions for eITBs, ion temperature profile and rotation measure-
ments (which were not available for the discharges studied here) should be in-
cluded in future studies. With this additional information, it would also be feasi-
ble to conduct a global study of particle flux properties in eITB plasmas, which
could provide an important verification of the existing local quasilinear picture of
the density barrier.
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With regard to edge transport barriers, global studies are required to clarify
the role of large-scale turbulence in the pedestal. In the present thesis, ETG tur-
bulence was shown to be a viable candidate for explaining the electron thermal
transport in the edge, but the particle fluxes generated by this kind of turbulence
were much smaller than the experimental observations, indicating the presence
of residual large-scale transport. Such a study could provide further insight into
the turbulence mechanisms in the edge, and yield a valuable contribution to the
predictions of pedestal heights and widths of future large fusion experiments like
Iter and Demo.

Such applications of Gene to transport barriers would also benefit from the in-
clusion of induced rotation effects and a momentum source into the global equa-
tions. To this aim, it would be advantageous to remain in the laboratory frame, as
there is no preferred co-moving frame in the global case. The equilibrium electro-
static potential must then be retained in the equations, and modifications to the
equations would arise in the case of large angular velocities.

Apart from the tokamak studies in this thesis, Gene is also being applied suc-
cessfully to stellarator experiments. In order to treat the intrinsic non-axisymmetry
of these devices, the code has been extended (partially as a spin-off of this thesis
project) with the capability to treat the variation of the magnetic geometry on a
flux surface, while remaining local in the radial direction. By making the radial
and binormal directions interchangeable in the source code, this ’y-global’ version
of the code uses the same numerical schemes as its radially global counterpart
used in the present thesis.



A
R E M A R K S O N C U RV I L I N E A R G E O M E T RY

The purpose of the present appendix is to give the reader an overview about some
subtleties that arise when describing physics in a curvilinear coordinate system. In
such a system, the length as well as the orientation of the basis vectors are allowed
to vary spatially, which has to be taken into account when expanding the vector
operators appearing in physical equations. A detailed introduction to curvilinear
coordinates including applications to fusion research can be found in Ref. [24].

In orthonormal coordinates, a vector v can be decomposed in terms of the coor-
dinate basis vectors as

v = vi î + vj ĵ + vkk̂,

where i, j, k are the coordinate directions of the three-dimensional physical space
we consider here. In contrast to this well-known case, the basis vectors of a curvi-
linear coordinate system are in general neither orthogonal nor unit vectors, and
every vector v can be expanded in two different sets of basis vectors known as co-
and contravariant basis vectors. These expansions are given by

v = viei + vjej + vkek

v = viei + vjej + vkek.

Here, quantities with subscripts are referred to as covariant components or basis
vectors, and quantities with superscripts are their contravariant counterparts. The
two kinds of basis vectors are defined as

eµ = ∇uµ (µ = i, j, k)

eµ =
∂R
∂uµ (A.1)

with the position vector R and the coordinates uµ, and they fulfill the relationship

eµ · eν = δ
µ
ν , (A.2)

where δ
µ
ν is the Kronecker delta. The co- and contravariant metric coefficients of the

coordinate system are defined by the scalar products of the basis vectors

gµν = eµ · eν, gµν = eµ · eν.
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The covariant elements can be obtained via inversion of the contravariant metric
tensor

(
gµν

)
= J2

 gyygzz − (gyz)2 gxzgyz − gxygzz gxygyz − gxzgyy

gxzgyz − gxygzz gxxgzz − (gxz)2 gxygxz − gxxgyz

gxygyz − gxzgyy gxygxz − gxxgyz gxxgyy − (gxy)2

 .

In the last equation, we have introduced the Jacobian determinant, which is de-
fined as

J = [det (gµν)]−1/2 =
[
det

(
gµν

)]1/2 .

The elements of the covariant metric tensor are also the source of the abbrevia-
tions γ1, γ2 and γ3 which appear as a result of vector analytical operators in the
gyrokinetic equation. These expressions are given by

γ1 = J−2gzz

γ2 = −J−2gyz

γ3 = J−2gxz.

By expressing any vector relations appearing in the physical equations using the
above introduced formalism, the computation can be carried out in any coordinate
system, provided that its metric tensor is given.

a.1 field-aligned coordinates

For our purposes, we employ a set of coordinates constructed such that one of the
coordinates is aligned with the background magnetic field, while the other two
describe the physics governing the perpendicular dynamics. Usually, a Clebsch-
coordinate setup is chosen, where the magnetic field can be written as

B = C∇x×∇y,

where C is radially dependent and x and y are the perpendicular coordinates. In
Gene, these coordinates are usually defined as

x = ρ

y = Cy (q(ρ)θ − ζ) (A.3)
z = θ,

where ρ is a flux surface label, θ the straight field line angle, ζ the toroidal angle
and Cy = ρ0/q0 is a constant length, so that C has the dimension of a magnetic
field. Several types of geometry are available in Gene:

• Slab geometry (i.e. with a homogeneous background field) is used for astro-
physical applications and for comparisons to analytical results.
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• The s-α model [51] is used for basic turbulence studies in a toroidal plasma
with circular cross-section and Shafranov shift.

• The circular model, also used for basic turbulence studies, corrects theO(r/R)
inconsistencies present in s-α geometry [50], neglects, however, Shafranov
shift effects.

• Interfaces to the Chease, Efit, Gist and Tracer codes allow studies with
numerically generated MHD equilibria, which are themselves derived from
experimental measurements.

For each of these geometry types, ρ can represent different radial coordinates.
For the circular geometries, the minor radius r is used, while for the numerical
interfaces ρ = ρtor is the usual choice (while others are possible). In the s-α model,
the straight field line angle is approximated with the elementary poloidal angle,
and in the interface to Tracer, a different parallel coordinate z = ζ/q0 is used.

a.2 visualizing curvilinear geometry

As has been discussed in the last section, there are two sets of basis vectors in
curvilinear coordinates, which have very different meanings. In the present sec-
tion, we will try to give a clear and simple picture of this distinction, as well as its
application to magnetic field geometry.

From Eq. A.1, we can see that a contravariant basis vector eµ is defined as the
gradient of the coordinate uµ. By definition of the gradient vector, this basis vector
points into the direction of most strongly increasing uµ, i.e. it is perpendicular on
the surface uµ = const. On the other hand, the covariant basis vector eµ is defined
by a derivative with respect to uµ, keeping the other coordinates fixed. Therefore,
eµ defines the coordinate line of uµ.

In Fig. 75, the surfaces where ρtor = const (corresponding to the flux surfaces
that make up the radial grid in Gene) and the coordinate lines of the same co-
ordinate are shown. The covariant basis vector eρ thus follows the black dashed
lines, while the contravariant one eρ is perpendicular to the flux surfaces. As the
figure shows, in general these vectors do not point in the same direction, underlin-
ing the necessity to carefully distinguish both kinds of vectors. Taking the above
statements into account, a vector describing a displacement in field-aligned co-
ordinates is locally (at a position x0) decomposed in terms of the covariant basis
as

∆x = ∆xex + ∆yey + ∆zez.

When covering larger distances (e.g. in the radial direction for global simulations),
the variation of the basis vectors must be considered.
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Figure 75: Poloidal projection of ρtor = const surfaces (solid red lines) and ρtor coordinate
lines (dashed black lines) for various parallel positions in an ASDEX Upgrade
discharge.
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a.3 definition of wavenumbers

In the turbulence literature, terms referring to spatial quantities extracted from
numerical codes are sometimes used in a rather confusing way. For instance, the
wavenumber ky is referred to as poloidal, toroidal or perpendicular wavenumber.
Strictly speaking, all of these terms are imprecise, since the physical wavenumber
represented by a certain ky value depends on the spatial position. While this is
usually no problem in simple analytical geometry models, the situation becomes
more complex when introducing realistic geometry. In this section, an attempt is
made to clarify the relationship in general geometry.

We start from the mathematical origin of wavenumbers, the gradient vector,
which is given in three-dimensional curvilinear coordinates by

∇ = ex ∂

∂x
+ ey ∂

∂y
+ ez ∂

∂z
.

When representing the perpendicular plane in Fourier space, the perpendicular
part of the gradient operator is replaced by the respective wavenumber vector,
which is given by

k⊥ = exkx + eyky.

The perpendicular wavenumber is therefore k⊥ = |k⊥| and contains contributions
of both perpendicular directions. Note also that the position vector is defined in
terms of the coordinates and the covariant basis vectors, whereas the wavenumber
vector is defined in terms of the wavenumbers and the contravariant basis vectors.
It is, of course, possible to expand both vectors in both sets of basis vectors, but
the above expansions are the natural ones.

For analysis of the turbulent wavenumber spectra, it is useful to be able to sepa-
rate the radial and binormal contributions to k⊥. In order to derive the physically
measurable wavenumbers in these directions, we can calculate the projections of
k⊥ onto the orthonormal perpendicular basis vectors ê1 and ê2 (see also Sec. 3.3)

ê1 = êx =
ex
√

gxx

ê2 = ˆ̂b× ê1 =
1√

γ1gxx (êygxx − êxgxy) ,

with γ1 = gxxgyy − (gxy)2. The projections of k⊥ onto these vectors are then given
by

k1 = k⊥ · ê1 =
1√
gxx

(
kxgxx + kygxy)

k2 = k⊥ · ê2 =

√
γ1

gxx ky =

√
gxxgyy − (gxy)2

gxx ky.
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The above equations demonstrate that when a specific ky wavenumber is pre-
scribed for a simulation, depending on the position in the plasma, the wavenum-
ber k2 actually studied is modified by the magnetic field geometry. For traditional
s− α geometry, this metric prefactor reduces to 1, and ky remains unmodified.

On the other hand, rhe value of k1—which is the physical radial wavenumber—
is determined by both wavenumber components of k⊥, which can turn out to be a
rather undesirable property: In a sheared magnetic field, gxy has a secular parallel
dependence, and the radial wavenumbers k1 that are actually represented by a
set of

(
kx, ky

)
modes therefore also depend secularly on the parallel position. For

strongly sheared magnetic fields as they are encountered in the plasma edge, this
behavior can under certain circumstances lead to resolution problems. In such
cases, the shifted metric treatment can be introduced, removing the secular metric
dependence (see Ref. [57], and also Sec. 4.2).

To find the poloidal and toroidal wavenumbers, we calculate the projections of
the gradient operator onto the poloidal and toroidal unit vectors. The unnormal-
ized versions of the latter are given by

eζ = −Cyey

eθ = qCyey + ez,

which can be found by taking

R = ReR + ZeZ + xex + yey + zez

as the position vector. Here, the first two terms define a point of interest in the
plasma in cylindrical coordinates (R, Z) (see also Figure. 75), while the last three
terms describe small displacements from (R, Z) in the directions of the local basis
vectors. Taking derivatives of R with respect to ζ and θ (keeping the cylindrical
terms and the basis vectors fixed, and using Eq. A.3) gives the above toroidal
and poloidal basis vectors. Projecting their normalized versions onto the gradient
operator, we arrive at

êζ · ∇ = −êy · ∇ = − 1√gyy

∂

∂y

êθ · ∇ =
1
|eθ|

(
qCy

∂

∂y
+

∂

∂z

)
≈ qCy

|eθ|
∂

∂y
.

In the last step, the parallel derivative was dropped due to the parallel wavenum-
ber ordering. Using g−1/2

yy = Cy/R, the conversion of wavenumbers is given by

kζ = −Cy

R
ky

kθ =
qCy

|eθ|
ky =

qCy√
q2C2

ygyy + 2qCygyz + gzz

ky,
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with the norm of eθ given explicitly in the last equation. Obviously, the toroidal
wavenumber has a rather direct relation to the binormal one, as it is only scaled
by a constant factor and the major radius. The conversion from ky to the poloidal
wavenumber, on the other hand, contains the more complex variation of the
basis vector along the straight field line angle direction, which is affected by
shaping. In summary, since there are also shaping terms in the conversion to
k2 (the physical binormal wavenumber), the most direct relationship of ky is
to the toroidal wavenumber. Their actual values can still differ significantly, as
Cy/R = ρ0/Rq0 ≈ ε/q0, with the inverse aspect ratio ε. Therefore, in the very
core, Cy/R is small due to the small inverse aspect ratio, while towards the edge,
the safety factor can take rather large values.





B
G E N E L A U N C H E R T O O L

Besides the aim to use and improve the physical capabilities of the Gene code,
considerable effort was also dedicated during this thesis work to making the code
more easily accessible to the user. While Gene is readily portable to many plat-
forms, its increasing physical capabilities also make the user access increasingly
complex, so that there are many pitfalls in setting up the input parameters, which
Gene itself can only detect when it is executed. Therefore, errors in the parameters
are often only noticed after hours or even days of waiting in a queue. To improve
this situation, a graphical launcher tool (which can be found in the Gene root
directory under the name ’GENE-GUI.py’) has been created, which can be used to
set up the input parameters for Gene and perform plausibility checks to ensure
robust operation.

The tool itself is written in the Python 2.x language [118], which is a portable
script language that is available on many high-performance computers and oth-
erwise can be easily installed by the user. The graphical interface is implemented
using the Tkinter toolkit, which is of limited optical appeal, but also readily avail-
able since it is contained in the standard Python distribution.

The launcher tool includes many hard-wired parameter options (and plausibil-
ity checks for these), but also allows the user to define custom parameters. Up
to five (in the default Launcher setup) Gene runs can be managed at the same
time, and one-click-submission of the runs to the batch queue is possible on all
machines, using a template submit script. Figs. 76 and 77 show screenshots of
the standard launcher window and the profile setup window that is available for
global simulations. Further information on the usage of the launcher tool can be
found in the Gene documentation [119].
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Figure 76: Screenshot of the Gene launcher tool.

Figure 77: Setup of temperature and density profiles for global simulations in the Gene

launcher.
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