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Abstract

Anomalous transport in magnetically confined fusion plasmas is induced by
electrostatic and magnetic turbulence on scales of the Larmor radii of the ions
and electrons, and is responsible for the degradation of confinement, strongly
complicating the process of achieving the necessary conditions to sustain a burn-
ing plasma. The quest to understand the turbulent transport of particles, mo-
mentum, and energy in magnetized plasmas remains a key challenge in nuclear
fusion research. A basic issue being still relatively poorly understood is the
turbulent advection of energetic particles with large drift orbits and gyroradii.
Especially the interaction of fast alpha particles or ‘beam ions’ with the back-
ground turbulence is of great interest.

In this thesis, fast particles are treated as passive test particles, and the
connection between decorrelation processes (Eulerian or Lagrangian) and the
transition to a diffusive regime is shown to be crucial in describing transport
processes. To allow for a better understanding of the dependence of the parti-
cle diffusivity on the interaction mechanisms between the particle trajectories
on one hand and the spatio-temporal structure of a certain type of turbulence
on the other hand, a three step approach is applied: Numerical studies with
artificially created stream functions in simplified geometries are used alongside
analytical models, which are eventually confirmed using self-consistent gyroki-
netic simulations with the Gene code. The particle motion is initially restricted
to two dimensions and, after having studied the crucial effects there, extended
to three dimensions, where additional effects come into play.

In two dimensions (i.e. in the plane perpendicular to the magnetic field),
finite gyroradius effects are introduced using the gyroaveraging approximation
which means that the gyrating particle is replaced by a charged ring. The
Kubo number and the gyroradius are found to be crucial parameters, separating
different regimes of transport scaling. Depending on these parameters, regimes
can be found where the transport is independent of the energy, or shows a more
or less steep decline. The underlying physical mechanisms of this behavior
are identified and an analytical approach is developed which favorably agrees
with the simulation results. The investigations are extended by introducing
anisotropic structures like streamers and zonal flows as well as homogeneous
drift effects, leading to quantitative modulations of the gyroradius dependence
of the diffusion coefficient. Analytic models are used to explain these various
effects, along with numerical simulations. Furthermore, transitions from non-
diffusive to diffusive transport regimes are examined.

In three dimensions, the parallel motion of the particles along the magnetic
field lines as well as perpendicular excursions due to magnetic drifts become
important, in addition to the effects studied in two dimensions. The multi-
tude of different decorrelation mechanisms is studied and a validity condition
for ‘orbit averaging’ is obtained which is shown to be crucial for the level of



fast particle transport and directly related to the magnetic shear. Contrary to
popular assumptions, it is shown that ‘orbit averaging’ is not valid in general,
and decorrelation, i.e., the transition to the diffusive regime, occurs on perpen-
dicular, not parallel scales. Furthermore, resonance mechanisms between the
perpendicular particle drifts and the diamagnetic drifts of the bulk plasma are
observed, due to which the electrostatic transport may stay at significant levels
for particle energies up to about ten times the thermal energy of the background
plasma. For larger energies, different scaling laws – depending on the plasma
parameters and the particle energies – are derived. For electrostatic transport,
the diffusion coefficient declines with E−1, which is much slower than orbit av-
eraging would suggest. The turbulent magnetic transport, however, remains
constant even for very large particle energies in the case of a large pitch angle.
For smaller pitch angles, both the electrostatic and the magnetic transport are
modified by a factor of E−1/2. The analytical studies are confirmed by means
of nonlinear gyrokinetic simulations with the Gene code. Comparing the latter
with quasilinear simulations, one finds that it is indeed the turbulent nature
of the advecting field which is responsible for the slow decay of the particle
transport with increasing energy. The turbulent transport of energetic particles
is discussed as a candidate for explaining recent surprising experimental results
obtained by the ASDEX Upgrade experiment, finding that our models are able
to explain the observed fast broadening of the beam current.

Finally, in order to describe the transport of fast ‘runaway electrons’, the
model is extended to relativistic conditions, exhibiting strong modifications of
the scaling laws. They are shown to be able to explain the rather low levels of
diffusion found in experimental measurements of this particle species.



Zusammenfassung

Ursache des anomalen Transports in magnetisch eingeschlossenen Fusionsplas-
men ist elektrostatische und magnetische Turbulenz von der Größenordnung
der Larmorradien der Ionen und Elektronen. Sie ist verantwortlich für die Ver-
schlechterung des Einschlusses, was das Erreichen der “Zündbedingung” stark
erschwert. Das Streben nach einem besseren Verständnis des turbulenten Trans-
ports von Teilchen, Impuls und Energie in magnetischen Plasmen ist nach wie
vor eine der größten Herausforderungen der Kernfusionsforschung. Ein Schlüs-
selgebiet, welches noch immer relativ wenig verstanden ist, ist der turbulente
Transport energiereicher schneller Teilchen mit großen Driftorbits und Lar-
morradien. Besonders die Wechselwirkung von schnellen Alphateilchen oder
‘Beam’-Ionen mit der Hintergrundturbulenz ist hierbei von großem Interesse.

In dieser Dissertation werden die schnellen Teilchen als passive Testteilchen
behandelt, und es wird gezeigt, dass der Verbindung von Eulerschen oder La-
grangschen Dekorrelationsprozessen und dem Übergang in ein diffusives Regime
bei der Beschreibung des Transportes entscheidende Bedeutung zukommt. Um
ein besseres Verständnis der Abhängigkeit der Teilchendiffusivität von den Wech-
selwirkungsmechanismen zwischen den Teilchenbahnen auf der einen Seite und
der räumlichen und zeitlichen Struktur verschiedener Typen von Turbulenz auf
der anderen Seite zu erlangen, wird in drei Stufen vorgegangen: Numerische
Simulationen mit künstlich erzeugten Potentialen in vereinfachten Geometrien
gehen einher mit analytischen Modellen, die zuletzt durch selbstkonsistente gy-
rokinetischen Simulationen mit dem Gene-Code bestätigt werden. Ferner wird
die Teilchenbewegung anfänglich auf die zwei Dimensionen senkrecht zum Mag-
netfeld eingeschränkt. Nachdem dort die entscheidenden Effekte beschrieben
werden, wird die Bewegung auf drei Dimensionen ausgedehnt, und dort auftre-
tende neue Effekte werden der Beschreibung hinzugefügt.

In zwei Dimensionen wird der endliche Larmorradius der Teilchen mittels
der Gyromittelungsnäherung beschrieben, bei der das gyrierende Teilchen ein-
fach durch einen geladenen Ring ersetzt wird. Die Kubozahl und der Larmorra-
dius werden als die entscheidenden Parameter erkannt, die verschiedene Trans-
portregime voneinander scheiden. Abhängig von der Wahl dieser Parameter
werden Bereiche gefunden, in denen der Transport unabhängig von der Teilch-
enenergie ist, oder aber mehr oder weniger stark abfällt. Die zugrundeliegenden
physikalischen Mechanismen dieses Verhaltens werden identifiziert, und eine an-
alytische Beschreibung wird entwickelt, die mit den Simulationsergebnissen her-
vorragend übereinstimmt. Weiter werden der Einfluss von anisotropen Struk-
turen wie “Streamern” und “Zonal Flows” sowie homogener Driften der tur-
bulenten Strukturen untersucht, was zu quantitativen Veränderungen der Lar-
morradiusabhängigkeit des Diffusionskoeffizienten führt. Analytische Modelle
können diese zahlreichen Effekte im Wechselspiel mit numerischen Simulatio-
nen erklären. Desweiteren werden Übergänge von nichtdiffusivem zu diffusivem



Transport untersucht und beschrieben.
In drei Dimensionen kommt der Teilchenbewegung entlang der Magnet-

feldlinien sowie den Abweichungen durch die magnetischen Driften senkrecht
dazu eine besondere Bedeutung zu, zusätzlich zu den Effekten, die zuvor in zwei
Dimensionen analysiert wurden. Die Mannigfaltigkeit verschiedener Dekorre-
lationsmechanismen wird untersucht, und eine Bedingung für die Gültigkeit
der “Orbitmittelung” wird aufgestellt. Diese ist entscheidend für das Trans-
portniveau schneller Teilchen und ist eng mit der magnetischen Verscherung
des Tokamaks verknüpft. Im Gegensatz zu etablierten Annahmen stellt sich
heraus, dass das Orbitmitteln im allgemeinen ungültig ist, und die Dekor-
relation schneller Teilchen, also der Übergang ins diffusive Regime, auf Skalen
senkrecht zum Magnetfeld, nicht parallel dazu, geschieht. Desweiteren werden
Resonanzen zwischen den senkrechten Teilchendriften und der diamagnetisch-
en Drift des thermischen Plasmas beobachtet, die dafür verantwortlich sind,
dass der elektrostatische Transport bis zu Energien von etwa dem zehnfachen
der thermischen Energie auf einem signifikanten Niveau bleibt. Für größere
Energien werden verschiedene Abhängigkeiten des Diffusionskoeffizienten von
den Plasmaparametern und der Teilchenenergie gefunden. Der elektrostatis-
che Transport fällt mit E−1 ab, was immer noch sehr viel größer ist als nach
der Theorie der Orbitmittelung. Der turbulente magnetische Transport jedoch
bleibt im Falle großer Pitch-Winkel konstant selbst für sehr hohe Teilchenen-
ergien. Für kleinere Pitch-Winkel fallen sowohl der elektrostatische als auch
der magnetische Transport mit einem zusätzlichen Faktor E−1/2 ab. Die all-
gemeinen numerischen und analytischen Studien werden durch nichtlineare gy-
rokinetische Simulationen mit dem Gene Code bestätigt. Durch den Vergleich
letzterer mit quasilinearen Läufen findet man, dass tatsächlich die turbulente
Natur der Felder für den langsamen Abfall des Teilchentransports mit der En-
ergie verantwortlich ist. Der turbulente Transport energiereicher Teilchen wird
ferner als eine Möglichkeit diskutiert, kürzliche überraschende experimentelle
Ergebnisse am ASDEX Upgrade zu deuten. Die in dieser Arbeit vorgestellten
Modelle sind hierbei in der Lage, die beobachtete schnelle Verbreiterung des
durch Neutralteilcheninjektion getriebenen Stromes zu erklären.

Um den Transport schneller Runaway-Elektronen zu beschreiben, werden
die Modelle auf relativistische Bedingungen ausgedehnt, was zu einer starken
Modifizierung der Skalierungsgesetze führt. Es wird gezeigt, dass so auch die
sehr niedrigen Diffusionskoeffizienten, wie sie für diese Teilchenspezies im Ex-
periment gemessen werden, erklärt werden können.
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Chapter 1

Introduction

The aim of nuclear fusion research is to one day enable the ‘production’ of
energy by the fusion of light nuclei to heavier ones, which is possible for light
elements due to the mass defect (Fig. 1.1). Nuclear fusion is the energy source
of the stars. In the sun, for example, energy is generated by the successive
fusion of four protons to helium:

4p −→ He4
2 + 2e+ + 2νe + 2γ + 25.7MeV .

The partial reactions are:

p + p −→ D + e+ + νe

D + p −→ He3
2 + γ

He3
2 + He3

2 −→ He4
2 + 2p .

Since the weak interaction is involved in the first step, the reaction rate of
this so-called proton-proton chain reaction is small and therefore technically
not feasible under terrestrial conditions. Instead, one focuses on the reaction
(Wesson, 1997)

D + T −→ He4
2 + n + 17.6MeV .

Since only the strong interaction is involved, the cross section for that reaction
is multiple orders of magnitude larger than for the proton-proton chain. Fur-
ther, due to a quantum mechanical resonance, the deuterium-tritium reaction
is superior to other possible reactions (e.g., D-D or T-T), which is why fusion
research concentrates on that process. The maximum cross section of the D-T
reaction lies at a relative energy of 64 keV (i.e. 740×106 K). Whereas deuterium
has a natural abundance of about one in 6500 atoms of hydrogen in the oceans
of the earth, tritium does not appear naturally, since it is radioactive with a
half-life of about 12 years. However, it can be bred via the reactions

Li73 + n −→ He4
2 + T + n ; Li63 + n −→ He4

2 + T .

In order to be able to fuse, the nuclei have to overcome the Coulomb wall,
which means that their energy has to be quite high. This energy would even be
higher if the tunnel effect did not enable them to ‘tunnel’ through the barrier

1



Chapter 1. Introduction

Figure 1.1: Binding energy per nucleon vs. atomic mass. A gain of binding energy
corresponds to a loss of mass (E = mc2). Source: IPP Garching.

with a certain probability. The possible solution to energize tritium atoms with
a particle accelerator and shoot them onto a deuterium target (beam-target-
fusion) does not work in practice. It can be shown that the cross section for a
Coulomb collision with electrons is larger than for a fusion reaction by a factor
> 104. With such a small probability, more energy would be required for the
acceleration of the ions than produced by fusion.

This problem can be avoided by the generation of a very hot and therefore
ionized gas (plasma), since energy is not lost by collisions, but redistributed
between the atoms. In the thermodynamic equilibrium, the particle distribution
in velocity space is governed by Maxwell-Boltzmann statistics. Only particles
in the ‘tail’ of such a distribution are able to fuse. Three fundamental values are
decisive for the success of nuclear fusion: The temperature T has to be large,
as does the particle density n of the enclosed plasma, since in both cases, more
high-energy particles are present. Moreover, the mean energy confinement time
τE has to be large. An expression for the so-called ‘ignition condition’ is given by
the Lawson Criterion (Lawson, 1957; Wesson, 1997): nTτE > 3×1021 m−3 keV s.
The product of the three parameters has to exceed a certain value, so that
the energy gain due to nuclear fusion over-compensates the energy loss due to
radiation and convection. Strictly speaking, the value of the constant itself
depends on temperature and density of the plasma. The value given above
refers to a temperature of T = 13 keV(≈ 140×106 K).

It is obvious that under such conditions, a confinement of the plasma by mas-
sive walls is not possible anymore. The most promising and common method is
based on confinement by magnetic fields. Apart from collisions, ionized parti-
cles can be confined perfectly in the direction perpendicular to a homogeneous
magnetic field, since the Lorentz force forces them on helical trajectories about
the field lines. Parallel to the magnetic field, however, particles move freely,
so that large losses occur at the ends. The installation of so-called ‘magnetic
mirrors’ at the ends of such linear devices is not able to sufficiently reduce these
losses, for which reason this method can be excluded. For decades, the most
promising architecture is regarded to be the torus geometry, i.e. the magnetic

2



Figure 1.2: Left: Schematic view of a tokamak with toroidal coils, plasma current
and twisted field lines forming a flux surface. Right: Stellarator with
optimized field coils and a flux surface. Source: IPP Garching.

field lines are bent to a ring and therefore close in themselves, so that no end
losses can occur. However, with the torus geometry, the homogeneity of the
magnetic field has to be given up. This leads to particle drifts perpendicular to
the field lines, which means that the particles are not well confined anymore.
Since these drifts are charge separating, electric fields occur, which in turn lead
to additional drifts. In short, avoiding parallel losses leads to perpendicular
losses. Nevertheless, those losses can be completely avoided if the magnetic
field lines are twisted. Twisting leads to a poloidal rotation of the particles (in
addition to the toroidal one), which causes the drifts to cancel. There exist two
possibilities to generate the twist of the magnetic field. In the stellarator, both
toroidal and poloidal field are generated by external coils. In the tokamak (Rus-
sian abbreviation for ‘toroidal chamber with magnetic coils’), only the toroidal
field is produced by external coils, while the poloidal field is generated by the
plasma itself by inducing a toroidal plasma current. Fig. 1.2 shows both the
stellarator and the tokamak schematically. The twisted magnetic field lines are
drawn in the tokamak picture. They lie on so-called magnetic flux surfaces,
which form nested tori. The transformer coil drives the plasma current by in-
duction. It is the primary coil of a transformer, where the secondary coil is
the plasma itself. The toroidal field coils build up the toroidal magnetic field,
whereas the vertical field coils provide control of the position of the plasma
current. The ratio between the number of toroidal and poloidal cycles is called
the safety factor

q ≡ Ntor

Npol
. (1.1)

It may vary from one flux surface to another. In a circular geometry, denoting
the small torus radius with r, this variation can be described by the magnetic
shear

ŝ(r) ≡ r

q(r)

dq

dr
. (1.2)

If the ions and electrons of the plasma did not interact with each other, there
would be perfect confinement. In reality, however, collisions occur, which are
responsible for the so-called ‘neoclassical’ transport across magnetic flux sur-
faces (Wesson, 1997). Experimentally, however, much larger values are found

3
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for the transport coefficients than can be explained by collisional transport.
This highly increased transport is called anomalous transport in plasma physics
(in contrast to other fields, where ‘anomalous’ is a synonym for ‘non-diffusive’).
According to our present knowledge, the anomalous transport is caused by low-
scale, turbulent fluctuations of a number of plasma parameters (Liewer, 1985;
Wesson, 1997). Density and current density fluctuations induce fluctuations
in the electric and magnetic fields, which in turn deflect the particles from
their unperturbed orbits. The fluctuations themselves are generated by several
microinstabilities, which are driven by the strong density and temperature gra-
dients between the core and the edge of the plasma. The turbulent anomalous
transport and, as a result, the reduced energy confinement time, constitute one
of the main problems of nuclear fusion research and are by no means completely
understood.

Turbulence is a collective phenomenon, and therefore magnetohydrodynamic
or kinetic models have to be used to describe its formation. However, the com-
plexity of such self-consistent models may obstruct the view onto the funda-
mental processes which govern the behavior of certain quantities. Given the
fact that the characteristics of the turbulent fields are more or less known –
whether it be from self consistent simulations or from experimental measure-
ments – passive test particles can be introduced to measure their transport and
mixing properties, as well as their influence on further (diluted) particle species.
In doing so, the passive tracer approach enables not only the performance of nu-
merical simulations, but also allows for clear interpretations and even analytical
predictions.

The topic of this work is the diffusion of fast test particles like alpha particles
and ‘beam ions’ (ions accelerated and shot into the plasma for heating purposes)
in plasma core turbulence. Whereas the former will become important espe-
cially in a future burning plasma, the latter are already relevant in present
experiments. These fast particles can be treated as test particles for two rea-
sons: First, their dilution is strong enough so that a relevant back-reaction onto
the bulk plasma does not occur. This can be shown by comparing test particles
with self-consistent simulations. And second, the orbits of fast particles in the
tokamak are quite distinct from the ones of thermal particles, which is another
justification for treating them separately.

On the basis of the test particle model, the work underlying this thesis has
brought new insights concerning the understanding of the interaction between
energetic particles with the background plasma core turbulence, as well as the
general influence of the scales and structures of turbulent vortices on the trans-
port properties. While this work deals with the turbulent transport in toka-
maks, applications of the developed models to astrophysics are also possible,
showing their universality.

The remainder of this thesis is organized as follows: In Chapter 2, a compre-
hensive introduction to the basic concepts underlying this work is given. Among
these are particle orbits in a tokamak, plasma turbulence, field aligned coordi-
nates, the concept of diffusion, and the general influence of turbulent structures
on particle orbits. This chapter is also thought to be a suitable introduction
to the topic for beginners. Chapters 3 to 5 start with the simplified model of
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electrostatic turbulence in two dimensions, i.e. in a plane perpendicular to the
magnetic field. Although not all of the results will carry over to the full three
dimensional study, important concepts are developed which are then extended
in the following chapters. In Chapter 3 the influence of finite gyroradii onto the
particle transport in 2D isotropic electrostatic turbulence is studied. Analytical
models are derived and compared to numerical studies, and two times two dis-
tinct regimes of transport are found. In Chapter 4, the results of the antecedent
chapter are generalized, including anisotropic structures and drifts of the tur-
bulent structures. New regimes of transport are found and studied analytically
and numerically. In Chapter 5, emphasis is put onto the question under what
conditions transport actually may become diffusive. Only for intermediate time
scales, non-diffusive regimes are found.

In Chapters 6 to 10, the 2D approach is extended, and the full particle motion
and turbulent interaction in the 3D torus is investigated. In Chapter 6, the
interaction of fast particles with electrostatic turbulence is studied numerically,
and analytic models are developed which are found to be in excellent agreement
with the simulations. Specifically, scaling laws are developed which predict the
energy dependence of the diffusion coefficient for a number of different regimes.
In Chapter 7, the studies of the preceding chapter are extended to magnetic
turbulence. Using a similar analytical model, transport regimes and scaling
laws are established for this case. Most notably, it is found that for large
energies, the magnetic transport may exceed the electrostatic one. In Chapter
8, the results of the electrostatic and magnetic transport studies are connected
to experimentally relevant situations and compared to recent observations in
the Garching-based tokamak ASDEX Upgrade. It is found that the model
developed in Chapter 7 is able to explain some surprising experimental results.
Chapters 6 to 8 form the center of this thesis. Chapter 9 – which can be thought
as an excursus, since it does not belong to the step by step structure of this
thesis – deals with the question of how thermal electrons are transported by
plasma turbulence. Since the large energy limit does not hold for those particles,
distinct decorrelation mechanisms are found and explained. In Chapter 10 the
insights of Chapter 7 are extended to fast ‘runaway electrons’. Since relativistic
effects have to be included for this particle species, the scaling laws have to be
modified. A new quantitative connection between the diffusion coefficient and
the magnetic turbulence amplitude is found, being able to re-interpret some
previous experimental measurements. The thesis concludes with a summary of
the key results, along with an outlook on possible connections to astrophysics
in Chapter 11. Appendix C provides a list of some of the physical abbreviations
used in this work.
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Chapter 2

Theoretical Background

In this chapter, a theoretical background is given which is essential for the
understanding of the subsequent chapters. Basic effects of turbulence, parti-
cle transport, and the concept of diffusivity are explained under the special
geometric conditions in a tokamak.

2.1 Motion of charged particles in magnetic and elec-

tric fields

First, fundamental particle drifts are discussed, which are caused by both the
magnetic field inhomogeneity in a tokamak, and by possible perturbations due
to electric or magnetic field fluctuations. Whereas the latter are responsible
for the anomalous transport in fusion plasmas, the former will turn out to be
important as well in order to understand the various interaction effects between
particle orbits and turbulent structures.

2.1.1 Lorentz force

The motion of a charged particle with mass m and charge e is governed by the
following system of coupled differential equations of first order:

ẋ(t) = v(t),

v̇(t) =
e

m
(−∇φ(x, t) + v(t) ×B(x)) . (2.1)

The electrostatic potential is denoted by φ, and B is the magnetic field. In
the case of a homogeneous magnetic field, the differential equation system can
easily be solved. For B ≡ Bez, a possible solution is

x(t) = x0(0) +
v⊥
Ωg

sin(Ωgt+ ϕ0) (2.2)

y(t) = y0(0) +
v⊥
Ωg

cos(Ωgt+ ϕ0) (2.3)

z(t) = z(0) + v‖t . (2.4)

7



Chapter 2. Theoretical Background

v⊥ and v‖ are the initial velocities perpendicular and parallel to the magnetic
field, respectively, and the initial coordinates for the center of gyration, de-
noted by the subscript ‘0’, have been introduced for simplicity. Further, the
gyrofrequency and the gyroradius (or Larmor radius) can be introduced:

Ωg ≡ eB

m
; ρg ≡ v⊥

Ωg
=
mv⊥
eB

. (2.5)

In such a configuration, the particles are confined perpendicular to the magnetic
field, whereas they move freely in the parallel direction.

2.1.2 Magnetic and electric drifts

This subsection partially follows (Chen, 1984) and (Wesson, 1997), where the
following derivations can be studied in more detail. It is assumed that the Lar-
mor radius is sufficiently smaller than the variation scales of the magnetic field
(ρg|∇⊥B| � B), and that temporal variations of B are significantly smaller than
the gyrofrequency (|∂B/∂t| � ΩgB). The same argument applies to electric
fields. Under those assumptions, the gyration of the particle can be decoupled
from the motion of the gyrocenter.

Drift by a force perpendicular to B

We assume an additional force acting on the particle, which can be expressed
by the equation

mv̇(t) = F + ev ×B . (2.6)

Forming the scalar product of Eq. (2.6) with B leads to

mv̇‖ = F‖ . (2.7)

Taking the cross product of B with Eq. (2.6), and using the identity (v×B)×
B ≡ −B2v⊥, we find mv̇ ×B = F×B − eB2v⊥, and thus

v⊥ =
F×B

eB2
− m

eB2
v̇ ×B ≡ F×B

eB2
− ρ̇g . (2.8)

Since we can identify the last term with the time derivative of the vector of
the gyroradius (measured from the gyrocenter), Eq. (2.8) describes a superpo-
sition of the ordinary gyration with a constant drift perpendicular to both the
direction of the magnetic field and to the force. Since we are not interested
in the gyration for the moment (it does not contribute to the perpendicular
transport), we can write the drift as

vD =
F×B

eB2
. (2.9)
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2.1. Motion of charged particles in magnetic and electric fields

E×B drift

The additional force acting on the particle can be caused by an electric field,
F = eE = −e∇φ. Inserting this expression in Eq. (2.9), we find

vE =
E×B

B2
= −∇φ×B

B2
, (2.10)

the so-called E×B drift. Interestingly, this drift does only depend on the field
strengths, not on mass or charge. Once more we want to stress the fact that
this expression is only valid if the electric field may be assumed as homogeneous
over the distance of the Larmor radius of the particle, and if the variation fre-
quency of the field is on a smaller scale than the gyrofrequency.

Curvature drift

In a tokamak, the magnetic field lines are not straight anymore (see Fig. 1.2).
A particle following the curved field lines thus feels a centrifugal force Fc =
(mv2

‖/R
2
c)Rc, where Rc is the radius of curvature. In the absence of currents,

∇×B = 0 and it can be shown that Rc/R
2
c = −∇B/B. Inserting the expression

for the centrifugal force in terms of the magnetic field into Eq. (2.9), we obtain

vcurv =
mv2

‖

eB3
(B ×∇B) . (2.11)

In reality, we have ∇ × B 6= 0, since the poloidal component of the magnetic
field in the tokamak is created by a plasma current. A detailed calculation leads
to a modified expression for the curvature drift (Littlejohn, 1983):

vcurv =
mv2

‖

eB3

[

B×∇B +B∇×B − B

B
(B (∇×B))

]

. (2.12)

Grad-B-drift

In the derivation of the curvature drift, we have only regarded the effect of the
centrifugal force caused by the curvature of the field lines. However, a curvature
of a magnetic field always is accompanied with a gradient of the absolute value
of B. The component ∇⊥B is the source of an additional drift. Once more, we
first search for an expression for the mean force acting on the particle. Here,
the Lorentz force turns out to be important. In a homogeneous magnetic field,
the expression FL = ev × B vanishes, if averaged over one gyration. In an
inhomogeneous field, this is not the case anymore. Under the assumption of a
constant magnetic field gradient, we can write B = B0 + (x · ∇)B. Averaging
over one Larmor orbit, we find 〈FL〉 = ∓1

2ev⊥ρg∇B (Chen, 1984). Inserting
this expression into Eq. (2.9), we obtain

v∇B = ±1

2
v⊥ρg

B×∇B
B2

= ±1

2

mv2
⊥

eB3
(B×∇B) . (2.13)

9



Chapter 2. Theoretical Background

This expression can be illustrated taking into account that the gyroradius is
larger on the low field side, but smaller on the high field side of the inhomo-
geneous field. This results in a 2D spiral trajectory, drifting perpendicular to
both the magnetic field and its gradient.

Invariance of the magnetic moment

The magnetic moment of a particle is defined as:

µ ≡ mv2
⊥

2B
. (2.14)

According to (Landau & Lifshitz, 1960), the action I ≡
∮

p dq = const under
an ‘adiabatic’ change of the state variable λ (dλ/dt � λ/Tg), where Tg is the
gyration period. In our case, we have

I =

∮

p dq =

∮

(mv + eA) dq = mv⊥2πρg + e

∫

S
(∇×A)dS (2.15)

= 2πm2v2
⊥/(eB) + eπρ2

gB = 3πm2v2
⊥/(eB) = const .

This is the invariance of the magnetic moment,

µ = const , (2.16)

under the assumption that ∂B/∂t � ΩgB. In (Kaufman, 1972) it was shown
that the adiabatic invariance of the magnetic moment can be broken if the
mode frequency of a perturbation (magnetic or electric) gets resonant with a
harmonic of the gyrofrequency. However, this is not the case in a tokamak,
which is why the magnetic moment is conserved. In Chapter 6, the existence
of two more adiabatic invariants is discussed, which are not conserved anymore
in the presence of fluctuating fields.

Mirror force

The magnetic field gradient may not only point into the direction perpendic-
ular to the field, but also in the parallel direction (∇‖B 6= 0). In that case, an
additional effect occurs, which can be understood by means of the invariance
of the magnetic moment. From Eqs. (2.14) and (2.16) follows that if the mag-
netic field increases, v⊥ must increase, too, which in turn means that v‖ has to
decrease, since the kinetic energy of a particle is conserved in static magnetic
fields (which we assume). So, there must be a force antiparallel to B. Writing
v2
‖ = v2

0 − 2Bµ/m and using the total derivation d/dt = ∂/∂t + (v · ∇), we

obtain v̇‖ = −µ(v‖·∇)B

mv‖
= − µ

m∇‖B. So we can write the corresponding ‘mirror

force’ as

F‖ = −µ∇‖B . (2.17)
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2.1. Motion of charged particles in magnetic and electric fields

Equations of motion for the gyrocenter

Now we can combine theE×B drift (Eq. (2.10)), the curvature drift (Eq. (2.12)),
the grad-B drift (Eq. (2.13)), and the mirror force (Eq. (2.17)) to a new system
of equations of motion:

dX

dt
= v‖ +

B

B∗
‖







µ

eB2
B ×∇B

︸ ︷︷ ︸

v∇B

+
mv2

‖

eB3

[

B ×∇B +B∇×B − B

B
(B (∇×B))

]

︸ ︷︷ ︸

vcurv

− ∇φ×B

B2
︸ ︷︷ ︸

vE







,

dv‖

dt
=

1

mv‖

dX

dt
· (−e∇φ− µ∇B) . (2.18)

In addition to the foregoing derivations, a prefactor B/B∗
‖ has been added,

with B∗
‖ = B + mv‖/(eB

2)(∇ × B) · B. It can be derived by a more exact
disquisition, and is necessary to exactly preserve the Hamiltonian properties of
the system (Littlejohn, 1983). However, the numerical simulations in Chapter 6
will show that this prefactor is negligible as long as the particle energies are
not too high. Whereas in a tokamak, electric fields only exist on small scales
(due to macroscopic quasi-neutrality), the magnetic field can be divided into
a macroscopic static part (generated by the coils and the plasma current) and
into small scale turbulent fluctuations. Denoting the small scale turbulent part
with a tilde, we can express this as φ = φ̃(x, t), B = B0(x) + B̃(x, t).

Finally, it should be emphasized once more that the terms in Eq. (2.18) were
derived under the following conditions:
1. The gyroradius of the particle is smaller than typical fluctuation lengths of
E and B: ρg|∇⊥B| � B and ρg|∇⊥E| � E. If we denote the perpendicular
correlation length of the field variations with λ⊥, we can write this as ρg � λ⊥.
2. The time variance of the fields is on a larger scale than the gyro frequency:
|∂B/∂t| � ΩgB and |∂E/∂t| � ΩgE.
Whereas the second constraint is always fulfilled for any kind of turbulence in
a tokamak, the first one is not. For energetic particles, the gyroradii as well as
the global orbits can become larger than the scales of the electric as well as the
magnetic fluctuations. One possible solution for this problem will be treated in
Section 2.1.4.

Although Eq. (2.18) looks more complicated than the original equations of
motion, Eq. (2.1), it provides a number of fundamental simplifications, which
only allow us to continue studying the problem of test particle transport in
detail. Those are:
1. The particle motion is split into a motion parallel, and drifts perpendicular
to the magnetic field. This is of special importance, since turbulence tends to
align along the magnetic field lines, and it is especially the perpendicular drifts
which are decisive for the interaction effects.
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Chapter 2. Theoretical Background

2. The gyration of the particle is completely excluded. This simplifies both
numerical computational effort, and theoretical modeling.

2.1.3 Diamagnetic drift

In the last subsection, we have treated drifts on the basis of a single particle
approach. However, there are drifts which only exist in the fluid picture. Al-
though this picture is not relevant for this study of test particles, one important
effect shall be described briefly, since it dominates the background plasma, and
therefore indirectly the interaction with tracers. In the fluid description of a
plasma, a simple equation of motion can be proposed as follows:

nm

(
∂v

∂t
+ v · ∇v

)

= en (E + v ×B) −∇p . (2.19)

n and v are the particle density and the mean velocity of a fluid element, and
p is the plasma pressure. Neglecting the inertial term on the left hand side,
multiplying the equation by ×B, and using the identity B× (B×v) = −B2v⊥,
we arrive at:

vD =
E×B

B2
+

∇p×B

enB2
. (2.20)

Whereas the first term on the right hand side is the E×B drift, which we
already know, the second term is new and exists only in the fluid description.
It is called the diamagnetic drift (Chen, 1984)

vd =
∇p×B

enB2
=
κT∇n×B

enB2
, (2.21)

where κ is the heat capacity ratio and T the plasma temperature (with the
dimension of an energy). Because of the existence of a density gradient, a
net drift results from the gyration of the particles, although the gyrocenters
itself keep at rest. Since in a tokamak, B points (mainly) in the toroidal direc-
tion, whereas ∇n is radial, the diamagnetic drift is poloidal and may lead to a
poloidal rotation of the whole plasma. Since this effect does not affect single
test particles, there is a poloidal motion of the plasma background relative to
a single particle, which fundamentally influences the transport, as will become
important in Chapter 4 and the following chapters.

2.1.4 Gyroaveraging

Deriving the equations of motion in the gyrocenter limit (Eq. (2.18)), we have
stressed the fact that they are only valid in the case of almost homogeneous
fields (E×B drift, curvature drift), or homogeneous gradients (grad-B drift)
over the range of a Larmor radius. If the respective field values are fluctuating
on that range, this constraint is not fulfilled anymore.

In a tokamak, the particle drifts are always much smaller than the particle
velocity (vE,∇B,curv,d � v). This means that the Larmor orbit of a particle can
still be assumed as circular in a good approximation. The idea of ‘gyroaveraging’
is to average the fields over one gyration period, and then to replace the fields in

12



2.1. Motion of charged particles in magnetic and electric fields

Eq. (2.18) by new ‘gyroaveraged’ values, so that the structure of the equations
of motion keeps the same. For the electrostatic potential, averaged over one
gyroorbit, we write

〈φ〉(x0) =
1

2π

∮

dϕφ(x0 + ρg(ϕ)) , (2.22)

where x0, denotes the value of the center of gyration, and ρg is the gyroradius
vector pointing from x0 to the particle position, depending on the angle ϕ which
runs from 0 to 2π. Rewriting this expression as a sum of discrete Fourier modes,
we get

〈φ〉(x0) =
1

2π

∮

dϕ
∑

k

φke
ik·(x0+ρg(ϕ))

=
∑

k

φke
ik·x0

1

2π

∮

dϕeik·ρg(ϕ) . (2.23)

Setting k · ρg(ϕ) = kρg sinϕ, the integral can be solved (Bronstein & Semedja-
jew, 2000; Gradshteyn & Ryzhik, 1994):

1

2π

∮

dϕ eikρg sin ϕ = J0(kρg) . (2.24)

Here, J0 is the Bessel function of order zero. In fact, Eq. (2.24) is often used to
define the Bessel function. Going back to Eq. (2.23), we can write

〈φ〉(x0) =
∑

k

φk e
ik·x0J0(kρg) . (2.25)

This so-called gyroaveraging approximation can be found in the literature, e.g.,
in Ref. (Naitou et al., 1979) or (Frieman & Chen, 1982).

The approximation is to replace the electrostatic potential in the drift ap-
proximation (Eq. (2.18)) by the new, gyroaveraged potential. The structure of
the equations therefore remains unchanged. Instead of 〈φ〉, we will denote this
new potential with φeff in the following. For the magnetic field fluctuations,
the same mechanism can be applied, in general. In the following chapters, we
will deal with the question how exactly gyroaveraging modifies the structure
and amplitude of electrostatic fluctuations, and how in turn this influences the
particle transport.

We now have to ask under which conditions the gyroaveraging approxima-
tion is valid. We can state two conditions:
1. The potential must not vary substantially in time during one gyroorbit time.
This leads to the condition |∂B/∂t| � ΩgB and |∂E/∂t| � ΩgE, which is the
same than for the pure gyrocenter approximation. Typical values for tokamak
core turbulence are Ωg ∼ 108 s−1 and |∂E/∂t|/|E| ∼ 104 s−1, so that this con-
dition is always fulfilled.
2. For the gyrocenter motion, we have had the condition that the potential
variation has to be small over the distance of one gyroorbit. This condition is
not necessary anymore. Now the potential variation has to be small over the
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Chapter 2. Theoretical Background

distance of the Larmor orbit shift after one gyration, which is much shorter.
This is because it is the shift which leads to a deviation from the assumed cir-
cular gyroorbit. If we denote the variation of the potential with the correlation
length λ⊥, we can write this condition as vDTg = 2πmvD

eB < λ⊥. Interestingly,
this validity expression is independent of the particle velocity v, and therefore,
for constant B, of the gyroradius. This means that gyroaveraging can be valid
for gyroradii much larger than the fluctuation lengths of the fields. Typical
values for core turbulence in a large tokamak are vD ∼ 103 m/s, Tg ∼ 10−8 s
and λ⊥ ∼ 10−2 m, so that this second condition is clearly fulfilled, too.

So we can summarize that gyroaveraging is, under the conditions in plasma
core turbulence, always possible. In the remainder of this thesis, this fact will
always be presupposed, so that the full Lorentz dynamic as given in Eq. (2.1)
is not needed anymore.

2.1.5 Particle orbits in a tokamak

For the moment, we want to neglect all small scale perturbations and there-
fore set φ = 0, B = B0(x). According to Eq. (2.18), there is a magnetic drift
perpendicular to both the magnetic field lines and the direction of their gradi-
ent. In a pure toroidal field, this drift would hinder confinement. However, as
was already mentioned in the introduction, the twist of the magnetic field lines
(i.e. the generation of an additional poloidal field component) is able to compen-
sate this effect. In this section, the reasons for this behavior are explained, and
the detailed form of the unperturbed particle trajectories is studied. In order
to distinguish two distinct sorts of particle orbits, we introduce the so-called
pitch angle

η ≡
v‖

v
=

√

1 − v2
⊥

v2
. (2.26)

Passing particles (η → 1)

First, we concentrate on particles with a large pitch angle. Since their mag-
netic moment is small, the mirror force (Eq. (2.17)) is negligible, and the parallel
velocity component is approximately constant. As can be seen from Fig. 1.2
(left), the twisted field lines cover so-called magnetic flux surfaces. For the
moment, we want to assume their cross section to be circular. We now use
cylindrical coordinates (R, z, ζ), as illustrated in Fig. 2.1. Since the magnetic
field in a tokamak is axisymmetric, the coordinate ζ can be ignored. The sum
of the drifts is now vD = vcurv + v∇B , and, since B ≈ Beζ and ∇B ≈ |∇B|er,
we can approximate vD ∝ ez. So we can formulate the following equations of
motion (Wesson, 1997):

dR

dt
= ωpolz;

dz

dt
= −ωpol(R−R0) + vD . (2.27)

The poloidal frequency is ωpol ≈ v‖/(qR0), where q is the safety factor defined
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2.1. Motion of charged particles in magnetic and electric fields

Figure 2.1: Cylindrical coordinates (R, z, ζ) and torus coordinates (r, θ, ζ) for a
tokamak. The minor axis is also called the magnetic axis. Source:
(D’haeseleer et al., 1990).

by Eq. (1.1). The solution of the differential equation is

(

R−R0 −
vD

ωpol

)2

+ z2 = const , (2.28)

which means that the center of the circular orbit in the R− z plane is displaced
from the center of the flux surface, resulting in a maximal variance of ∆r =
2vD/ωpol = 2qvDR0/v‖. So, it is due to the twist of the magnetic field lines
that the magnetic drifts lead only to a shift of the particle trajectories, but not
to a constant drift across the flux surfaces. In Chapter 6 it will be shown that
this shift is an important issue in the interplay between fast particles and the
plasma turbulence, which is responsible for a certain transport behavior. In
addition to the radial shift, it is found that the magnetic drifts are responsible
for a drift with constant velocity in the ζ direction, which we will denote by
vy (the y coordinate is introduced in Section 2.3.2). It is important to note
that this drift is additional to the parallel velocity component just following
the magnetic field lines, so that the particles move away from their initial field
line with this velocity. A derivation draft of vy is given in Chapter 6. Using
|∇B| = B/Rc ≈ B/R0 (Rc is the local radius of curvature) together with
Eq. (2.26) and η → 1, we approximate the magnetic drift vD = vcurv + v∇B by

the expression vD ≈ mη2v2

eBR0
. So we can write the particle orbit circulation time

and the maximal radial derivation from the magnetic field line as

Torbit =
2πqR0

ηv
; ∆r =

2ηqmv

eB
. (2.29)

For the toroidal y (ζ) drift away from the field lines, the approximation

vy =
mη2v2ŝ

eBR0
(2.30)
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Figure 2.2: Particle orbits for different pitch angles. Blue: η = 0.99, green: η = 0.3,
red: η = 0.1, black: magnetic field line. q = 7/5, i.e. the magnetic
field lines close after 5 toroidal turns. Left: Top view of the torus and
trajectories. Right: The same trajectories in the R− z plane.

can be given (see Chapter 6). Here, the magnetic shear defined in Eq. (1.2)
was used. A finite shear means that the safety factor changes with the torus
coordinate r. This is the reason why the toroidal components of the magnetic
drifts, caused by the poloidal component of the magnetic field, do not compen-
sate exactly anymore, and a toroidal shift remains after one poloidal orbit.

Trapped particles (η → 0)

For particles with a small pitch angle, distinct orbits exist. Since their par-
allel velocity is small, but their magnetic moment is large, the mirror force
(Eq. (2.17)) is strong and is able to reflect a particle travelling along the field
lines from the outboard (low field) side to the inboard (high field) side. It
bounces back and forth on a magnetic field line. Apart from this very distinct
behavior compared to the passing particles, the trapped particles show simi-
lar effects. Their trajectory shows a radial shift away from their initial field
line, and they drift in the toroidal direction with a constant drift velocity. We
restrict on presenting the results for their orbits:

Torbit =
23/2πqR0
√

ε(1 − η2)v
; ∆r =

2ηqmv

eBε
(2.31)

vy =
m(1 − η2)v2

2eBR0
.

A derivation for the first expressions can be found in (Wesson, 1997), whereas
vy ≡ vζ is further discussed in Chapter 6. The inverse aspect ratio of a given
magnetic surface is defined as

ε ≡ r/R0 . (2.32)

Trajectories for passing and trapped particles are shown in Fig. 2.2 in two
views, a 3D view onto the torus and a 2D view onto the R− z plane. In the left
hand figure, passing and trapped particle orbits can be distinguished, and for
both the axial drift can be observed. On the right hand figure, the deflection
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2.2. Plasma turbulence

of both orbits from the original flux surface is evident. Due to their form, the
trapped particle orbits are often called ‘banana orbits’.

For clarification, it shall be noted that the word ‘trapped’ is imposed with
a double meaning. Apart from the magnetic trapping effect described here, a
particle can be trapped by a turbulent vortex, e.g. of the electrostatic potential.
‘Vortex trapping’ however, only affects the turbulent particle motion perpen-
dicular to the magnetic field lines. This effect is described later in Sec. 2.6.1.

When is a particle trapped or passing?

We have just learned that passing orbits for large pitch angles and trapped
particles for small pitch angles are fundamentally distinct. Now the question is:
What is the value of the pitch angle η1 which divides those two regimes, and
how many particles are trapped or passing in a tokamak?

At a mirror point, v⊥ ≡ v. For a particle starting with a pitch angle η1 at a

field strength B1 and being reflected at a field strength Bmax,
(1−η2

1)v2

B1
= v2

Bmax

follows from the conservation of energy and magnetic moment. So in that case,
all particles with η1 <

√

1 −B1/Bmax are reflected at the high field side of
the tokamak and therefore trapped on the outboard side. We may assume
B(R) ∝ 1/R (recall Fig. 2.1 for the definition of R). A particle starting at
R1 can reach a maximum field strength of Bmax = B1R1/(2R0 − R1) on its
flux surface so that the trapping criterion becomes η1 <

√

2 − 2R0/R1. For
R0/R1 = 0.875 for example, η1 < 0.5. Towards the core, less particles are
trapped, whereas η1 is increased on outer flux surfaces.

Assuming an isotropic distribution, a possible expression for the total frac-
tion of trapped particles on a certain flux surface is (Wesson, 1997)

ftrapped =

√
2r

R0 + r
=

√

2ε

1 + ε
. (2.33)

This means that for instance that for ε = 0.14, 50% of the particles are trapped.

2.2 Plasma turbulence

Turbulence is a very general phenomenon, which is neither fully understood,
nor easy to define precisely. According to (Hinze, 1959), “turbulent fluid mo-
tion is an irregular condition of flow in which the various quantities show a
random variation with time and space coordinate, so that statistically distinct
average values can be discerned”. It is the existence of average values of various
quantities (like temperature, amplitude, correlation lengths and times), which
only makes the turbulent motion accessible to a mathematical treatment. The
source of energy for driving the turbulence “lies either in the non-Maxwellian
nature of the distribution functions in velocity space, or in the spatial gradients
of the density or temperature of locally Maxwellian distributions.” Although it
has been known for decades that small scale turbulence must be responsible for
the anomalous transport in fusion plasmas (Liewer, 1985), experimental mea-
surements of the fluctuations have been and are still quite difficult to establish
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Chapter 2. Theoretical Background

Figure 2.3: Turbulence in a tokamak, simulated with Gene. Shown is the electro-
static potential. A strong elongation along the magnetic field lines can be
observed, as well as typical structures perpendicular to the field. Picture
generated by Moritz Püschel and Klaus Reuter.

(see, e.g., (Conway, 2008)). Instead, progress in the understanding and predic-
tion of plasma microturbulence has been achieved most notably by numerical
simulations. In the research group of Frank Jenko at the IPP Garching, the
gyrokinetic Vlasow code “Gene” is used to study the creation, development
and saturation of distinct kinds of turbulence. In principle, the code solves the
gyrokinetic version of the nonlinear Vlasov equation

df

dt
=
∂f

∂t
+ ẋ · ∇f + v̇ · ∇vf (2.34)

for the distribution function f(x,v, t), coupled with the field equations, which
are derived from Maxwell’s equations (Hahm, 1988; Hahm et al., 1988; Brizard,
1989). This is done on a fixed grid in five-dimensional phase space (plus time),
keeping the (average) profile gradients fixed. This section shall give a brief
overview on three distinct kinds of turbulence which can be found that way,
since although this work does not deal with their evolution, the influence of
their spatial and temporal structures will turn out to be of great importance.
For further information about the Gene code and plasma microturbulence,
see (Jenko et al., 2000) and (Dannert & Jenko, 2005), or the PhD theses of
(Dannert, 2005; Merz, 2008; Pueschel, 2009; Görler, 2009).

2.2.1 General overview on plasma turbulence in a tokamak

Fig. 2.3 shows typical turbulent structures in a tokamak. The free motion along
the magnetic field lines manifests itself in the parallel elongation of the turbu-
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2.2. Plasma turbulence

Figure 2.4: ETG turbulence in a plane perpendicular to the magnetic field. The
lengths are normalized to the thermal electron Larmor radius, ρe =√

Teme

eB . Data generated with Gene.

lent structures, whereas the correlation lengths in the perpendicular directions
are much shorter. The parallel correlation lengths are in the range of a poloidal
connection length of a magnetic field line, λ‖ ∼ 2πqR0, whereas the perpendic-
ular lengths are of the order of a thermal particle gyroradius, λ⊥ ∼ ρth.

This feature of the fluctuations enables us to consider the interaction of fast
particles with the turbulent vortices - in a first approach - as a dominantly 2
dimensional phenomenon.

In the following, three turbulence modes are introduced, distinct by their
drive as well as the dominant scales. For all Gene simulations referred to in
this work, double periodic boundary conditions are used, which are adequate if
the box lengths are sufficiently larger than the vortex lengths.

2.2.2 Electron temperature gradient (ETG) driven turbulence

ETG turbulence is driven by the gradient of the electron temperature. In
general, gradients in a tokamak are extremely strong, since the ion or electron
temperature decreases from up to 100 million Kelvin to a few 1000 Kelvin at
the edge. Fig. 2.4 shows a contour plot of the electrostatic potential of ETG
turbulence. The coordinates x and y are so-called field aligned coordinates and
will be defined in the next section. For the moment, we may regard them as
perpendicular directions to the magnetic field. Typical for ETG turbulence is
the formation of radially elongated vortices, so-called streamers. The elongation
can be directly observed in Fig. 2.4, but also in the plot of the autocorrelation
function in Fig. 2.5, since it is a statistical value, too. On the right hand side of
Fig. 2.5, a spatiotemporal plot of the autocorrelation is shown. In this diagram,
not only the spatial and temporal decorrelation can be observed, but also the
fact that the vortices are moving into the y direction before they decay. This
is due to the diamagnetic drift (Section. 2.1.3). In the Chapters 4 and 5, the
influence of streamers and the diamagnetic drift on test particles will be studied
in general, whereas in Chapter 9, ETG turbulence is examined in particular.
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Chapter 2. Theoretical Background

Figure 2.5: Left: Spatial (xy) autocorrelation function of the ETG potential of
Fig. 2.4. Right: Spatiotemporal (yt) autocorrelation function.

Figure 2.6: ITG turbulence in a plane perpendicular to the magnetic field for different
simulation parameters. The lengths are normalized to the thermal ion

Larmor radius, ρi =
√

Timi

eB . Data generated with Gene.

2.2.3 Ion temperature gradient (ITG) driven turbulence

ITG turbulence is driven by the gradient of the ion temperature. Since ions
are dominating, it is on larger scales than ETG turbulence (on the order of
the ion Larmor radius instead of the electron Larmor radius). Fig. 2.6 shows
two contour plots for ITG turbulence. Although the formation of streamers is
similar to ETG turbulence, a new phenomenon occurs: The formation of zonal
flows, which may, as in the right hand figure, supress the streamer formation.
Zonal flows in a plasma are m = n = 0 modes of the electrostatic potential
(where m and n are the poloidal and toroidal mode numbers), with a purely
radial variation. This means that the fluctuations may show only little variation
in the y direction, i.e., there is no complete decorrelation. The formation of
zonal flows is a phenomenon of self-organization, where energy is transferred to
longer wavelengths. A detailed review can be found, for example, in (Diamond
et al., 2005). Zonal flow formation is a quite universal mechanism. It is, for
example, also responsible for the formation of the bands of clouds on Jupiter.
In Chapters 4 and 5, the influence of zonal flows on (fast) particle transport
will be studied in detail. It will be found that it is, in particular, the fact that
no full decorrelation in the y direction occurs, which strongly influences the

20



2.3. Field aligned coordinates

Figure 2.7: TEM turbulence in a plane perpendicular to the magnetic field. The

lengths are normalized to the thermal ion Larmor radius, ρi =
√

Timi

eB .
Data generated with Gene.

transport.

2.2.4 Trapped electron mode (TEM) turbulence

As we have seen in Section 2.1.5, a significant fraction of the particles may be
trapped in a tokamak. Trapping in addition to electron temperature or density
gradients is able to drive turbulence, too. A contour plot of ‘trapped electron
mode turbulence’ is given in Fig. 2.7. The vortex spatial and temporal scales
are similar to ITG turbulence, however, there are, in general, no dominant zonal
flows. Similar to ETG turbulence, the vortices are drifting in the y direction
before they decay.

The three turbulence types which we have discussed briefly are not com-
pletely separable in reality. As was shown in (Kammerer et al., 2008), “various
types of microinstabilities, which are usually considered as strictly separated,
can actually be transformed into each other via continuous variations of the
plasma parameters”. Although the drive responsible for the turbulence for-
mation can be attained from numerical simulations, a thorough understanding
of the underlying processes is still lacking. For the purpose of this work, as
was already emphasized, the formation mechanisms of turbulence are of minor
interest. It is the influence of the spatial and temporal scales and patterns
on transport which we are interested in, namely radial streamers (all types of
turbulence), zonal flows (ITG) and diamagnetic drifts (ETG, TEM).

2.3 Field aligned coordinates

As we have seen in the previous section, plasma turbulence is extremely elon-
gated along the magnetic field lines. Whereas the parallel correlation length
is of the order of the torus circumference, the radial correlation lengths are of
the order of a few ion (electron) gyroradii, which is a ratio of about 1 : 2000
(1 : 80000). For computational purposes, it is extremely useful to use coordi-
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Chapter 2. Theoretical Background

Figure 2.8: Left: Flux surfaces in ASDEX Upgrade. Source: (Told, 2008). Right:
General torus coordinates for arbitrarily formed flux surfaces. Source:
(Pinches, 1996).

nates which are aligned along the magnetic field lines, since the computational
mesh can be chosen much wider if one direction follows the parallel structures.
As will be shown in Chapter 6, the theoretical study of the interaction of 3D
particle orbits with the plasma background turbulence is also much simpler to
access in field aligned coordinates, since the interaction problem can be reduced
to the two perpendicular dimensions.

2.3.1 Field aligned coordinates

In the introduction we have already learned that the magnetic field lines form
nested tori. In a first step, general torus coordinates (ψ, ζ, θ) can be introduced
(Fig. 2.8, right). As the ‘radial’ coordinate ψ, the poloidal magnetic flux is
typically chosen. In general, the magnetic flux surfaces are not circular. How-
ever, especially in the core, they are to good approximation (see Fig. 2.8, left),
and this assumption is widely used in numerical codes. It can be shown, as
pointed out in Chapter 6, that the difference between an experimental and a
circular geometry is only of quantitative nature. So in this thesis, we will re-
strict to concentric circular flux surfaces. This means we can set ψ ≡ r, so
that we have the normal torus coordinates r, θ, ζ as drawn in Fig. 2.1, with a
major radius R0 and a distance R from the major axis. We can now unroll
such a flux surface, so that we have a θ − ζ plane. In such a plane, there are
periodic boundary conditions for the particles and magnetic field lines. The
field lines are not necessarily straight, but curved, as can be seen in Fig. 2.9.
In general, the safety factor q is irrational, i.e. the magnetic field lines do not
close. Now before transforming to field aligned coordinates, it is convenient to
first introduce a new coordinate system in which the magnetic field lines are
straight. The existence of a coordinate system with straight field lines and its
mathematical properties have been investigated first in (Kruskal & Kulsrud,
1958; Greene & Johnson, 1962). Therein, it was shown that a general magnetic
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2.3. Field aligned coordinates

Figure 2.9: Magnetic field line in the θ−ζ plane for q = 3/2 (black) and an irrational
q (red).

field can be written in terms of the so-called Clebsch representation (Kruskal
& Kulsrud, 1958) B ∝ ∇β × ∇Ψ, where Ψ ≡ r in the case of concentric flux
surfaces, and β = q(r)χ− ζ. Here, χ is a new “poloidal” coordinate chosen such
that the field lines are straight in the χ − ζ plane. The new coordinate χ can
be found as follows. The safety factor as defined in Eq. (1.1) can be written as

q(r) =
1

2π

∫ 2π

0

B · ∇ζ
B · ∇θ dθ , (2.35)

since B·∇ζ
B·∇θ is the local relation between the number of toroidal and poloidal

turns for a certain poloidal position, i.e. the local gradient in Fig. 2.9. Now if we
define a new coordinate χ(θ) with the prerequisite that the magnetic field lines
are straight in a χ− ζ diagram, q ≡ B·∇ζ

B·∇χ has to be fulfilled, since the gradient

is constant per definition. Together with the expression ∇χ(θ(x)) = dχ
dθ ∇θ, we

obtain

χ =
1

q

∫ θ

0

B · ∇ζ
B · ∇θ′ dθ

′ . (2.36)

Thus we obtain a ‘toroidal’ coordinate system (r, χ, ζ), in which the magnetic
field lines are straight (see Fig. 2.10 (left)) . In Chapter 6, Eq. (2.36) is solved
for a concrete magnetic field.

Now the transformation to field aligned coordinates is straightforward. We
define

β ≡ (qχ− ζ) mod 2π , (2.37)

so that the magnetic field lines are identical to β = const lines.

2.3.2 Curvilinear coordinates

We now have to undertake a short excursus concerning curvilinear coordinates,
where we refer to (D’haeseleer et al., 1990). We have just derived a coordinate
system consisting of the coordinates r, β, χ. In curvilinear coordinates, it is
possible to define two kinds of basis vectors, leading to the concept of covariant
and contravariant components of a vector (in contrast to Euclidean space, where
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Figure 2.10: Left: Magnetic field lines and r−β−χ basis vectors in the χ− ζ plane.
Black: Magnetic field lines for q = 3/2. They close after 3 toroidal
turns. Green: Magnetic field lines for q =

√
2. The field lines do not

close. The co- and contravariant basis vectors are drawn for the q = 3/2
case. Right: The same field lines in the β − χ plane. The boundary
conditions in the χ direction are not periodic any more. The field lines
jump from a to b, from c to d etc. The red dashed lines indicate a
possible division of the flux surface into 6 flux tubes.

such a distinction does not exist). This goes together with two possible sets of
basis vectors. The tangent (covariant) basis vectors are defined as

er ≡ ∂R

∂r
, eβ ≡ ∂R

∂β
, eχ ≡ ∂R

∂χ
, (2.38)

the reciprocal (contravariant) basis vectors are defined as

er ≡ ∇r, eβ ≡ ∇β, eχ ≡ ∇χ . (2.39)

Whereas the covariant basis vectors are parallel to the coordinate curves, the
contravariant basis vectors are perpendicular to the constant coordinate sur-
faces. In Fig. 2.10 (left), straight field lines are drawn in the χ − ζ plane for
two different safety factors, and the co- and contravariant basis vectors are in-
dicated as defined by Eqs. (2.38) and (2.39). A vector a can be represented by
covariant components ai = a · ei and by contravariant components ai = a · ei.
Since ei · ej = δi

j , the vector a can be represented in field aligned coordinates
as

a = arer + aβeβ + aχeχ . (2.40)

The basis vectors are the covariant unit vectors. er points into the radial
direction (r in torus coordinates), eβ points into the toroidal direction, and eχ

points along the magnetic field lines (see Fig. 2.10, left). Now the components
ai of a are the projections onto the contravariant basis vectors. This means ar

is the projection onto the radial direction, aβ is the projection onto a direction
perpendicular to the field lines as well as to er, and aχ is the projection onto
the ‘poloidal’ coordinate χ.
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2.3. Field aligned coordinates

Two components of the field aligned coordinates have still the dimension
of an angle. In order to convert them into space coordinates, the following
transformation can be performed:

x ≡ r, y ≡ r0
q0
β, z ≡ q0R0χ . (2.41)

The normalization of the coordinate y corresponds to a projection of the con-
travariant component aβ of a vector onto the poloidal direction. The projection
of the full angle ∆β = 2π results in a poloidal length of 2πr0/q0. The z coor-
dinate is normalized to the length of a magnetic field line at one poloidal cir-
cumference. It is important to keep in mind that the direction of a field aligned
coordinate is not the same than the corresponding direction onto which the
vector is projected. For example, the y (β) coordinate is called both ‘toroidal’
and ‘poloidal’ in the literature, depending on whether its co- or contravariant
direction is meant. A particle that moves into the y direction in field aligned
coordinates moves into the toroidal direction in the torus, however, the length
it travels is measured in terms of its poloidal deviation from its initial field line.

2.3.3 Flux tube coordinates

In radially local simulations, one does not simulate turbulence in the whole
torus, but in so-called flux tubes. A flux tube is a tube with rectangular cross
section following a magnetic field line for one poloidal turn (z = 2πq0R0). In
Fig. 2.10 (right), for example, the flux surface is divided into six flux tubes.
Only one of them is taken as the simulation volume, and in the x (r) and y (β)
direction, periodic boundary conditions are used. So x and y can be defined as

x ≡ (r − r0) mod (∆r), y =
r0
q0

(

(β − β0) mod (2π/M)
)

, (2.42)

where M is the number of flux tubes to cover the flux surface. The contour
plots in Section 2.2 show cross sections of such flux tubes. However, there are
complications using the flux tube geometry. As can be seen from Fig. 2.10
(right), there is no natural periodicity in the z (χ) direction, since a magnetic
field line exiting at χ = 2π at a certain β re-enters at χ = 0, but at a different
β. For a rational safety factor, this problem can be avoided by chosing the
right number of flux tubes. In our example, we have q = 3/2, and dividing the
β − χ plane into M = 3n flux tubes means that although a jump in β occurs,
the transit in y as defined by Eq. (2.42) is continuous, as can also be seen in
the figure. For an irrational safety factor, however, such a ‘trick’ is not possible
anymore. For turbulence simulations with Gene, the boundary conditions can
be adjusted so that when leaving the flux tube in the z direction, the particle
makes a jump in the y direction so that in the χ − ζ plane, its motion is
continuous. For the electrostatic potential, for example, this can be written
as φ[r, β(χ + 2π, ζ), z(χ + 2π)] = φ[r, β(χ, ζ), z(χ)]. Another possible - and
more simple - ‘trick’ is to simply enforce φ[r, β, z = ±q0R0π] ≡ 0. In this case,
the boundary conditions are irrelevant, given the fact that no correlation shall
be preserved. In Chapter 6, we will adopt the latter way, since we will find
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that the projection of stochastic potentials from flux tube coordinates into the
full torus is most convenient to establish in that way and, at the same time,
reasonably realistic, given the fact that the turbulent fluctuations tend to peak
at the low-field side of the torus.

2.4 Normalization

Particle motion and turbulence in a tokamak occur on a wide range of spatial
and temporal scales. For a thermal particle with E = 10 keV and a magnetic
field of B = 5T, for example, the gyroradius is ρi = 2.9mm for deuterium ions,
and ρe = 0.067mm for electrons. The gyrofrequencies are Ωi = 4.8×108 1/s
and Ωe = 8.8×1011 1/s. For convenience as well as for numerical purposes, it
is useful to normalize these quantities to dimensionless values. For studying
the interaction between particle orbits and plasma turbulence, it will turn out
that transport often scales with dimensionless values, e.g. the ratio between an
orbit scale and a turbulence scale. In Chapters 3 to 5, the particle gyroradius
is normalized to a correlation length of the turbulent vortices, and the time is
normalized to a gyration period.

In gyrokinetic simulations, however, it is common to use different normaliza-
tions, which are adopted in this work in Chapters 6 to 10. As a typical length
scale for ITG and TEM driven turbulence, the Larmor radius for an ion with
thermal velocity ci ≡

√

Ti/mi is taken, which is ρi = cimi/(eB). Alternatively,
the ion sound speed cs ≡

√

Te/mi can be used, which defines a Larmor radius
ρs. As a typical time scale, it mostly is not useful to take the gyration period,
since the gyration is normally treated via gyroaveraging (see Section 2.1.4). In-
stead, one uses the time a particle needs to cross a typical macroscopic length
in the plasma, L⊥/ci,s. A typical velocity is therefore ρici/L⊥. In this work,
L⊥ ≡ R0 is used. Denoting the dimensionless values with a hat, we obtain:

x̂ = x/ρi, ŷ = y/ρi, t̂ = t ci/R0, v̂ = v R0/(ciρi) (2.43)

φ̂ = φR0/(Bciρ
2
i ) .

The electrostatic potential is adjusted so that the equations of motion become
dimensionless. For example, Eq. (2.10) now reads

v̂E = −∇φ̂× ez . (2.44)

One more advantage of dimensionless values is that macroscopic quantities like
temperature, magnetic field, or torus radius do not appear anymore in the
equations of motion. So the formation of turbulence as well as the interaction
with energetic particles can be studied independently from concrete machine
parameters. If the real transport values in SI units are needed, one simply
has to insert the machine sizes and the temperature into the transformation
equations. In the subsequent chapters, the hats are neglected if it is clear that
normalized units are used.
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2.5. Diffusion

2.5 Diffusion

In this work, the transport of test particles is studied primarily in terms of the
diffusion coefficient. Diffusion is governed basically by the turbulent structures
of the plasma, which makes it essential to establish a connection between dif-
fusivity and the statistical properties of the particles and the plasma. In this
section, some basic relations concerning the diffusion coefficient and its relation
to Lagrangian and Eulerian statistics are presented, as well as some comments
about the diffusive nature of transport in plasma turbulence.

2.5.1 Diffusion coefficient and Taylor formula

The following construction of the diffusion coefficient follows, in part, (Balescu,
2005), Chap. 11.

The density profile n(x, t) obeys the continuity equation

∂tn(x, t) = −∇Γ(x, t) . (2.45)

Assuming that the particle flux Γ consists of two contributions, a convective
part, characterized by a velocity u(t), and a diffusive part that is phenomeno-
logically related to the density gradient, one obtains ‘Fick’s law’

Γ(x, t) = u(t)n(x, t) −D(t)∇n(x, t) , (2.46)

where D(t) is the running diffusion coefficient. Merging the two equations, we
arrive at the advection-diffusion equation

∂tn(x, t) = −u(t)∇n(x, t) +D(t)∇2n(x, t) . (2.47)

Since n(x, t) can also be interpreted as the probability density of finding a
particle at a point x at a time t, the average displacement in the x direction
can be calculated from Eq. (2.47) to (Balescu, 2005)

dt〈x(t)〉 = dtN
−1

∫

dxxn(x, t) = ux(t) . (2.48)

The angular brackets denote ensemble averaging. In the same manner, one
obtains

dt〈x2(t)〉 = dtN
−1

∫

dxx2n(x, t) = 2[dt〈x(t)〉]〈x(t)〉 + 2Dx(t) . (2.49)

Defining the mean square displacement in the x direction as

〈δx2(t)〉 = 〈x2(t)〉 − 〈x(t)〉2 = 〈[x(t) − 〈x(t)〉]2〉 , (2.50)

we finally find the relation

Dx(t) =
1

2

d

dt
〈δx2(t)〉 . (2.51)
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This relation between the mean square displacement and the diffusion coefficient
was first derived by (Einstein, 1905) in his famous disquisition on Brownian mo-
tion. It is important to emphasize that if ∇n = 0 and u = 0, there is no particle
flux (Γ = 0), however D 6= 0 and therefore d

dt〈δx2(t)〉 6= 0 are possible. This
case is called self diffusion or tracer diffusion, in contrast to classical Fickian
diffusion or chemical diffusion, which is driven by a concentration gradient and
therefore results in a net transport of mass (see Eq. (2.47)). The difference
between tracer diffusion and diffusion by fluxes is further discussed in Section
2.5.2.

In the case of a diffusive motion, D(t → ∞) → const, and the diffusion
coefficient is an adequate quantity to describe transport. In that case, it is also
possible to define a diffusion coefficient via

D′
x(t) =

1

2

1

t
〈δx2(t)〉 , (2.52)

which equalizes Eq. (2.51) for t → ∞. However, transport may also be of
nondiffusive nature. In general, the scaling of the mean square displacement
can be written

〈δx2
i (t)〉 ∝ tµ , (2.53)

Only for µ = 1, one has standard diffusive behavior, while for µ < 1 and µ > 1,
one has sub- and superdiffusive scaling, respectively.

In the next step, it shall be shown under which conditions diffusive behavior
can occur. Starting from Eq. (2.51), we can do some transformations:

Dx(t) =
1

2

d

dt
〈x(t)2〉 = 〈vx(t)x(t)〉 = 〈vx(t)

∫ t

0
dξ vx(ξ) 〉 =

= 〈
∫ t

0
dξ vx(t)vx(ξ) 〉 = 〈

∫ t

0
dξ vx(0)vx(ξ) 〉 ≡

∫ t

0
dξ Lvx(ξ) .(2.54)

The substitution from vx(t) to vx(0) is possible since an autocorrelation function
is an even function. Eq. (2.54) is the famous Taylor formula first derived by
(Taylor, 1920). In the literature, it is sometimes referred to as the Green-
Kubo formula, according to (Green, 1951) and (Kubo, 1957). However, since it
can clearly be attributed to Taylor, his name shall be used in this work. The
importance of this formula lies in the connection between the diffusion coefficient
and the Lagrangian autocorrelation function of the particle velocities,

Lvx(t) ≡ 〈vx(0)vx(t)〉 . (2.55)

It means that the diffusivity becomes a constant if the autocorrelation function
decreases to zero. This means that the particle has to decorrelate completely,
i.e. it loses all its memory about its initial values. As long as a positive au-
tocorrelation remains, the diffusion coefficient is growing (µ > 1), but if Lvx

becomes negative, D is decreasing with time. The importance of the Taylor

formula for this thesis lies in the connection between the concepts of

decorrelation and diffusion. The Lagrangian autocorrelation is determined
at points following the motion of single particles, i.e. concrete trajectories. How-
ever, they are unknown in general. What is known are the statistical quantities
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of the particle’s stream function. In the case of E×B drift motion, the elec-
trostatic potential φ(x, t) is the stream function. We can define the Eulerian
autocorrelation function to

E(x, t) ≡ 〈φ(0, 0)φ(x, t)〉 , (2.56)

and, together with Eq. (2.44),

Evx(x, t) ≡ 〈vx(0, 0)vx(x, t)〉 = −∂
2E(x, t)

∂y2
. (2.57)

So the autocorrelation of the particle velocity field is the second derivative of the
autocorrelation of the potential. This means, for example, that the correlation
lengths are not necessarily identical. This fact will be of some importance in
Chapters 6 and 7.

The Eulerian autocorrelation functions are defined as statistical averages
evaluated at fixed points in the laboratory frame. They can be calculated
numerically by replacing the ensemble average by an average over space and
time, i.e.

E(x, t) = lim
X→∞

lim
T→∞

∫ X
−X

∫X
−X

∫ T
−T φ(x′, t′)φ(x′ + x, t′ + t)d2x′dt′

8X2T
. (2.58)

For our purposes, correlation functions are not normalized to 1, since their
absolute values are important.

“The analysis of turbulent diffusion in continuous velocity fields relies on
the general problem of relating the Lagrangian and the Eulerian statistical
quantities. [...] This is, in a sense, the fundamental problem of turbulence”
(Vlad et al., 1998). Many attempts have been made to find a way to calculate
Lagrangian quantities out of Eulerian ones, namely the Corrsin approximation
(Corrsin, 1959) and the decorrelation trajectory method (Vlad et al., 1998; Vlad
et al., 2004), however, it could be shown that they all are only valid for weak
turbulence, but not in cases when effects of vortex trapping become dominant
(Hauff, 2006; Hauff & Jenko, 2006), which is the case in tokamak turbulence.
So, a simple possibility of calculating particle diffusivities directly out of the
statistical values of the stream function does not exist. Nevertheless, there is an
important point we can reason. In the case that E(x, t) (and therefore Ev(x, t))
decays to zero at a typical correlation time τc and a correlation length λc, Lv(t)
has to do the same, since the particle velocities lose correlation independent
from their concrete trajectory. As we will see in the following chapters, such
a loss of memory is always given for particles in plasma turbulence (see, for
instance, Fig. 2.5). In Chapter 5, possible coherent structures in a plasma,
i.e. zones in which a finite Eulerian correlation remains, are examined, and it
is found that they can support nondiffusive transport (i.e. finite Lagrangian
autocorrelations) for longer times, but not forever.

2.5.2 Tracer diffusion and plasma flux

The tracer diffusion coefficient D and the plasma flux Γ are two distinct ways to
describe transport in plasmas. The former quantity rather reflects the mixing
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properties of a turbulent flow, but is not connected with a transport of mass, as
long as 〈v〉 = 0. The latter quantity, in contrast, describes the net transport of
a plasma, but it may be zero although there is a finite single particle diffusion.
A dependence between the total particle flux and the diffusion coefficient is
given by Eq. (2.46), however, the convective part u(t) is an unknown quantity,
if one only knowsD or Γ. For example, it is possible that there is an inward flux
due to the pinch effect (Nycander & Yankov, 1995), which produces an inward
density gradient. This density gradient is in turn responsible for an outward
diffusive flux, which may balance the inward one. Moreover, a connection as
phenomenologically established in Eq. (2.46) does not need to exist at all, since
in a plasma, effects like ‘up-gradient transport’ (Wagner & Stroth, 1993; Ny-
cander & Yankov, 1996) or ’avalanche transport’ (Carreras et al., 1999a) may
occur, which cannot be described as diffusive processes.

The diffusivity can be measured by inserting test particles into the turbulent
field and tracking them. Whereas this method is quite difficult to establish
in experimental devices (see, e.g. (Fasoli et al., 1992)), it is easily accessible
numerically. The diffusivity is obtained by Eq. (2.51). The particle flux or
‘cross-field transport’ is obtained measuring Γ = 〈ñṽ〉, where the tildes denote
the fluctuating parts of the corresponding quantities. This is the value usually
obtained from experimental measurements (see, e.g., (Carreras et al., 1996)),
but also from numerical simulations of plasma turbulence. From this definition
of Γ, it also becomes clear that the cross-field transport is zero in the case
that ñ and ṽ are out of phase. There are not many works trying to establish
a connection between D and Γ, since in general it seems to be accepted that
these two views have to be distinguished. However, in (Basu et al., 2003),
it was shown via simulations of Hasegawa-Wakatani turbulence (Hasegawa &
Wakatani, 1983), that a simple connection via Fick’s Law, D = Γ/(∇n0), is
valid in the case that Ln ≡ (∇n0/n0)

−1 = const.

2.5.3 The passive particle approach

In this thesis, the energetic particles will be treated as passive particles. This
means that, in contrast to active ones, their motion does not act back onto the
electric and magnetic fields or onto the motion of the thermal ‘bulk’ particles.
Such passive particles are also labeled as tracers. This approximation seems to
be well justified by several previous investigations (Estrada-Mila et al., 2006;
Dannert et al., 2008; Angioni & Peeters, 2008) in which no significant differences
were found between passive and active treatment of the fast particles in the
low-density limit. More specifically, Ref. (Angioni & Peeters, 2008) as well as
Ref. (Fülöp & Nordman, 2009) find that the passive tracer picture is valid for
concentrations up to about 2%. For the fast particles we are interested in,
namely alpha particles created in fusion reactions and beam ions inserted from
outside for heating purposes, this restriction is, in general, fulfilled.
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2.5.4 Turbulent diffusion

The diffusion of particles in turbulent plasmas is dominated (in general) not by
collisions as in classical molecular diffusion, but by an advection with the tur-
bulent vortices. It is the randomness of the stream function which enables us to
adopt the concept of diffusion. In the gyrocenter approximation, the equations
of motion for a particle in a tokamak are given by Eq. (2.18). Turbulent struc-
tures which enforce diffusive transport are given by both the electric and the
magnetic field. Whereas the electric field is purely turbulent (due to quasineu-
trality, no macroscopic electric field may exist in a plasma), the magnetic field
is macroscopic, but has a small turbulent part. Denoting the turbulent parts
with a tilde, one can write φ(x, t) = φ̃(x, t) and B(x, t) = B0(x) + B̃⊥(x, t). It
is a common assumption that B̃ = B̃⊥, which is also used in this work and
justified for B̃ � B0, which is the case in tokamaks.

The turbulent velocity can be expressed as (Liewer, 1985)

ṽ⊥ = −∇φ×B0

B2
0

+ v‖B̃⊥/B0 . (2.59)

The first term on the right hand side is the E×B drift which we already know,
the second term describes the deviation of a particle from the unperturbed
field line caused by the perpendicular turbulent component of B, i.e., it follows
the perturbed field line. Since we assume that the perturbed magnetic field is
perpendicular, it can be expressed via the vector potential Ã(x) = Ã‖(x)ez . So
Eq. (2.59) can be rewritten as

ṽ⊥ = −∇φ× ez

B0
+ v‖

∇Ã‖ × ez

B0
. (2.60)

Interestingly, the mathematical structure of the magnetic part has turned out
to be identical to the electrostatic part. For this reason, the main part of this
thesis (Chapters 3 to 6) deals with particle transport in electrostatic turbulence,
whereas the magnetic part is treated in the last parts (Chapters 7, 8 and 10),
mainly by analogy to the electrostatic results.

2.6 Influence of turbulent structures on particle or-
bits

In this section, an overview of the various interactions between particle orbits
and turbulent structures is provided. It will be the basis for the step-by-step
approach applied in this thesis.

2.6.1 2D effects (electrostatic)

In a first step, we neglect the effects generated by the 3D structure of the
magnetic field (∇B drift, curvature drift, motion parallel to B, see Eq. (2.18))
and restrict to the 2D motion perpendicular to the magnetic field, which is given
by Eq. (2.60). Since the electrostatic and the magnetic part have equivalent
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Figure 2.11: Full Lorentz motion of a particle in an electrostatic potential. Left:
Small Larmor radius. Right: Larger Larmor radius

structure, we may further restrict to the E×B drift part. So in dimensionless
units and flux tube coordinates, the differential equation is

ẋ(t) = vE(t),

v̇E(t) = −∇φ(x, t) × ez =

(−∂yφ

∂xφ

)

. (2.61)

This means that, for a static potential, the particle moves on equipotential lines.
To include finite Larmor radius effects, φ has to be replaced by the gyroaveraged
potential φeff , as described in Sec. 2.1.4. In Fig. 2.11, the full Lorentz motion
of a particle is shown for a static potential. Whereas for a small gyroradius
(left picture) the particle follows the equipotential lines strictly, for a larger
gyroradius this is only roughly the case, since the structure of the gyroaveraged
potential is different to the original one. We note in passing that, in Eq. (2.61), x
and y are canonical conjugate variables. This means that, although the problem
is 2D, there is only one degree of freedom, wherefore the problem is completely
integrable, which can be seen in Fig. 2.11.

It is clear that for the E×B drift to induce a diffusive particle motion,
the stream function φ has to be time dependent. If the vortex structure is
changing, no closed trajectories are possible any more, and - if the changes are
irregular - the particle moves in a random, i.e. diffusive, manner. In Fig. 2.12,
the (Lorentz) trajectory of a particle in a weakly time dependent potential is
shown. The particle circles its initial vortex several times. When the vortex
decays, the particle gets free and follows an open equipotential line, until a new
vortex emerges and traps the particle again. The question which now arises is:
How can the diffusivity be determined from the scales of the stream function?
It will turn out that there are two distinct regimes, which can be distinguished
by the so-called Kubo number (Kubo, 1963; Vlad et al., 1998)

K ≡ V τc
λc

≡ τc
τfl
. (2.62)
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Figure 2.12: Full Lorentz motion of a particle in an slowly time variable electrostatic
potential. A sequence of trapping and release processes can be observed.

Here, V denotes the mean E×B drift velocity (= VE) (or, in the magnetic case,
the mean perpendicular velocity VB), τc is the correlation time of the turbulent
stream function, and λc its correlation length, where we assume isotropy for the
moment. Following Eq. (2.57), the mean drift velocity VE can be calculated as

VE =

(

− ∂2E(x, t)

∂y2

∣
∣
∣
∣
x=t=0

)1/2

. (2.63)

The mean time of flight τfl ≡ λc/V , is the average time it takes for a particle
to travel the distance of one correlation length, i.e. to ‘feel’ the topology of the
stream function.

Small Kubo number regime

IfK < 1, τc < τfl. This implies that a particle decorrelates before it ‘feels’ the
structure of the vortices, which means that the correlation length λc is not able
to influence the transport. In this case, only the temporal part of the Eulerian
autocorrelation function is important, and we can assume E = E(t) ≡ L(t) or
Evx = Evx(t) ≡ Lvx(t). Choosing an exponential decrease Lvx(t) = V 2

x e
−t/τc ,

we obtain, solving Eq. (2.54),

Dx(t) = V 2
x τc

(

1 − e−t/τc

)

. (2.64)

So the saturation value (t→ ∞) of the diffusion coefficient is

Dx = V 2
x τc , (2.65)

whereas the running diffusion coefficient for t� τc is

Dx(t) = V 2
x t . (2.66)

Thus, the saturation value of Eq. (2.65) is simply the value at t = τc. A D(t)
curve for a small Kubo number is plotted in Fig. 2.13 (red dashed curve). The
superdiffusive regime directly passes into the diffusive regime at t = τc. It
should be mentioned that small deviations from this expressions may occur,
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Figure 2.13: Running diffusion coefficient. Black, solid: D(t) for a high Kubo num-
ber. The superdiffusive, subdiffusive and diffusive regimes are enlisted.
Red, dashed: D(t) in the low Kubo number regime. The saturation
value is D ≈ V 2τc. Blue, dotted: D(t) for a static potential (K → ∞).

depending on the concrete form of Lvx(t). If for example Lvx(t) = V 2
x e

−t2/τ2
c is

chosen, the saturation values gives Dx =
√
π/2V 2

x τc.

The above relations can be derived in a more simple way, too, referring to
the simple example of a classical one dimensional random walk. Here, a parti-
cle undergoes a successive sequence of steps with fixed step size ∆x and fixed
time step ∆t. The direction of each step is determined randomly. Then, the
diffusion coefficient is determined by (Einstein, 1905) Dx = (∆x)2/(2∆t). Ac-
cording to the previous considerations for the small Kubo number limit, we can
set ∆x ≡ Vxτc and ∆t ≡ τc, so that we also obtain Eq. (2.65), apart from a
factor 2 which is due to the discretization. For times t < τc, 〈x2〉 = (Vxt)

2, so ac-
cording to Eq. (2.51), the running diffusion coefficient is given by Dx(t) = V 2

x t,
as already derived in Eq. (2.66).

Large Kubo number regime

For K > 1 (τfl < τc) the particles are able to ‘feel’ the vortex structure. The
particle trajectory plotted in Fig. 2.12 is an example for a large Kubo number
regime. As soon as t > τfl, the particles are able to circle the vortices; they are
trapped. This vortex trapping forces a decreasing 〈x2(t)〉, which means thatD(t)
is reduced, too. In a static potential, the particles would be trapped forever,
and D(t) would go to zero. However, given a time dependence, decorrelation
and saturation of D(t) occur at t = τc. The three successive regimes of diffusion
are shown in Fig. 2.13 in black.

Is it possible to make a similar quantitative approach for the saturation value
D than we just did for the small Kubo number regime? A simple approach
would assume particle trapping for a time τc, and, when they are released, the
particles can travel an average distance of a correlation length λc. So setting
∆x = λc and ∆t = τc, one would obtain D = λ2

c/τc. However, this is not
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correct, since reality turns out to be much more complex. As can be seen,
for example, in the contour plots of Section 2.2, there are equipotential lines
which are bound to vortices (typically for large and small values of φ), but
also equipotential lines which meander between the vortices, without a clear
space scale (typically for φ ≈ 0). For particles on the latter structures, the
small Kubo number expression may be more appropriate, since the particles
are not trapped. In reality, in the large Kubo number regime there is always
a mixture of trapped and untrapped particles, with exchanges between these
two species on the time scale of the correlation time of the stream function.
Another, formally widely used approach is the so-called ‘Bohm scaling’ (see,
e.g., (Misguich et al., 1987)). There, the Corrsin approximation (see discussion
in Section 2.5.1) is used and leads to a scaling D ∝ λcV . It is obvious that this
scaling cannot be correct, since it would imply a finite diffusion coefficient even
for static potentials, which is impossible due to the trapping effects. So, simple
intuitive approaches are not valid in this case.

In fact, finding a scaling law for D with respect to the characteristic turbu-
lence parameters τc, λc, and V is quite difficult. It was given in the beautiful
theoretical work of (Gruzinov et al., 1990), using methods of percolation the-
ory. A general review of percolation theory, including the work of Gruzinov et
al., can be found in (Isichenko, 1992). The treatment of Gruzinov starts with
a simple model potential ψ0(x, y) = sinx sin y, whose separatrices constitute a
periodic square lattice. A weak time dependence (modeling very large Kubo
numbers) is introduced, which allows for a connection of equipotential lines
across the separatrices around the saddle points. An expression for the lifetime
τh of a contour ψ = h � 1 (with the maximum of the potential normalized
to unity) is estimated by τh ≈ hτc. Finally, an expression for the diffusion
coefficient is found, which is

D ≈ λ1.3
c V 0.7τ−0.3

c (2.67)

for K � 1. In contrast to the simple expressions presented above, there is a
quite complex interaction of all three statistical values. Interestingly, although
the Gruzinov estimation was achieved using a simplified model, its validity for
isotropic turbulence is excellent and has been approved in a number of numer-
ical simulations (Reuss, 1996; Reuss et al., 1998), also in this thesis.

General expression

Since the dimension of D is m2/s, a general expression for its scaling can be
given by D ∝ λ2

c/τcK
γ , or

D ∝ λ2−γ
c V γτγ−1

c . (2.68)

Hence, the above expressions are reproduced by setting γ = 2 for K < 1 and
γ = 0.7 for K > 1. The wrong expression D ∝ λ2

c/τc would be obtained by
γ = 0, which indicates that the true high Kubo number scaling indeed lies
between the strict trapping approach and the low Kubo number limit. For
K ≈ 1, we can state γ = 1, since in that case, τc ≈ λc/V .
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Once more we want to stress the importance of the scaling laws we just
obtained. In the low Kubo number limit, there are no trapping effects, since
decorrelation of the particles occurs before they are able to circle the turbulent
vortices. Therefore, the diffusion coefficient does not scale with λc, but is de-
pendent only on V and τc. The diffusivity increases with V and τc, since the
distance a particle can travel before decorrelating increases in both cases. In the
high Kubo number regime, particle trapping becomes important, which makes
the specification of a scaling law much more complicated. Because of trapping,
the correlation length λc influences the diffusivity now, together with V and τc.
The diffusivity increases with λc and V , since in the former case, the distance
a particle can travel while being trapped increases, and in the latter case, since
a particle which is not trapped moves a wider distance. In contrast to the low
Kubo number case, the diffusivity decreases with growing τc, since particles are
trapped for a longer time, which restricts their motion. The inclusion of finite
gyroradius effects into the scaling laws presented here is an important part of
this work and discussed in Chapters 3 and 4.

2.6.2 3D effects

So far, we have discussed the scaling of D with the statistical parameters of the
stream function in two dimensions. What is the situation in three dimensions,
i.e., when Eq. (2.18) is applied? One difference is that a particle can now
decorrelate due to its parallel motion along the z axis, i.e. along the magnetic
field. Although the vortex lengths along the field lines are much larger than
across (λ‖ ∼ 2πq0R0 � λ⊥), it may become possible for fast particles that
τ‖ ≡ λ‖/v‖ < τc. In that case, it is the parallel decorrelation time τ‖ which
determines decorrelation, not the correlation time of the stream function. The
magnetic drifts (∇B drift and curvature drift) are responsible for deviations
perpendicular to the magnetic field, as can be inferred from Eq. (2.18). Their
influence on the particle orbits has been illustrated in Fig. 2.2. Now the question
is, how do these orbits look like in field aligned coordinates, i.e. relative to the
magnetic field lines and therefore relative to the perpendicular structure of the
turbulence? The answer is given in Fig. 2.14. The trapped and the passing
particle orbits show a very similar behavior in field aligned coordinates. An
almost circular rotation in the x− y plane is superimposed to a constant drift
in the y direction. To our knowledge, this form of the orbits has never been
presented in detail before in the literature, and is discussed further in Chapters
6 and 7. Whereas the oscillatory motion in the r (x) direction can also be
observed in the plots of the R− z plane, the (oscillatory and constant) motion
in the y (toroidal) direction can be seen in the left hand picture of Fig. 2.2. It
is obvious that one might try to establish a connection between the treatment
of the particle’s gyration with its drift orbit motion, since the behavior relative
to the perpendicular structures seems to be similar. Indeed, such efforts have
been made in the past (Mynick & Krommes, 1979) as well as recently (Zhang
et al., 2008), postulating that an ‘orbit averaging’ effect should be valid similar
to the the ‘gyroaveraging’ presented in Section 2.1.4. In Chapters 6 and 7, this
assumption will disputed, based on a detailed study of the orbit trajectories
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Figure 2.14: Particle orbits (in a fluctuating electrostatic potential) in field-aligned
coordinates (left-hand side) and in cylindrical coordinates (embedded).
Black: trapped particle with η = 0.2. Red: passing particle with η =
0.99. Some magnetic flux surfaces are shown for comparison.

illustrated in Fig. 2.14, and their space and time scales.
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Chapter 3

Advection in Isotropic 2D
Electrostatic Turbulence

In this chapter, the turbulentE×B advection of charged test particles with large
gyroradii is investigated in a 2D geometry, i.e. the transport is governed by the
interaction between Eq. (2.61) and the gyroaveraging mechanism described in
Section 2.1.4. To this aim, direct numerical simulations are used together with
analytical calculations. It is found that for Kubo numbers larger than about
unity, the particle diffusivity is almost independent of the gyroradius as long as
the latter does not exceed the correlation length of the electrostatic potential.
The underlying physical mechanisms leading to this surprising and initially
counterintuitive behavior are identified. The key results of this chapter have
been published in (Hauff & Jenko, 2006).

3.1 Introductory remarks

As pointed out in the previous chapter, many basic issues of transport in tur-
bulent plasmas are still relatively poorly understood. One such issue is the
turbulent E×B advection of charged test particles with large gyroradii which
has important applications both in plasma astrophysics as well as in fusion re-
search. In the latter case, e.g., one is interested in the interaction of α particles
or impurities with the background turbulence. To be able to address such top-
ics, a thorough understanding of the dependence of the particle diffusivity on
the gyroradius is required. It is the main goal of the work presented in this
chapter to shed new light on this old question, thereby revealing novel insights
and allowing for more accurate descriptions of such physical systems in the
following chapters.

Provided that the temporal changes of the background potential are slow
compared to the gyration period and that the potential amplitudes are not too
large, the particles’ dynamics may be treated in the spirit of gyrokinetic theory
(see Section 2.1.4). This means that a gyrating particle is simply replaced by a
charged ring. This ’quasiparticle’ drifts with an E×B velocity which is computed
from a gyroorbit-averaged potential. Since this process of gyroaveraging always
reduces the effective drift velocity, one would naively expect that the resulting
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particle diffusivity is also reduced. It is one of the key findings presented in
this chapter, however, that this conclusion is not justified. In fact, we will
be able to show that in a strong turbulence situation, the diffusivity is more
or less independent of the gyroradius as long as the latter does not exceed
the correlation length of the electrostatic potential. Moreover, the underlying
physical mechanisms leading to this initially counterintuitive behavior will be
identified.

The basic aims of this thesis were inspired, in part, by two papers by M. Vlad
and co-workers (Vlad & Spineanu, 2005; Vlad et al., 2005) in which they ex-
tended the so-called decorrelation trajectory (DCT) method (Vlad et al., 1998;
Vlad et al., 2004) for computing diffusivities from the autocorrelation function
of the potential to the case of particles with finite gyroradii. This DCT method
was suggested to be able to provide a solution for the old question about con-
necting Eulerian autocorrelation functions to the Lagrangian ones (see discus-
sion in Section 2.5.1). The results they got were very surprising. In particular,
they observed that for sufficiently large Kubo numbers (i.e., for relatively strong
turbulence), the diffusivity may increase with increasing gyroradius by up to
several orders of magnitude. Obviously, this finding is in stark contrast to the
usual physical picture sketched above. However, it could be shown in (Hauff,
2006) and (Hauff & Jenko, 2006) that the DCT method does not reproduce the
correct diffusivities in the high Kubo number limit, as well as that the extension
of the method to large gyroradii was based on a misapprehension. However,
these studies motivated us to revisit the problem of turbulent E×B advection
of charged test particles with large gyroradii with a completely new ansatz.

In this chapter, at the beginning of the step-by-step approach underlying
this thesis, we will restrict our studies to a rather simple situation, namely the
two-dimensional dynamics of test particles in a homogeneous, static magnetic
field and a prescribed electrostatic potential which is stochastic and isotropic in
space and time. Such models have been used in many previous investigations
(see, e.g., (Balescu, 2005) and references therein) mainly due to their acces-
sibility in terms of numerical and analytical methods. Although the relation
between the diffusivity obtained from the dispersion of test particles and the
diffusion coefficient inferred from the self-consistent turbulent flux is not easy
to establish (see discussion in Section 2.5.2), the study of test particle dynamics
is still considered quite useful, especially if one is dealing with trace species at
low density. It is our main goal at the beginning of this work to study the fun-
damental physical processes in a fairly clean environment. Specific applications
to various situations in fusion research (and astrophysics), including a variety
of additional effects, are left for the following chapters.

The dependence of the diffusivity of test particles on the gyroradius ρ has also
been the subject of several previous studies beyond the ones already mentioned.
E.g., in Refs. (Manfredi & Dendy, 1996; Manfredi & Dendy, 1997; Annibaldi
et al., 2002), finite Larmor radius (FLR) effects were studied for test particles
in Hasegawa-Mima turbulence using the gyroaveraging approximation. Here,
it was found that “FLR effects strongly inhibit stochastic diffusion” (Manfredi
& Dendy, 1996), and that the diffusivities drop roughly as ρ−1 and ρ−0.5 (or
ρ−0.35) in the low and high Kubo number regimes, respectively (Manfredi &
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Dendy, 1997). These results are in agreement with naive expectations and shall
also be confirmed in the present, more systematic study. Moreover, in a fairly
recent investigation of the same basic type, an additional observation was made.
Here, the authors find that “as long as ρ is smaller than or similar to the typical
size of the [turbulent] structures, FLR effects are irrelevant” (Annibaldi et al.,
2002). In other words, a significant FLR reduction of the diffusivity requires
the gyroradius to exceed the correlation length of the potential. While very
interesting, this result was not discussed any further, however. In particular,
no explanation was given in terms of the underlying physical mechanisms which
lead to this behavior, and no mention was made about a possible Kubo number
dependence on this effect. In fact, Refs. (Manfredi & Dendy, 1997) and (Anni-
baldi et al., 2002) seem to contradict each other with respect to the existence
of a reduction threshold in ρ. In contrast, the study presented in this chap-
ter offers a much more detailed and systematic investigation of these issues,
including the identification of the physical mechanisms at work.

The remainder of this chapter is organized as follows. After some general
remarks in Section 3.2, a large number of direct numerical simulations is pre-
sented in Section 3.3, and the dependence of the diffusion coefficient on Kubo
number and gyroradius is studied. The ‘Gruzinov’ scaling law (Eq. (2.67))
is confirmed. In Section 3.4, in the limit of small/large Kubo numbers and
small/large gyroradii, analytical expressions for the ratio Dρ/D0 are derived
which agree favorably with the simulation results. We close with some conclu-
sions in Section 3.5.

3.2 General remarks

In this chapter, we want to start our study of the interaction of fast particles
with a simple homogeneous, isotropic, stationary, and Gaussian electrostatic
potential with stochastic behavior in space and time. We consider the E×B
advection of ions as passive tracers in a plane perpendicular to the background
magnetic field, where the corresponding spatial coordinates will be denoted
as x = (x1, x2) = (x, y). Such a potential can be generated by means of a
superposition of a sufficiently large number of harmonic waves:

φ(x, t) =

N∑

i=1

Ai sin(ki · x + ωit+ ϕi) . (3.1)

Its Gaussianity (concerning the distribution of the potential values) can be
demonstrated with the help of the central limit theorem, regarding the charac-
teristic numbers of the harmonic waves as a set of independent random vari-
ables. The autocorrelation function of such a potential is then easily shown to
be (Hauff, 2006)

E(x, t) =

N∑

i=1

A2
i

2
cos(ki · x + ωit) . (3.2)

τc and λc denote, respectively, the autocorrelation time and length of the elec-
trostatic potential, defined as the e-folding lengths of E(x, t). The mean drift
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velocity V can be calculated as

V =

(

− ∂2E(x, t)

∂x2

∣
∣
∣
∣
x=t=0

)1/2

, (3.3)

as in Eq. (2.63). The Kubo number K was already defined in Eq. (2.62). The
limits K→∞ and K→0 correspond to static and fast fluctuations, respectively.
Sometimes, the regime of K <∼ 1 is labeled ’weak turbulence’ or ’quasilinear,’
while the K >∼ 1 regime is denoted as ’strong turbulence’ or ’nonlinear.’ The
Kubo number will play an important role in the remainder of this chapter and
in this thesis.

According to the discussion in Section 2.1.4, it is possible to bring the finite
gyroradius problem into the form of the zero gyroradius one if the original
potential is replaced by

〈φ〉(x) ≡ φeff(x) ≡ 1

(2π)2

∫ ∞

−∞
dk eik·x φ(k) J0(kρ) (3.4)

where φ(k) ≡ F{φ(x)}, and ρ is the Larmor radius. The corresponding Eulerian
autocorrelation function Eeff then reads (Hauff, 2006)

Eeff(x, ρ) =
1

(2π)2

∫ ∞

−∞
dk eik·xE(k) J2

0 (kρ) (3.5)

where we have used the well-known convolution theorem. In contrast to the
effective potential, the Bessel function enters squared. So the effective corre-
lations Eeff and φeff are simply obtained by multiplying the individual Fourier
components of E and φ by J 2

0 (kiρ) and J0(kiρ), respectively.

In order to create an autocorrelation function which is sufficiently smooth in
space and time, we are forced to employ a sufficiently large number of partial
waves. We ended up using N = 105 waves with a Gaussian amplitude spectrum
of the form Ai = Amax exp(−k2

i /8). The wave numbers and frequencies are
randomly and homogeneously distributed within the intervals 0 ≤ |ki| ≤ kmax

and 0 ≤ ωi ≤ ωmax. We note in passing that random distributions of wave
numbers lead to much smoother autocorrelations than regular lattices in wave
number space (see, e.g., Ref. (Reuss, 1996)) and are therefore to be preferred.
The Kubo number is controlled by varying ωmax. Due to this large number
of partial waves, the autocorrelation function is fitted almost perfectly by a
Gaussian of the form E(x) ∝ exp(−x2). This means that the correlation length
(defined as the e-folding length of E(x)), is normalized to unity.

Given the large number of partial waves, it is not feasible anymore to com-
pute the potential or the autocorrelation anew for every time step of the numer-
ical simulation. Instead, their values and those of the required derivatives are
saved as three-dimensional arrays, e.g., φ(xi, yj , tk). The values at intermediate
space-time points are then recovered by means of cubic interpolations based
on the well-known Lagrange formula. For solving the differential equations, a
fourth-order Runge-Kutta method is used (Vesely, 1994). The diffusivities are
computed according to the definition given in Eq. (2.51). Here, a number of a
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Figure 3.1: Time-dependent diffusivity D(t) in a static potential, i.e., for K → ∞,
for different gyroradii ρ (normalized to the correlation length of the po-
tential).

few thousand trajectories has been found to be sufficient. A further improve-
ment is obtained via the ’time average’ method described in Ref. (Reuss, 1996).
Here, the present positions of the particles are saved and reused as new starting
points.

3.3 Results of direct numerical simulations

In the present section, we will concentrate on direct numerical simulations per-
formed in a self-generated electrostatic potential described by Eq. (3.1). The
amplitude was chosen so that V ≈ 0.007, which gives τfl ≈ 150. The time-
dependent diffusion coefficient D(t) for a static potential (τc,K → ∞) and
for a set of different gyroradii is shown in Fig. 3.1. From the discussion of
Fig. 2.13 we know already that there is a correspondence between D(t,K→∞)
and D(t→∞,K), since the latter expression can be derived from the former
by assuming a transition into the diffusive regime at t ≈ τc. Therefore one
can expect the K-dependent long-time diffusivities to take on similar charac-
teristics. This is indeed the case as can be inferred from Fig. 3.2. Here, we
plotted D(t→ ∞,K) for several values of ρ (normalized, again, with respect
to the correlation length of the potential). Here, the Kubo number has been
varied varying τc (by adjusting ωmax) From Figs. 3.1 and 3.2, one can extract
the scalings D(t) ∝ t and D(K) ∝ K for small times and small Kubo num-
bers, respectively, whereas for large times and large K, one finds D(t) ∝ t−0.4

and D(K) ∝ K−0.25. The latter scaling – which has a large error bar since it is
based on only two points – is very close to Gruzinov’s estimate of D(K) ∝ K−0.3

which is based on percolation theory (Gruzinov et al., 1990) [for numerical con-
firmations of this theory, see, e.g., Refs. (Reuss, 1996; Reuss et al., 1998)]. At
this point, we have to note that, since we have varied K by variation of τc, the
scaling law is D(K) ∝ Kγ−1 according to Eq. (2.68), so that γ = 0.75 (0.7).
For small Kubo numbers, the transport is significantly reduced with increas-

43



Chapter 3. Advection in Isotropic 2D Electrostatic Turbulence

Figure 3.2: Long-time limit of the diffusivity D as a function of the Kubo number
K for different gyroradii ρ (normalized to the correlation length of the
potential).

ing gyroradius even for ρ <∼ 1. This behavior is in agreement with numerical
simulations found in the literature (see, e.g., Ref. (Manfredi & Dendy, 1996)).
For larger Kubo numbers, K >∼ 1, the system’s behavior is completely different,
however. For ρ <∼ 1, i.e., for gyroradii up to the correlation length, the transport
is practically constant or even slightly increased with increasing ρ. In addition,
the transport reduction with increasing ρ for ρ >∼ 1 is much slower than in
the low Kubo number regime. These are key results of this first study. They
correct both the naive expectations and the previous DCT-based results. In the
following, we shall develop an analytical approach which helps us to understand
these findings both qualitatively and even quantitatively.

3.4 An analytical approach

The analytical description of the gyroradius dependence of the diffusivity which
we are about to develop will be based directly on the effective autocorrelation
function. From the latter, one can infer drift velocities and correlation lengths
(as well as correlation times, of course) as a function of ρ. This information
can in turn be used together with the well-known Kubo number scalings in the
low and high K regimes to derive expressions for the gyroradius dependence
of the diffusivity. The formulas obtained this way will be shown to be in good
agreement with the results from direct numerical simulations.

Qualitatively speaking, we will find the following scenarios in the case of
small and large Kubo numbers. For K <∼ 1, the situation is rather simple.
The gyroaveraging merely smoothes out the potential and therefore reduces
the effective drift velocity, leading to a significant reduction of the diffusion
coefficient. For K >∼ 1, on the other hand, the presence of trapping effects
introduces a new aspect. While the drift velocity is of course still reduced with
increasing gyroradii, the gyroaveraging simultaneously enlarges the scales of
the equipotential lines. Consequently, the gyrocenter trajectories become more
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Figure 3.3: Spatial part of the effective autocorrelation function Eeff for different
gyroradii ρ (normalized to the correlation length of the potential).

extended, counteracting the reduction of the drift velocity. [A similar effect has
been discussed in (Vlad & Spineanu, 2005; Vlad et al., 2005) in the context of
the DCT method.] In Fig. 3.3, the effective autocorrelation function, calculated
according to Eq. (3.5), is plotted for different gyroradii. The reduction of the
amplitude as well as the broadening for increasing ρ can be observed. Inferior
maxima are at x = 2ρ, where the rings surrounding the gyrocenters of the
particles are tangent, which means that they get significantly correlated again.
In other words, gyroaveraging correlates points in space which are actually
uncorrelated.

Starting from these ideas, the goal is to find analytical expressions for both
the effective drift velocity V eff and the average extension of a drift trajectory
which will be assumed to scale like the correlation length λeff

c . An expression
for the effective autocorrelation of the gyroaveraged potential has already been
given in Eq. (3.5). For spatially isotropic autocorrelation functions as we are
dealing with here, the angle between x and k can be integrated out, yielding

Eeff
ρ (x) =

1

2π

∫ ∞

0
dk k E(k) J2

0 (kρ) J0(kx) . (3.6)

Assuming a Gaussian spatial autocorrelation of the form

E(x) = Ae−x2
, (3.7)

which is in accordance with Eq. (3.2), we find

Eeff
ρ (x) =

A

2

∫ ∞

0
dk k e−k2/4 J2

0 (kρ) J0(kx) . (3.8)

Unfortunately, this integral cannot be solved analytically. However, the factor
J2

0 (kρ) can be approximated in the limits of small and large arguments. E.g.,
for kρ <∼ 1, we find

J2
0 (kρ) = 1 − (kρ)2/2 + 3 (kρ)4/32 − 5 (kρ)6/576 + O(ρ8) (3.9)
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by means of a Taylor expansion. In this case, Eq. (3.8) yields

Eeff
small ρ(x) = Ae−x2 − 2Aρ2 (1 − x2) e−x2

+
3Aρ4

2
(2 − 4x2 + x4) e−x2

− 5Aρ6

9
(6 − 18x2 + 9x4 − x6) e−x2

+ O(ρ8) . (3.10)

Using this expression, we then obtain

V eff
small ρ = V

[
1 − 2ρ2 + 5ρ4/2 − 5ρ6/3 + 5ρ8/8 + O(ρ10)

]
(3.11)

for the effective drift velocity. Moreover, a perturbative calculation yields

λeff
small ρ = λc

[
1 + ρ2 + ρ4/4 + O(ρ6)

]
(3.12)

for the effective correlation length. The factor J 2
0 (kρ) in Eq. (3.6) suppresses

shorter wavelengths and leads to an increase of the effective λc.
For kρ � 1, on the other hand, the squared Bessel function is known to

oscillate strongly. In this case, we thus approximate it by half of its envelope,
i.e., we set

J2
0 (kρ) ≈ 1/(πkρ) . (3.13)

Eq. (3.8) then yields

Eeff
large ρ(x) =

A

2
√
πρ

e−x2/2 I0
(
x2/2

)

=
A

2
√
πρ

e−x2/2
[
1 + x4/16 + x8/1024 + O(x12)

]
(3.14)

where I0 denotes the modified Bessel function of the first kind. From this
expression, we obtain

V eff
large ρ = V (4

√
πρ)−1/2 . (3.15)

Since the gyroradius ρ enters Eq. (3.14) just a prefactor, the effective correlation
length is independent of it. The latter can be determined numerically to be

λeff
large ρ ≈ 1.73 . (3.16)

For large gyroradii, the term J 2
0 (kρ) in Eq. (3.6) reduces practically the entire

k spectrum of the potential in the same way. Therefore the effective correla-
tion length does not increase anymore. In Fig. 3.4, the effective drift velocity
and correlation length are plotted for both the small and the high gyroradius
approximation.

With the help of the above expressions for V eff and λeff
c we are now able to

estimate the resulting transport levels. In the limit of small Kubo numbers,
K <∼ 1, the diffusion coefficient is known to scale like D ∝ λc V K = τc V

2

(Eq. (2.65)). Since the correlation time τc is not affected by the gyroaverag-
ing, one only has to replace V by V eff to obtain the corresponding diffusion
coefficient for finite gyroradii. In the limit of large Kubo numbers, K >∼ 1, one
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Figure 3.4: Left: Effective drift velocity vs. gyroradius according to Eqs. (3.11) and
(3.15). Right: Effective correlation length vs. gyroradius according to
Eqs. (3.12) and (3.16).

has D ∝ λc V Kγ−1 = λ2−γV γ/τ1−γ
c instead, with γ = 0.7 (Eqs. (2.67) and

(2.68)) due to trapping effects. [We have observed γ ≈ 0.75 in our numerical
simulations.] It should be pointed out that in the large Kubo number regime,
both the drift velocity and the correlation length are affected, namely in such a
way that these two effects tend to cancel each other out. Employing the above
formulas for V eff and λeff

c , we finally obtain

Dρ/D0 ≈ 1 + [2 − 3γ] ρ2 +

[
3

2
− 21

4
γ +

9

2
γ2

]

ρ4

+

[
1

2
− 29

12
γ +

27

4
γ2 − 9

2
γ3

]

ρ6 for ρ <∼ 1 (3.17)

and
Dρ/D0 ≈ 1.732−γ (4

√
πρ)−γ/2 for ρ� 1 (3.18)

where γ = 2 for K <∼ 1 and γ ≈ 0.75 for K >∼ 1. It is interesting to note that
for γ = 2/3, the second and fourth order terms in Eq. (3.17) vanish exactly,
i.e., Dρ/D0 is constant for small values of ρ up to sixth order corrections. Since
this critical value for γ is pretty close to both ours (γ ≈ 0.75) and Gruzinov’s
(γ = 0.7) in the large Kubo number regime, the diffusivity depends only weakly
on the gyroradius in this case as long as it is smaller than or comparable to
the correlation length. This confirms our simulation results in the K � 1
limit. In the low K regime, we find Dρ/D0 ≈ 1 − 4 ρ2 instead, and for large
gyroradii, the transport is reduced with increasing ρ like ρ−1 or ρ−γ/2 for K <∼ 1
or K >∼ 1, respectively. The simulation results shown in Fig. 3.2 are compared
to the analytical approximations in Fig. 3.5. In general, we find fairly good
agreement for both small and large gyroradii. Only for K = 180 and ρ = 10,
the numerical value is somewhat smaller than the analytical one. In this case,
the nonlinear regime is not fully established yet due to the strongly reduced
drift velocity. This can be quantified by defining also a new effective Kubo
number Keff ≡ V effτc

λeff , which gets smaller than one in this case.
In this chapter, the correlation length of the stochastic potential has been

chosen λc ≡ 1 for simplicity. For general studies, the gyroradius ρ has to be
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Figure 3.5: Comparison between the numerically determined diffusion coefficients
and the analytical formulas, Eqs. (3.17) and (3.18). Here, D0 and Dρ

denote, respectively, the diffusivity for vanishing and finite gyroradius.

replaced by ρ/λc throughout the foregoing discussion.

3.5 Summary and conclusions

In summary, we have used direct numerical simulations and analytical analysis
to establish a rather detailed and coherent picture of the turbulent advection of
test particles with finite gyroradii. Our results correct both the naive expecta-
tions and the previously published DCT-based results (Vlad & Spineanu, 2005;
Vlad et al., 2005). While in the low Kubo number (weak turbulence) regime, the
diffusivity falls off rapidly with increasing gyroradius, it is more or less constant
in the high Kubo number (strong turbulence) regime as long as the gyroradius
does not exceed the correlation length of the electrostatic potential. The physi-
cal mechanisms underlying these results were identified and discussed. In short,
the gyroaveraging process smoothes out the potential and therefore reduces the
effective drift velocity monotonically with increasing gyroradius. On the other
hand, the gyroaveraging increases the correlation length of the potential as can
be understood by inspection of Eq. (3.5). For ρ <∼ 1, the term J0(kρ) mainly
suppresses the large wavenumber contributions, narrowing the k spectrum and
therefore widening E(x) in real space. For ρ >∼ 1, the Bessel function tends to
reduce the entire spectrum, and it can be shown that the effective correlation
length converges to a fixed value. In particular, we found that for K >∼ 1, the
decrease of the average drift velocity with increasing gyroradius tends to be bal-
anced by an increase of the effective correlation length. Thus the particles are
able to travel larger distances, and the diffusivity is practically left unchanged.
If the gyroradius clearly exceeds the correlation length, on the other hand, the
diffusivity falls off as ρ−γ/2 with γ = 2 for K <∼ 1 and γ ≈ 0.75 for K >∼ 1. This
is consistent with previous studies of test particle diffusion in Hasegawa-Mima
turbulence (Manfredi & Dendy, 1997).

The main purpose of the present chapter was to investigate the fundamental
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physical processes responsible for the gyroradius dependence of the diffusivity
under various circumstances. In the next chapters, the influence of additional
effects like anisotropic structures and diamagnetic drifts is included, but it will
turn out that the basic insights and results discussed in this chapter remain
relevant. Based on simulations with the nonlinear gyrokinetic code gene (Jenko
et al., 2000; Dannert & Jenko, 2005), we expect the Kubo numbers under
realistic experimental conditions to be of the order of unity or even slightly
larger. At the same time, the gyroradii of fast beam ions do not exceed the
correlation length of the electrostatic potential. Consequently, it is reasonable
to expect that the finite Larmor radius reduction of the turbulent diffusion
is rendered ineffective, suggesting a significant impact of the turbulence on
the beam ion transport. A closer examination of this matter will be given in
Chapter 6, including 3D effects.
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Chapter 4

Advection in Anisotropic 2D
Electrostatic Turbulence

In this chapter, the E×B advection of trace ions in two dimensions is investigated
for realistic tokamak microturbulence, which means that certain anisotropies
are taken into account. In order to understand the consequences of effects like
large gyroradii, fluctuation anisotropies, zonal flows, or poloidal drifts, they are
again first studied in the framework of a model which is based on self-created
stochastic potentials. Direct numerical simulations are performed, and a semi-
analytical model is presented which provides qualitative as well as quantitative
insight into the nature of passive tracer transport. Important results are ob-
tained concerning the influence of anisotropic structures on the transport of
thermal as well as fast particles. The results of this chapter have been pub-
lished in (Hauff & Jenko, 2007).

4.1 Introductory remarks

In the present chapter, we will again consider the E×B advection of trace
ions from a rather fundamental point of view. To this aim, we restrict our
study to the dynamics of passive tracers in a given perpendicular plane, leaving
questions related to parallel dynamics for the Chapters 6 and the following. It
will turn out once more that the relative simplicity of this system enables us to
obtain qualitative insight into a number of fundamental mechanisms governing
transport in turbulent plasmas which would be much harder to extract from
more complex models (where it is usually impossible to discriminate between
various co-existing effects). Moreover, our approach even allows us to derive
quantitative expressions for the resulting particle diffusivities, depending on
certain anisotropy parameters. Many of these findings are expected to carry
over to more general models, either directly or by analogy.

In this spirit, we will assess the role of effects like large gyroradii (Chapter
3), fluctuation anisotropies (Lin et al., 2005), zonal flows (del Castillo-Negrete,
2000), or poloidal drifts (Annibaldi et al., 2002). Although there exists a signif-
icant number of studies addressing their influence on transport, there has been
no coherent picture concerning most of them. For the effect of large gyroradii
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on test particle transport, we have been able to establish such a picture in the
previous chapter, temporarily restricting on isotropic turbulence. As far as the
strong influence of homogeneous poloidal drifts on the radial transport of trac-
ers is concerned, a clear description of this effect is reported and assessed in this
chapter for the first time (to our knowledge), as well as a comprehensive study
of the qualitative and (in the former case) quantitative influence of streamers
and zonal flows. To begin with, we will study the behavior of tracers in self-
created stochastic potentials. Direct numerical simulations are performed, and
a semi-analytical model (based on the work in Chapter 3) is presented which is
able to capture the main effects quite accurately. Based on these preparatory
investigations, we will then analyze the particle dynamics in realistic turbulent
fields as described by nonlinear gyrokinetics (Frieman & Chen, 1982). Here, the
point is to identify the physical processes controlling the turbulent transport of
trace ions in magnetized plasmas, and to characterize their interplay.

The structure of the present chapter is as follows. After providing some basic
information about the concepts and definitions of this chapter in Section 4.2, we
then deal in detail with fluctuation anisotropies, zonal flows, and poloidal drift
effects in Sections 4.3, 4.4, and 4.5, respectively. This is all done in the context
of self-created stochastic potentials, in order to be able to isolate and focus on
individual effects in a convenient way. In Sec. 4.6, we then discuss the particle
diffusion in realistic turbulent potentials as described by nonlinear gyrokinetics.
Finally, in Sec. 4.7, we provide a summary along with some conclusions.

4.2 General remarks

In this chapter, the fluctuating electrostatic potentials φ(x, t) will either be
taken from simulations with the gyrokinetic turbulence code Gene (Jenko et al.,
2000; Dannert & Jenko, 2005) or they will be self-created by superposing a suffi-
ciently large number of random harmonic waves, as descriped by Eq. (3.1). The
spatiotemporal autocorrelation function of this potential is calculated accord-
ing to Eq. (3.2). E×B drift velocity, gyroaveraging approximation, diffusion
coefficient etc. are defined as usual, moreover, the same numerical schemes are
applied than in the last chapter (e.g. the Runge-Kutta method (Vesely, 1994)
and the ‘time average method’ (Reuss, 1996)). For the self-generated potentials,
the values of the potential and those of the required derivatives are given ana-
lytically for each point in space and time, whereas for the realistic, gyrokinetic
potentials they are given as three dimensional arrays, φ(xi, yj, tk). The values
at intermediate space-time positions are then obtained by means of a suitable
interpolation scheme.

4.3 Anisotropic stochastic potentials

Gyrokinetic simulations show that tokamak microturbulence is, in general, not
isotropic (see, for example, contour plots in Section 2.2). This calls for a gener-
alization of the ideas developed in Chapter 3. Consequently, we consider next
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Figure 4.1: Ratio of the diffusion coefficients in anisotropic (Dx,y) and isotropic (DI)
stochastic turbulence versus the ‘anisotropy factor’ ζ = λx/λy. Solid
curves: analytical approach in the low/high Kubo number limit; single
points: simulation results for KI = 0.07 and KI = 70.

a spatial autocorrelation function of the form

E(x) ∝ e−(x/λx)2−(y/λy)2 (4.1)

where ζ = λx/λy may deviate from unity. To realize such autocorrelations,
we work now with N = 103 partial waves, having checked that E(x) is still
sufficiently smooth and that the resulting diffusion coefficients are practically
unchanged when N is increased.

In a first step, let us consider the limit of vanishing gyroradius. Keeping
λy (as well as the potential amplitude) fixed and changing only λx, one can
use λI ≡ λy and VI = Vx as constant reference values denoted by the index
I (for isotropic). We thus have λx = ζλI and Vy = VI/ζ. Inserting these
relationships into Eq. (2.68), we find Dx = ζ2−γDI and Dy = ζ−γDI with γ = 2
for K <∼ 1 and γ ≈ 0.7 for K >∼ 1. Here, DI is the reference diffusion coefficient
obtained for the isotropic case, ζ = 1. In Fig. 4.1, these four curves are plotted
and compared with direct numerical simulations. The isotropic Kubo number
KI = VI τc/λI has again been adjusted by varying τc, i.e., ωmax. The linear
regime is represented by simulations performed at KI = 0.07, whereas for the
nonlinear regime, KI = 70 was chosen. In this context, we would like to point
out that if ζ changes, the ’real’ Kubo number changes, too, but it keeps the same
in both directions as long as E(x) is Gaussian (Kx = Ky = KI/ζ). As can be
seen in Fig. 4.1, the simulation results coincide quite nicely with the analytical
predictions. For large Kubo numbers, the diffusion in the x direction is greatly
enhanced for ζ > 1. Moreover, invoking mixing length arguments ((Kadomtsev,
1965), Chap. IV 4), it is reasonable to expect that the fluctuation amplitude
is proportional to the radial correlation length, yielding φ ∝ ζ. This leads
to Dx = ζ2DI and Dy = DI , independent of KI . While this estimate might
merely set an upper limit, it is clear that the formation of streamers (radially
elongated vortices) implies a significant enhancement of Dx with increasing
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Figure 4.2: Left: Relative diffusion Dρ,x/D0,x = (Vρ,x/V0,x)2 (semi-analytical ap-
proach) for K � 1 and different anisotropies ζ = λx/λy. The subscripts
ρ and 0 denote, respectively, cases with finite and vanishing gyroradius.
Right: The same for the y direction.

Figure 4.3: Left: Relative diffusion Dρ,x/D0,x = (Vρ,x/V0,x)γ(λρ,x/λ0,x)2−γ , γ = 0.82
(semi-analytical approach) for K � 1 and different anisotropies ζ =
λx/λy. The subscripts ρ and 0 denote, respectively, cases with finite
and vanishing gyroradius. Right: The same for the y direction. Here,
γ = 0.72.

streamer aspect ratio ζ in a strong turbulence regime.

In a second step, let us now focus on finite gyroradius effects in potentials
with given values of KI and ζ. Our key interest is to find out whether the
constant transport regime for ρ <∼ 1 and large KI (see Fig. 3.5) is still present
or not. In order to apply the scaling approach outlined in the previous chapter,
we have to determine the effective autocorrelation function for Eq. (4.1) along
with the the values of V eff

x,y and λeff
x,y. Unfortunately, in the anisotropic case,

the integral in Eq. (3.5) cannot be solved analytically anymore, even if the
Bessel function is replaced by appropriate approximations. Thus the analysis
has to be done numerically, e.g., using Mathematica. Here, the correlation
length is defined as λeff

x =
√

−2Eeff(x)|x=0/∂2
xE

eff (x)|x=0, which means that
we fit a Gaussian to the central region of Eeff(x) and determine its width. The
resulting Dρ/D0 curves are shown in Figs. 4.2-4.3. Note that the gyroradius is
normalized with respect to λy (which is held constant), and that ζ is varied by
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Figure 4.4: Left: Isotropic turbulence spectrum and the symbolized narrowing due
to gyroaveraging (multiplication with J0(ρk). Right: The same for an
anisotropic turbulence spectrum, symbolizing streamers in the x direc-
tion. Only the y component narrows significantly.

varying λx. The γ values have been determined from simulations with ρ = 0 and
varying Kubo numbers. In the x direction, γ deviates substantially from the
value obtained by Gruzinov and Isichenko (γ = 0.7) (Eqs. (2.67) and (2.68));
we find, e.g., that γ = 0.82 for ζ = 4, which indicates that the trapping effects
are weakened with respect to the isotropic case.

In the linear regime (K � 1), the reduction of Dρ with increasing ρ is
simply a consequence of the reduction of V eff . With increasing anisotropy ζ,
this reduction is less severe since the influence of gyroaveraging is weaker for
larger structures. In the nonlinear regime (K � 1), we get a more interesting
picture. For the x direction, we see that the increasing anisotropy leads to a
stronger reduction of the diffusion for small gyroradii. If ρ in Fig. 4.3 (left)
had been normalized with respect to λx, this reduction would look even more
pronounced. In contrast, for the y direction, we find an increase of Dρ with
increasing anisotropy, and for ρ ∼ λy, the diffusion coefficient becomes even
larger than in the zero gyroradius limit. These findings can be explained in
terms of the behavior of λeff

x,y. For potentials with λx > λy, the autocorrelation
spectrum is more extended in the ky direction than in the kx direction. If
we now multiply this spectrum with the Bessel function [remember Eq. (3.5)],
it is clear that for small gyroradii ρ the spectrum is damped mainly in the ky

direction. Therefore, λeff
y increases strongly, whereas λeff

x stays roughly constant
for quite a while. This behavior is sketched in Fig. 4.4. For isotropic turbulence,
we find that for ρ <∼ 1, the increase of the effective correlation length balances
the reduction of the drift velocity almost exactly in the nonlinear regime. In the
anisotropic case, however, this subtle balance is perturbed. While the change
in the x correlation length is observed to be too small, the change of its y
counterpart is found to be too large.

The fact that the scaling approach outlined above along with its interpre-
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Chapter 4. Advection in Anisotropic 2D Electrostatic Turbulence

Figure 4.5: Comparison between the simulation results (symbols) for an anisotropic
potential with ζ = λx/λy = 4 and the semi-analytical approach (solid
lines; data taken from Figs. 4.2 through 4.3) for K � 1 and K � 1.

tative implications is also applicable to the case of anisotropic fluctuations is
demonstrated in Fig. 4.5. Here, we took a potential with ζ = 4 and performed
a number of test particle simulations for a set of different gyroradii for both
the linear and the nonlinear regime (precisely speaking, K = 0.18 and K = 180
have been used). As can be inferred from Fig. 4.5, the simulation results and
the analytical curves are in good agreement, giving evidence that the model
still provides important qualitative as well as quantitative insight.

In summary, we can state that the presence of anisotropic, streamer-like
structures (as indicated by λx > λy) tends to enhance the transport in the x
direction in the zero gyroradius limit. On the other hand, one finds a stronger
reduction of the transport with increasing gyroradius than in the isotropic case.
In the y direction (which is of less interest in a tokamak), the situation is
reversed.

4.4 Poloidal shear flow effects

So far, we have focused on the impact of anisotropic vortical structures (stream-
ers) on the radial (and poloidal) diffusivities of trace ions. Such considerations
are known to apply, e.g., to trapped electron mode (TEM) turbulence (see
Fig. 2.7). However, in the case of ion temperature gradient (ITG) driven tur-
bulence, the system usually spins up poloidal shear flows to fairly high am-
plitudes (see Fig. 2.6 and related discussion). It is widely accepted that the
cross-field transport is reduced or even quenched in the presence of such ‘zonal
flows (see, e.g., Ref. (Terry, 2000)). Here, we want to investigate the effect of
such zonal flows on trace ion transport in detail, with a special consideration
of the modifications concerning finite gyroradius effects.

As a model potential, we choose

φ̃(x, y, t) = φ(x, y, t) +Azf sin(kzfx) . (4.2)
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Here, φ represents the isotropic potential considered already in the previous dis-
cussion and generated according to Eq. (3.1) with N = 103. The corresponding
Eulerian autocorrelation function is then easily shown to be

Ẽ(x, y, t) = E(x, y, t) +
A2

zf

2
cos(kzfx) , (4.3)

where E is the autocorrelation of φ. Unfortunately, it is not possible to easily
extend the scaling approach introduced in Chapter 3 to cases with strong zonal
flows. This is because the last term in Eq. (4.3) completely changes the shape
of the autocorrelation, leading to a minimum with large negative values on
the x axis and to a plateau on the y axis. Qualitatively, one can expect that
the presence of poloidal shear flows will bring about a reduction (an increase)
of the diffusivity in the x (y) direction since negative values of Ẽ make it
less probable for an equipotential line to cross that region, whereas a plateau
indicates a larger crossing probability. Quantitative statements have to rely on
numerical simulations. But before we turn to those, we would like to insert a
brief discussion about the influence of finite gyroradius effects on the transport
properties. In this context, one finds the effective autocorrelation function

Ẽeff (x, y, t) = Eeff(x, y, t) +
A2

zf

2
cos(kzfx)J

2
0 (kzfρ) , (4.4)

i.e., the generic structure of the autocorrelation function is preserved. As we
know from Chapter 3, finite gyroradius effects enhance the correlation length
inferred from Ẽeff – but they have no influence on the wavelength of the zonal
flow term in Eq. (4.4), of course. Considering both terms together, one can
thus expect that the gyroaveraging process will lead to an increase of the (ef-
fective) correlation length, but this increase will be more moderate than for a
potential without zonal components. Moreover, since for realistic parameters,
kzf is usually smaller than the average value of |ki|, the influence of the zonal
flow term will increase with increasing gyroradius as long as kzfρ <∼ 1. So what
we expect for the ρ dependence of the transport is a reduction of the plateau
regime observed in Figs. 3.2 and 3.5.

Let us now turn to the numerical simulation results. Here, the isotropic
potential is created the same way as before, and the zonal flow is characterized
by kzf = 0.76 and A2

zf/2 = 0.6E(0). The latter values are inspired by data
from gyrokinetic turbulence simulations with the Gene code (see references
given in Section 2.2). The resulting diffusion coefficient for the x direction is
shown in Fig. 4.6 for different Kubo numbers and gyroradii. We have chosen the
isotropic Kubo number KI as a parameter, since the Kubo number including
the zonal flow term is not unique in the x and y direction anymore. However,
as follows from Eqs. (2.62) and (3.3) (note Vx = (−∂2Ẽ(x, t)/∂y2|x=t=0)

1/2 =
(−∂2E(x, t)/∂y2|x=t=0)

1/2 and the fact that λx is only marginally affected by
the zonal flow term), Kx ≈ KI . The Kubo number is then again varied by
changing τc in the isotropic component of the potential.

Compared to Fig. 3.2, we notice two main differences. First, for K > 1, the
reduction of Dx with K is stronger (γ ≈ 0.6). This is due to the strong negative
values of Ẽeff , indicating – in the Eulerian picture – that there is a ’transport
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Figure 4.6: Long-time limit of the diffusivity Dx as a function of the Kubo number
K for different gyroradii ρ (normalized to the correlation length of the
potential) in a potential with a superposed zonal flow [see Eq. (4.2)]. The
dashed line represents the case for ρ = 0 without zonal flow (data taken
from Fig. 3.2).

barrier.’ Second, we see that for K > 1, a slight reduction of Dx with ρ remains
even for ρ < 1. This finding is in qualitative agreement with the prediction we
made above, studying the effective correlation lengths. The curves for ρ = 3
and ρ = 10 play a special role. Here, the gyroaveraging filters out the zonal
flow term due to J0(kzfρ) ≈ 0, and the Dx(K) curve follows the curve for the
pure isotropic case shown in Fig. 3.2. However, this is a direct consequence
of our simple choice for the model potential which only features a single zonal
mode. In practice, there will always be a superposition of many zonal modes,
weakening this effect. In the y direction, on the other hand, the situation is
completely different. Here, the particle diffusivity is increased by the zonal flow
term, and D(t→ ∞) increases further for ρ <∼ 1 when ρ is increased.

The results obtained in the present section may be expected to be proto-
typical for a large class of systems which can be described as a superposition
of background turbulence and zonal flows. They show that the radial parti-
cle transport tends to be inhibited by strong zonal flows – as expected – and
that the finite gyroradius effects still differ in the low and high Kubo number
regimes.

4.5 Poloidal drift effects

While it is not hard to understand (given the huge amount of literature on this
topic) that sheared poloidal flows can lead to a strong suppression of the radial
fluxes of trace species, it is probably easy to overlook that homogeneous poloidal
drifts may have the same effect. This will be the topic of the present section.

Generally, all microinstabilities in toroidal magnetoplasmas exhibit drifts
in the poloidal direction (see, e.g., Fig. 2.5 and related discussion). While
ion temperature gradient (ITG) modes tend to drift in the ion diamagnetic
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direction, electron temperature gradient (ETG) modes and trapped electron
modes usually drift in the electron diamagnetic direction. It should be kept in
mind, however, that it is also possible for these modes to have only very small
drift velocities or even change their drift direction. This is often the case when
the gradients which are not responsible for the main drive of the respective
mode (e.g., the electron temperature gradient in the case of ITG modes) are
increased. As was found in many Gene simulations, these linear drifts tend
to carry over into the nonlinear, fully turbulent regime, at least as far as the
long-wavelength modes are concerned, i.e., the ones typically responsible for
most of the turbulent transport.

In the context of our present stochastic model, we want to define as a ‘drifting
potential’ φdr a (fluctuating or static) potential whose structures move in the
poloidal (y) direction with a constant drift velocity vdr. Denoting again the
isotropic potential from Chapter 3 by φ(x, y, t), we thus have

φdr(x, y, t) ≡ φ(x, y − vdrt, t) . (4.5)

As we will see in the next section, the model described by Eq. (4.5) is fairly
realistic and represents an important and new class of transport effects. Sim-
ulations show that the introduction of a drift velocity vdr of the order of V
in the y-direction reduces transport in the x direction by up to one order of
magnitude, whereas it strongly enhances the transport in the y direction.

4.5.1 Zero gyroradius limit

In order to understand the effect of such a homogeneous drift, it is useful to
perform a Galilei transformation to a reference frame moving in the y direction
with velocity vdr. Quantities referring to this co-moving coordinate system will
be denoted with a prime. Using Faraday’s law of induction (in the limit of non-
relativistic velocities) this transformation leads to an additional component of
the electrostatic field,

E′ = E + vdr × ez . (4.6)

Note that due to our normalization B is replaced by ez (see Section 2.4). Rewrit-
ing this equation in terms of the electrostatic potential (E = −∇φ), we thus
find

φ′dr(x, y, t) = φdr(x, y + vdrt, t) − vdrx = φ(x, y, t) − vdrx . (4.7)

For the particle motion we then find the (trivial) relation v′
E = vE − vdrey. So

in the co-moving frame, which is more easy to access, the law of induction pro-
duces an additional electric field, which is responsible for the different behavior
compared to a non-drifting potential. An example for such a drift frame poten-
tial is shown in Fig. 4.7. It is clear that the second term on the right-hand side
of Eq. (4.7) gives the potential a completely new structure. Since it represents
an infinite ramp, it prevents the formation of long-ranged equipotential lines
in the x direction, whereas open equipotential lines running in the y direction
are favored. If we denote the maximum absolute value of the potential φ by
φmax, we can estimate from Eq. (4.7) the maximum length of an equipotential
line in the x direction to be xmax ≈ 2φmax/vdr ≈ 2Vxλy/vdr. [Here, λy is the y
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Figure 4.7: Contour plot of the effective (static) potential in the drifting frame, φ′
dr,

for a poloidal drift velocity of vdr = 0.0013 (V = 0.0052). Representative
open and closed isolines (particle trajectories) are shown as solid lines.

correlation length of φ, Vx is the average E×B drift velocity in the x direction,
and, according to Eq. (2.61), the simple approach Vx ∼ φ/λy is assumed.] Since
for a non-fluctuating (but drifting) potential φdr(x, y, t) = φ(x, y − vdrt), the
length of the trajectory is limited in the x direction, we expect the diffusion
coefficient to show a sharp drop to zero. The ‘drop time’ can be estimated by
the time a particle needs to cross the maximum trajectory length,

τdrop ≈ xmax

Vx
=

2λy

vdr
. (4.8)

Note that λy enters this equation, although the motion in the x direction is
described. Simulation results show a good correspondence with this estimate
(see Fig. 4.8 (left)). Comparing a fluctuating potential (finite τc or K) with a
non-fluctuating potential (τc,K → ∞), the typical behavior is that the D(t)
curves are almost identical for t <∼ τc, whereas for t >∼ τc, the curve for the
fluctuating potential departs from the K = ∞ curve and saturates (see Fig. 2.13
and related discussion). Thus we expect that for τdrop <∼ τc or vdr >∼ 2λc/τc,
the diffusion will be strongly reduced also at finite K, since in that case, the
barrier life time exceeds the time a particle needs to travel the distance xmax.
On the other hand, as long as vdr � λc/τc, the influence of the homogeneous
drift on Dx is relatively small, since decorrelation occurs before the particles
are able to ‘feel’ the barrier, i.e. to cover the distance xmax. A schematic draft
of the influence of the ‘drop time’ on the running diffusion coefficient is given
in Fig. 4.9. In a number of simulations we found that the relative drift velocity
for which the diffusivity drops to 1/e of the original value can be expressed as
∆1/evdr = 2λy/τc. This simply means that the diffusivity is reduced by a factor
of 1/e when τc = τdrop. It is worth pointing out that this ‘resonance width’ is
thus determined solely by the turbulence properties λc and τc.

Noting that in the drifting frame, the particles follow the isolines of φ′
dr,

Fig. 4.7 tells us that there are two different classes of particles: trapped ones
which in the lab frame move in the y direction with the drift velocity vdr –
and passing ones which (even in the lab frame) move against the drift into the
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Figure 4.8: Left: Dx(t) for a poloidally drifting potential with vdr = 0.0013. Solid
lines: static potential (K = ∞); dashed lines: time-dependent potential
(K = 18). According to the estimate τdrop ≈ 2λc/vdr, we find τdrop ≈
(1520, 1920, 2400, 2890, 2630) for ρ = (0, 0.5, 0.75, 1.3, 3) and K = ∞.
These values are in reasonable agreement with the Dx(t) curves. For
K = 18, we find saturation at t ∼ τc ≈ 3000. Right: The same, but for
the y direction.

negative y direction. The former dominate for small drift velocities, whereas
the latter prevail for large drift velocities when the second term in Eq. (4.7)
dominates. Considering the drift frame potential, it is also clear that trapped
particles will be found primarily near the extrema of φ, whereas particles on
open trajectories will be found near φ ≈ 0. Such a behavior has already been
reported in Ref. (Annibaldi et al., 2002).

Since in the lab frame, we have 〈∂xφdr〉 = 0 due to symmetry arguments,
the quantity 〈[y(t) − y(0)]〉 always stays zero. This means that the weighted
distance of the trapped particles moving into the positive y direction and of
the untrapped particles moving into the negative y direction keeps constant.
Given that the (average) velocity of the trapped particles is V trapped

y = vdr

in the lab frame, the average velocity of the untrapped particles has to be
−V untrapped

y = vdrN
trapped/Nuntrapped. As N trapped gets smaller when vdr is

increased, it is possible for the average velocity of the untrapped particles to
stay constant over a certain range of drift velocities. In Fig. 4.10 (left), we
display the probability distribution function (PDF) for the particle position in
the y direction at a fixed time for a static potential and a series of different drift
velocities vdr. Sharp peaks of trapped particles can be clearly observed which
move to the right with vdr, whereas the untrapped particles move to the left (on
average). The average velocity of the untrapped particles is observed to stay
approximately constant for vdr <∼ V as pointed out above. Further, it can be
estimated that the maximum of vdrN

trapped is reached for V ≈ vdr which can
be interpreted as a resonance condition.

Since we have chosen a static potential, particles stay trapped or untrapped
forever. If we introduce a time dependence of the fluctuations, the structures
are not constant in time, so that trapped particles can become untrapped and
vice versa. This, of course, leads to a dispersion of the structures in the PDF
with time increasing, as can be clearly observed in Fig. 4.10 (right). For very
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Figure 4.9: Schematic time evolution of the running diffusion coefficient in two dimen-
sions. Black/solid line: time dependent electrostatic potential without
background drift. Blue/dotted line: static potential without background
drift. Red/dashed dotted line: time dependent potential with background
drift and τdrop < τc. Finite gyroradius effects would shift the solid curve
downwards (V eff < V ). Moreover, the maximum would be shifted to the
right (τ eff

fl > τfl).

large times, the PDF turns into a Gaussian. This - more realistic - behavior is
left for discussion in Chapter 5.

4.5.2 Finite gyroradius effects

As before, we would like to also study the influence of finite gyroradius effects.
To this aim, one has to consider effective gyroaveraged potentials instead of the
ones used above. Since the second term on the right-hand side of Eq. (4.7) is
not affected by gyroaveraging, we find

φ′
,eff
dr (x, y, t) = φeff(x, y, t) − vdrx . (4.9)

It thus follows that the effective correlation lengths and drift velocities are
simply the ones obtained in the isotropic case (see Chapter 3). Consequently,
λc increases and V decreases with increasing gyroradius ρ. At the same time,
since the gyroaveraging reduces the absolute values of φ, the second term in
Eq. (4.9) becomes more dominant – which means that the number of trapped
particles is reduced with growing ρ.

Fig. 4.8 (left) shows the running diffusion coefficient in the x direction for
vdr = 0.0013 (for comparison, V = 0.0052) for a number of different gyroradii
normalized to the correlation length of the potential. The solid lines are ob-
tained from a static (but still drifting) potential. Like discussed above, the
diffusion is bound to drop to zero for large times. As can be inferred from
the figure, the drop time is well approximated by the expression derived above,
τdrop ≈ 2λc/vdr. In particular, since λc grows with increasing ρ, τdrop grows,
too. These considerations for a static potential enable us to also interpret the
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Figure 4.10: Left: PDF of the particle displacements in the y direction in a static,
drifting potential (for different values of vdr) at t = 10000. The number
of trapped particles (moving to the right) decreases as vdr increases,
and the average position of the untrapped particles (mostly moving to
the left) is approximately constant for vdr < V = 0.0053 but decreases
rapidly for vdr > V . Note that the right maximum for vdr = 0.0125
is outside the range of the figure. Right: Probability density of the
particle displacements in the y direction for a time-dependent potential
with K = 18 and a drift velocity of vdr = 0.00125 at t = 2000 (black),
t = 6000 (dark grey), and t = 10000 (light grey).

behavior of D(t) for a fluctuating potential. The dashed lines in Fig. 4.8 (left)
show such curves for K = 18 and τc ≈ 3000. As we have already mentioned, the
D(t) curves for finite K follow the curves for the static potential up to t ∼ τc,
and then they saturate. In our example, we have τc ≈ τdrop which is in line with
data obtained from Gene simulations of (pure) trapped electron mode turbu-
lence (see Ref. (Dannert & Jenko, 2005) and the results presented in the next
section). Since the curves for static potentials in Fig. 4.8 (left) lie close to each
other for t ≈ τc, we can understand why the same is true for time fluctuating
potentials. However, as the curves for small gyroradii tend to saturate earlier
than the ones for larger gyroradii, this argument is more a qualitative one. We
remark that again we have found a regime where the diffusion keeps constant
for ρ <∼ 1, and again this effect is due to the increase of the effective correlation
length. However, the mechanism leading to this result is different from the one
discussed in Chapter 3.

The effect that the different curves do not saturate at exactly the same
time although their correlation time is the same is a consequence of a more
fundamental effect. In simulations varying the correlation time as well as the
Kubo number we found that for K < 1, the saturation time coincides quite well
with the correlation time, whereas for K > 1, the saturation time is reduced
compared to τc. Thus, the stronger the trapping (i.e., the more circulations
around a certain eddy a particle can perform), the more sensitive its motion with
respect to small perturbations. In Ref. (Gruzinov et al., 1990), the lifetime τh of
the contour φ = h� 1 (with the maximum of the potential normalized to unity)
is estimated by the expression τh ≈ hτc. Since we know that for large Kubo
numbers, the transport is dominated by large-scale trajectories with h ∼ 0, this
confirms our observation. Consequently, an increase of the gyroradius leads to
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a reduction of the effective Kubo number (see Sec. 4.6.1), and the saturation
time increases – although the correlation time stays the same. If, as in our
case, τc ≈ τdrop, small changes in the saturation time can cause large changes in
the saturation value of D, since the D(t) curve for the static potential changes
rapidly around that time. In Fig. 4.8 (left), the increase of D for the static
potential is balanced by the slight increase of the saturation time, leading to
approximately the same saturation value for different, but small gyroradii.

Fig. 4.8 (right) displays the running diffusion coefficient in the y direction
for the same potential as in Fig. 4.8 (left). In the static case (solid lines), we see
that the transport is ballistic for large times. Here, the trapped particles move
with the drift velocity, whereas – as we have shown above – the untrapped
particles move with a constant average velocity into the opposite direction.
We have also seen that an increase of the gyroradius leads to a reduction of
both the number of trapped particles and the average velocity of the untrapped
particles (−V untrapped

y = vdrN
trapped/Nuntrapped). Since the average velocity

V y ≡ (N trapped|V trapped
y | +Nuntrapped|V untrapped

y |)/N = (2N trapped/N) vdr does
not depend on the effective correlation length but only on the number of trapped
particles (and, of course, on the drift velocity), one may expect that Dy drops
already for small gyroradii. Fig. 4.8 (right) supports this claim.

4.6 Trace ions in realistic turbulent fields

Until now, we have studied the transport of passive tracers in electrostatic
potentials which were created by superposing a large number of plane waves.
Applying this method, we were able to model and study a wide number of
different effects including anisotropies, zonal flows, poloidal drifts as well as
their dependence on the Kubo number of the potential and the gyroradius of
the particles. With these results in our hands, we are now in a good position to
examine passive tracer transport in realistic turbulent potentials obtained from
nonlinear gyrokinetic simulations. Here, some or all of the above effects may
be present at the same time and interact with each other.

As an example, we will use simulation data for trapped electron mode (TEM)
turbulence in tokamaks obtained with Gene. These simulations have been
performed by T. Görler, F. Merz, and M.J. Püschel at the IPP in Garching.
As plasma parameters, the nominal values listed in Sec. II.B of Ref. (Dan-
nert & Jenko, 2005) were used. The electrostatic potential in a perpendicular
plane on the low-field side is written out frequently and then subjected to post-
processing. In this context, it is necessary to make a few remarks about the
box and grid size as well as the employed discretization methods. First, Gene

uses doubly periodic boundary conditions. So to exclude finite box size effects,
we have chosen a simulation domain whose extensions in the x and y directions
are much (about 25 times) larger than the respective correlation lengths. This
helps to avoid spurious potential correlations and particle trajectories. Second,
the choice of the discretization methods was found to be of great importance.
Given (only) the electrostatic potential (only) on a two-dimensional x-y grid, it
is necessary both to calculate the E×B drift velocities (i.e. the spatial deriva-
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Figure 4.11: Left: Autocorrelation function E(y, t) of the electrostatic potential ob-
tained from a gyrokinetic simulation of trapped electron mode turbu-
lence with the Gene code. Solid lines: positive values; dashed lines:
negative values. The existence of a poloidal drift is evident. Right: Au-
tocorrelation spectrum E(kx, ky) of the potential from the left figure.
The solid and dashed lines denote, respectively, the points where the
squared Bessel function J2

0 (kρ) drops to 1/e times its maximum value
and where it has its first zero. Here, ρ = 6, for which value both corre-
lation lengths reach their maximum.

tives), and to interpolate between the grid points (for an overview on commonly
used interpolation schemes, see Ref. (Yeung & Pope, 1988)). We found that
the only method ensuring closed trajectories for static potentials is to both dif-
ferentiate and interpolate in Fourier space. When using other, numerically less
expensive interpolation schemes (e.g., bicubic interpolation), the trajectories
are not closed anymore. Although the differences between Fourier and bicubic
interpolation tend to be small as long as one is merely interested in statistical
quantities (like diffusion coefficients) for time-dependent potentials, we still pre-
fer to work with the Fourier method – it is most accurate (and works for any
Kubo number) while sufficiently effective for our purposes.

We note that from now on, all values are normalized according to Section
2.4. So perpendicular length scales are normalized with respect to ρs = cs/Ωi

where cs = (Te/mi)
1/2 is the ion acoustic velocity and Ωi the ion gyrofrequency,

whereas time scales are normalized with respect to L⊥/cs where L⊥ is a scale
length of the background profiles (which is distinct from, but similar, to R0).
In this section, we will abandon the hats denoting normalized values. The
measured correlation lengths of the potential which will be used for our test
particle studies are λx = 6.1 and λy = 4.2. Fig. 4.11 (left) displays the contours
of the autocorrelation function of this potential plotted versus the coordinate
y and time t. It can clearly be observed that while decaying to zero for large
times and distances, the whole potential moves in the positive y direction with
a velocity of about vdr = 0.95. The components of the average E×B drift
velocity are found to be Vx = 3.3 and Vy = 2.3. Since τc ≈ 15 in the co-moving
frame, we have vdr >∼ 2λy/τc (τdrop <∼ τc), and poloidal drift effects are expected
to be significant. In a first step, however, we will consider a modified potential
for which the drift has been removed. Drift effects will then be included in a
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second step.

4.6.1 First step: Neglecting poloidal drift effects

As was discussed above, the existence and magnitude of a poloidal drift de-
pends on the simulation parameters. Linear gyrokinetic simulations show that
if R/LTe and R/LTi become comparable, the phase and group velocities of ITG
modes or TEMs tend to be rather small. We model such a situation by re-
moving the drift from the original potential, i.e., we work with a new potential
φ′(x, y, t) ≡ φ(x, y+vdrt, t) where vdr = 0.95. Using φ′, we perform test particle
simulations for a set of different gyroradii and discuss the results in the light of
the experience we made in Secs. 4.3 and 4.4.

Fig. 4.11 (right) shows the wavenumber spectrum of the TEM potential.
We observe a maximum around |ky| ∼ 0.2 and kx ∼ 0. Since those modes
play a prominent role, the autocorrelation function takes on negative values on
the y axis in real space around |y| ∼ π/0.2 ∼ 16. Obviously, we have λx > λy,
which means that the turbulence exhibits streamers (radially elongated eddies).
However, one also observes that that there is significant activity for finite values
of kx – which is important for the understanding of finite gyroradius effects. As
we have already discussed in detail, the effective autocorrelation function is
obtained by multiplying the spectrum with J 2

0 (kρ). In Fig. 4.11 (right), the
J2

0 = 1/e line and the line of the first zero crossing are plotted for ρ = 6.
Transforming the gyroaveraged spectra back to real space, one observes an
increase of both λx and λy with increasing gyroradius, reaching their maximum
values for ρ = 6. However, the increase is much larger in the x direction – in
contrast to the findings in Sec. 4.3 where a Gaussian potential was considered.
Here, the dominating finite ky mode is not affected much by the gyroaveraging
process, thus leaving λy more or less unchanged. This effect is somewhat similar
to the one found in the zonal flow model studied in Sec. 4.4 – only that the roles
of the x and y directions are reversed. The increase of λx is due to the long
tails of the spectrum in the kx direction which are removed under the influence
of the Bessel function.

Fig. 4.12 (left) shows the running diffusion coefficient in both directions for a
set of different gyroradii. One first notices that the diffusion is smaller in the y
direction than in the x direction. This effect can be explained by remembering
that the autocorrelation spectrum is characterized by λx > λy and the existence
of a dominating finite ky mode. From Secs. 4.3 and 4.4, we already know
that both effects lead to a relative decrease of the transport in the y direction.
Furthermore, we observe that Dx is roughly constant for ρ <∼ 3 (remember λx ≈
6) and then falls off as ρ is increased further. Dy, on the other hand, is reduced
already for small gyroradii. However, this reduction is more moderate for larger
ρ than that in the x direction. The ρ dependence of Dx can be interpreted
via Fig. 4.13 where the saturation values of Dx (taken from Fig. 4.12 (left))
are plotted together with the estimates obtained from the formula Dρ/D0 =
(λeff/λ0)

2−γ(V eff/V0)
γ(τ eff/τ0)

γ−1 (see Section 3.4 and 4.3, noting that now an
effective correlation time has to be taken into account, too, since the frequencies
are no longer independent of the wavenumbers). The effective values have been
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Figure 4.12: Left: Dx(t) (solid lines) and Dy(t) (dashed lines) for the potential of
Figs. 4.11 (left and right) – but without poloidal drift – for different gy-
roradii. The Kubo number is K = 8.6 and the correlation time/lengths
are τc = 15, λx = 6.1, and λx = 4.2. Right: The same, but including
the poloidal drift.

extracted from the gyroaveraged autocorrelation function as before. In the small
and large Kubo number limit, we have used γ = 2 and γ = 0.7, respectively. As
we can infer from Fig. 4.13, the simulation results follow the high Kubo number
expectations quite well for small gyroradii, whereas they tend to approach the
low Kubo number limit for larger values of ρ. (We note in passing that since
K = 8.6 for the present case, we cannot expect that the large Kubo number limit
is fully established.) This behavior can be understood by introducing effective
(i.e., ρ dependent) Kubo numbers, K eff = τ effV eff/λeff , and taking into account
that γ can vary between 2 (linear regime) and about 0.7 (nonlinear regime).
Keff will decrease rapidly if ρ is increased since V eff decreases but λeff grows.
Once Keff approaches unity, we expect the effective value of γ to increase.
This fact qualitatively explains the behavior of the simulation results shown in
Fig. 4.13. In search of a more quantitative approach, we determined a function
γ(Keff(ρ)). To this aim, we modified the original TEM data by rescaling the
length of the time intervals between the successive steps written out by Gene.
This manipulation enabled us to vary the correlation time and therefore the
Kubo number of the TEM potential. We then compared the values of K eff(ρ)
with the expression D(K) = a(K)Kγ(K)−1 to obtain γ(ρ) and a(ρ). Thus, one
gets

Dρ/D0 =
aρλ

2−γρ
ρ V

γρ
ρ τ

γρ−1
ρ

a0λ
2−γ0
0 V γ0

0 τγ0−1
0

. (4.10)

The corresponding values are shown as a dashed line in Fig. 4.13. Obviously,
they are in good agreement with the simulation results, demonstrating that
the form of Dρ/D0 is well captured by our effective autocorrelation function
approach for a large class of potentials.
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Figure 4.13: Comparison between the simulation results (symbols) from Fig. 4.12
(left) and the semi-analytical approach described in Chapter 3 (solid
lines) for K � 1 and K � 1. The subscripts ρ and 0 denote, respec-
tively, cases with finite and vanishing gyroradius. The dashed curve is
an extension of the usual semi-analytical approach, employing a “dy-
namical” γ(ρ).

4.6.2 Second step: Including poloidal drift effects

Having discussed the behavior of trace ions in a realistic turbulence potential
for which poloidal drift effects have been removed, we would now like to include
the latter. With vdr = 0.95, we find τdrop = 9.1 which is slightly smaller but
comparable to the correlation time τc = 15 (a similar case has been considered
in Sec. 4.5). In Fig. 4.12 (right), the running diffusion coefficients Dx and Dy

are plotted for a set of different gyroradii. The results are reminiscent of those
in self-generated drifting potentials shown in Fig. 4.8 (left and right). First,
we observe that Dy is enhanced and Dx is reduced compared to the case with
vdr = 0 shown in Fig. 4.12 (left). The physical origin of this behavior has already
been identified in Sec. 4.5. Again we have the situation that τdrop ∼ τc which
means that the decorrelation process – the transition into the diffusion regime
– occurs in the time segment where the variation of Dx is large. Therefore the
saturated value of Dx depends quite sensitively on the saturation time.

In Sec. 4.5, we have already made the observation that the saturation time
gets larger compared to the correlation time as the (effective) Kubo number
gets smaller, i.e., as the gyroradius increases. In Fig. 4.12 (right), this effect
seems to be stronger than in Fig. 4.8 (left); although for t ∼ τdrop, the curves
for different ρ lie close to each other, the saturation values decrease rapidly
even for small ρ. So in contrast to the case described in Sec. 4.5, we have
here the situation that poloidal drift effects lead to a stronger reduction of the
diffusion with increasing gyroradius, illustrating the subtle interactions between
finite gyroradius and poloidal drift effects. In this context, we would like to
point out that for realistic turbulence potentials (like the one considered here)
the gyroaveraging also affects the correlation time since the wavenumbers and
frequencies of the individual modes are correlated. For example, for ρ = 3, the
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correlation time is increased by a factor of about 1.1, which of course provides
a contribution to the increase of the saturation time. – In the y direction, one
observes a strong reduction of Dy with increasing ρ compared to Fig. 4.8 (right).
This effect has already been described in Sec. 4.5, where we found that it is due
to the reduction of the number of trapped particles in the effective potential.

4.7 Summary and conclusions

The main goal of the work presented in this chapter was to investigate the be-
havior of trace ions in realistic turbulent fields, focusing on the various physical
effects determining their particle diffusivities. For simplicity, we have restricted
to electrostatic fluctuations and two dimensions as far as the particle trajec-
tories are concerned. Nevertheless, we have used electrostatic potentials taken
from three (space) dimensional gyrokinetic simulations with the Gene code.
As an example, trapped electron mode turbulence was chosen. In order to be
able to study several individual effects in isolation, we also considered poten-
tials which were generated by superposing a large number of random waves.
These supplementary studies helped to gain a basic understanding of trace ion
transport which is crucial for interpreting the gyrokinetic data.

We found that fluctuation anisotropies like streamers (radially elongated vor-
tices) and zonal flows (poloidal shear flows) may strongly influence the resulting
transport levels as well as the gyroradius dependence. Here, the transport may
decrease faster or even grow as the gyroradius is increased. Finally, we have
shown that poloidal drift effects can have a strong impact on the particle dif-
fusion, enhancing it in the direction of the drift and reducing it in the other
(radial) direction. Although the underlying mechanisms are different than for
non-drifting potentials, regimes can still be found in which the transport stays
constant for gyroradii up to a correlation length.

In many cases, there exist subtle interactions between various effects (e.g.,
finite gyroradius and finite poloidal drift), leading to fairly complex behavior.
Nevertheless, we were able to demonstrate that the diffusivities obtained from
tracking particle trajectories in realistic turbulence potentials are usually well
described and understood in terms of simple scaling laws employing (effective)
correlation lengths, correlations times, and Kubo numbers. This information
can be extracted from the autocorrelation function of the (gyroaveraged) po-
tential. Thus, one obtains a fairly coherent picture of (perpendicular) trace ion
transport in turbulent plasmas.

The strong dependence on the magnitude of the fluctuations’ poloidal drift
velocity may – in practice – often be more important than the presence of zonal
flows. In Chapter 6, it will turn out that it is especially the poloidal drift of the
particles relative to the background potential which dominates transport also
in a full three-dimensional environment.
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Chapter 5

Non-Diffusive Transport in 2D
Electrostatic Turbulence

In this chapter, the studies of the previous chapter are continued, focusing on
the question whether and under which conditions the transport may become
‘anomalous’, i.e. super- or subdiffusive. While in the presence of stochastic
fluctuations, the transport always becomes diffusive for large times, coherent
flow components like zonal flows or poloidal drifts can induce non-diffusive (non-
Gaussian) transport over large intermediate time spans. In order to understand
the origin of these phenomena, the simple model employing stochastic potentials
is used to complement the analysis based on gyrokinetic turbulence simulations.
The results of this chapter have been published in (Hauff et al., 2007).

5.1 Introductory remarks

Until now, we have assumed that transport in turbulent fields as described by
tokamak microturbulence is always diffusive, which was also confirmed by our
simulation results. Nondiffusive regimes have only been identified for rather
‘pathological’ situations, like frozen vortices, or on very small time scales. In
the fusion community, it is common to portray turbulent transport in toka-
maks and stellarators as a standard diffusive process – in spite of its advective
nature. However, there also exist several investigations dealing with the possi-
bility of super- or subdiffusive transport, an interesting scenario which should
not (and cannot) be excluded a priori. Unfortunately, neither the conditions
under which such ‘anomalous diffusion’ is expected to occur nor its physical
origin are well understood at present. This is the reason why in the present
chapter, we will focus on this question, employing the well-proven connection
of self-created pseudo-turbulent velocity fields with data from nonlinear gyroki-
netic simulations for parameters which are typical for tokamak core turbulence.

There is a number of well known experimental findings which can be inter-
preted as evidence for the existence of non-Gaussian transport. Among these
are, for instance, the dependence of transport on the system size in low con-
finement mode plasmas (Perkins et al., 1993), the observed rapid propagation
of an induced perturbation (Gentle et al., 1995; Callen & Kissick, 1997), or
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the measurement of long-range temporal and radial correlations in the plasma
edge (Carreras et al., 1998; Carreras et al., 1999b; Zaslavsky et al., 2000). Such
observations are sometimes explained in terms of avalanches or self-organized
criticality (SOC). Inspired by experimental (and theoretical) evidence for the
existence of critical gradients (Baker et al., 2001), the model of the ‘stochastic
sandpile’ (Carreras et al., 1999a) has been developed, for example. It is possible
to link numerical simulations of plasma turbulence to the running sandpile by
allowing for a temporal evolution of the mean profiles (and the respective gra-
dients which drive the turbulence). Some numerical results are consistent with
SOC characteristics (Carreras et al., 1996; Mier et al., 2006), and superdiffusive
transport has been found, e.g., for pressure-gradient-driven plasma turbulence
and attributed to avalanche effects (Carreras et al., 2001; del Castillo-Negrete
et al., 2004). The idea of a critical density gradient acting as a threshold for
avalanche transport has also been included into the framework of continuous
time random walks (CTRWs), being able to reproduce some of the basic phe-
nomenology of anomalous (superdiffusive) transport scaling in the low confine-
ment mode (van Milligen et al., 2004a; van Milligen et al., 2004b). However,
despite the interesting nature of these results, it is far from evident that they
carry over to plasma core turbulence in large fusion devices like ITER (ITER,
1999). Most of the experimental results showing superdiffusive transport are
achieved for the plasma edge, and to which degree the observation of a ‘prompt’
perturbation response is of relevance to the usual steady-state conditions is not
clear ((Balescu, 2005), p. 418). Moreover, some of the assumptions underlying
the ‘sandpile’ based numerical work are not necessarily justified in the plasma
core of larger fusion devices.

Various papers approach the question of anomalous transport from a different
perspective. Instead of trying to reproduce or analyze experimental data, they
work with more simple turbulence models or analytically given fields in order
to study the transition from a diffusive to a superdiffusive regime in detail.
An interesting attempt to understand the basic mechanisms of superdiffusive
particle transport is the detection of so-called ‘chaotic jets’ (Afanasiev et al.,
1991; Leoncini & Zaslavsky, 2002; Leoncini et al., 2005). Here, the origin of
superdiffusion has been ascribed to the existence of long-living bundles of orbits
with coherent propagation, constituting an independent structure, a ‘hidden
order’ with almost free motion within the sea of turbulence. The life-time of such
‘jets’ was found to be much longer than the ordinary ‘clump lifetime’ of particles
with close initial conditions ((Balescu, 2005), Chap. 13). In Ref. (Leoncini &
Zaslavsky, 2002), a model of 16 point vortices was introduced, and a connection
between superdiffusion and the accumulation of small Lyapunov exponents was
established. In Ref. (Leoncini et al., 2005), the same technique was applied to
the more realistic model of 2D Hasegawa-Mima turbulence, and similar results
were found (see also Ref. (Annibaldi et al., 2002) where superdiffusion was
found for small box sizes and large density gradients). However, it is not at
all clear if such minimal models – often yielding more or less stationary vortex
structures – lead to a good representation of turbulence in fusion devices. It
is therefore necessary to analyze data from nonlinear gyrokinetic simulations
which are considered to be first-principles based. This approach was chosen for
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the first time in Chapter 4 in this thesis. Here, it was shown that fluctuating
vortices, even when advected with a constant drift velocity, always lead to
diffusive behavior for long times. However, in this case, zonal flows – which are
a possible source for superdiffusive transport – were rather weak. In another
analytic approach, modeling a turbulent bath with a single zonal flow as a vortex
chain inside a shear layer, superdiffusive transport was found in the ‘stochastic
layer’ where the particles alternate between being trapped in a vortex and
moving ballistically with the shear flow (del Castillo-Negrete, 1998; del Castillo-
Negrete, 2000). Consequently, superdiffusion was interpreted as a result of the
presence of coherent structures in a turbulent background.

In the present chapter, we intend to go through a two-step process, similar
to Chapter 4. In the first step (Sec. 5.2), we would like to study test particle
transport in random (pseudo-turbulent) fields created by superposition of plane
waves. As before, this enables us to have easy control over the field’s statis-
tical properties, and allows for the inclusion of additional effects like poloidal
drifts and zonal flows which will turn out to be crucial for the existence of non-
Gaussian transport regimes. Then, in a second step (Sec. 5.3), we will compare
these results with simulations using realistic turbulent fields taken from sim-
ulations with the turbulence code Gene. Examining two examples, trapped
electron mode (TEM) turbulence and ion temperature gradient (ITG) turbu-
lence, where the effects of poloidal drifts and zonal flows are rather strong, we
find that while the transport gets diffusive and Gaussian for large times, there
may exist super- and subdiffusive regimes for intermediate times. Given the
fact that these (radially local) gyrokinetic simulations are known to be fully
consistent with nonlocal ones for sufficiently small values of the normalized ion
gyroradius ρ∗ = ρs/a (ρ∗ <∼ 1/300, a minor torus radius) (Waltz et al., 2002;
Candy et al., 2004), large-scale devices are expected to be well represented by
the data used here. We will close with a summary and some conclusions in
Sec. 5.4.

5.2 Diffusion in random fields

5.2.1 Some preliminaries

For the last time, we consider the E×B advection of ions as passive tracers
in a plane perpendicular to the background magnetic field. In Sec. 5.3, the
fluctuating electrostatic potentials φ(x, t) will be taken from simulations with
the Gene code, whereas in the present section, they will be created by super-
posing a sufficiently large number of random harmonic waves, as described by
Eq. (3.1). This approach allows for easy control and variation of the properties
of the advecting field, enabling us to get a deeper understanding of the basic
mechanisms underlying the transport of passive particles which can them be
applied to more realistic cases in a second step.

The motion of passive particles is again described by the (normalized) E×B
drift velocity (Eq. (2.61)). Finite gyroradius effects are neglected here, but
could be included in a straightforward fashion as has been done in Chapters 3
and 4. The Kubo number (Eq. (2.62)) stays important for characterizing the
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velocity field.
The transport is characterized, as usual, by the second moment of the particle

displacements,
〈x2

i (t)〉 ∼ tµ (5.1)

(see Eq. (2.53) in Sec. 2.5.1). For µ = 1, one has standard diffusive behavior,
while for µ < 1 and µ > 1, one has sub- and superdiffusive scaling, respectively.
Since we will always find a transition to diffusive scaling for sufficiently long
simulation times, we hold on to plot the second moment in the form of the time
dependent (’running’) diffusion coefficient, as defined in Eq. (2.51). For the
particle trajectory simulations, the same numerical methods have been applied
as described in the previous chapters.

In a pure isotropic and stochastic potential, transport obviously becomes
diffusive as soon as the correlation time of the fluctuations is exceeded, since
no memory exists. This important relation is quantified by the Taylor formula,
Eqs. (2.54) and (2.55). The introduction of streamers, i.e. structures which are
elongated in the x direction, only quantitatively changes the values of D, but
preserves the diffusive character, since a complete decorrelation still occurs for
t > τc (see Sec. 4.3). Interesting new regimes of transport can be expected only
from additional coherent structures with much larger (or infinite) correlation
times. In the following, we will modify the stochastic potential given by Eq. (3.1)
by adding coherent flow effects. We hereby follow Chapter 4; however, emphasis
is now placed on the existence of an intermediate nondiffusive regime and the
transition to standard diffusive transport for sufficiently long simulation times.

5.2.2 Poloidal shear flow effects

As a model potential for the simulation of zonal flows, we choose again Eq. (4.2)
from the last chapter. Here, the correlation length of the isotropic part is
modeled to λc = 1, and the wave number of the zonal flow is chosen to be
kzf = 0.78. Varying Azf , the coherent component of the model potential can be
changed. For comparison, we note that the root mean square of the stochastic
component is

√

〈φ2〉 = 0.03. In Fig. 5.1, the running diffusion coefficient is
plotted for different values of Azf . The Kubo number of the stochastic part
has been chosen to be K = 5, which is realistic (see Sec. 5.3) and implies
reasonably strong trapping events. In the pure stochastic potential (Azf = 0),
we observe ballistic transport for small times which – after a short period of
subdiffusion due to particle trapping – transitions to a diffusive regime as soon as
the potential decorrelates (i.e. for t >∼ τc ≈ 120). With the increase of the zonal
flow amplitude Azf , intermediate regimes of subdiffusion and superdiffusion
emerge in the x and y direction, respectively. Qualitatively, the increase of
transport in the direction of the flow and the decrease in the perpendicular
direction are not difficult to understand, since the zonal flow term fundamentally
changes the structure of the stream function, favoring open equipotential lines
in the y direction and suppressing them in the x direction.

In this context, some interesting quantitative observations can also be made.
First, the y direction displays superdiffusive transport with a constant value
1 < µ < 2 for a relatively large time intervals, and second, for all values of Azf ,
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Figure 5.1: Running diffusion coefficient D(t) for different zonal flow amplitudes
[Eq. (4.2), K = 5]. The solid lines denote the x direction, the dashed
lines the y direction. In the y direction, a superdiffusive transitional
regime is found for intermediate times. In that regime, we find µ ≈ 1.5
for Azf = 0.05, µ ≈ 1.7 for Azf = 0.1, and µ ≈ 1.9 for Azf = 0.2.

there is a time scale beyond which the transport becomes diffusive. The first
effect can be described phenomenologically in terms of a ‘continous time random
walk’ (CTRW) model (Montroll & Weiss, 1965; Metzler & Klafter, 2000; Metzler
& Klafter, 2004). Here, the subtle interplay between the stochastic fluctuations
and the coherent component is represented by a purely probabilistic model
built on waiting time and particle displacement distributions. Asymptotically,
the Laplace transformation of the waiting time distribution can be modeled
as ψ̃(s) = 1 − Asβ with 0 < β < 1, and the Fourier transform of the particle
displacement distribution as f̃(k) = 1−B |k|α with 0 < α < 2. The exponent of
the mean square displacement resulting from such a stochastic process can then
be expressed as µ = 2β/α. Obviously, in the most simple approach, the particle
motion underlying Fig. 5.1 can be modeled by slowly decaying distributions of
the particle displacements in the y direction and of the waiting time in the x
direction. Similar descriptions have already been applied successfully to other
superdiffusive transport phenomena (del Castillo-Negrete et al., 2004; Afanasiev
et al., 1991).

Trying to understand the second effect mentioned above leads us to consider
an additional physical mechanism. Comparing Fig. 5.1 with the probability
distribution function (PDF) of the particle displacements in the y direction
plotted in Fig. 5.2 (left) for Azf = 0.1, we see that for intermediate times (when
the transport is superdiffusive), there are two peaks in the PDF – representing
the bulk of particles which is advected ballistically up and down the y direction
with the mean shear flow velocity. The peak at y = 0 stands for the particles
being trapped by vortices at the combs of the potential. The interaction between
trapping caused by the stochastically evolving vortices and the free poloidal
motion due to the strong zonal flow component leads to a slowly decaying
particle displacement distribution and to an exponent µ > 1. Furthermore,
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Figure 5.2: Left: PDF of the particle displacements in the y direction for K = 5
and Azf = 0.1 for different times. [Note that τc ≈ 100.] For small
times, the superdiffusive advection of the tracers with the shear flow can
be observed for positive and negative directions. For t > t1 ≈ 2000,
transitions between different zonal flow channels occur, transforming the
distribution into a Gaussian one. Right: The same, but for the x direction.
For times t < t1 ≈ 2000, particles are trapped inside a shear layer of the
width π/kzf ≈ 4. For larger times, a significant number of transitions
into neighboring layers occur.

comparing Fig. 5.1 and Fig. 5.2 (left), we notice that the transition to the
diffusive regime occurs when the ballistic peaks of the PDF have just vanished.
Fig. 5.2 (right) sheds some more light onto this effect. We observe that for
t <∼ t1 ∼ 2000 – i.e. during the time span for which the transport is superdiffusive
in the y direction and subdiffusive in the x direction – the particle distribution
is trapped inside the individual shear flow ’channels’ (−π/kzf < x < π/kzf ≈
4). For larger times (t >∼ t1), we then find that particles may move into a
neighboring structure. This means that the direction of the flow is reversed,
and a randomization takes place.

In order to make this transition more transparent, we measured the distri-
bution of the first passage time of the particles, i.e. the time interval which
particles need to leave a given flow channel and move from an upward to a
downward flow or vice versa. This distribution is plotted for Azf = 0.1 in
Fig. 5.3 (left). It is clear that if a finite transition probability between the flow
structures exists – which will always be the case it a perturbation in form of
time dependent fluctuations is introduced – the waiting time distribution will
fall off exponentially. For such a function, the first moment exists, and given
the fact that we can characterize the particle displacements in the x direction
as discrete steps of size ∆x = π/kzf , this in turn means that the transport be-
comes diffusive (Montroll & Weiss, 1965). Consequently, the dynamics on large
time scales can be modeled by an ordinary random walk with D ∼ ∆x2/(2∆t),
where ∆t is defined as the e-folding length of the passage time distribution.
With ∆t ≈ 9500 and ∆x ≈ 4 we find D ≈ 0.00085 which favorable agrees with
the simulated diffusion coefficient for Azf = 0.1 plotted in Fig. 5.1. In terms of
the CTRW model, this situation corresponds to a ‘truncated waiting time dis-
tribution’. The first passage time of the test particles plotted in Fig. 5.3 (left)
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Figure 5.3: Left: First passage time of a particle to move from an up- into a downward
flow or vice versa for Azf = 0.1. Solid line: PDF of the first passage time
from the simulation. Dashed line: 0.0001 exp(−t/9500). Right: PDF
of the Lyapunov exponent σL = T−1 ln (δ/ε) for different values of Azf .
Here, δ = 0.1 and ε = 0.001. No accumulation near σL = 0 is observed,
even for very large zonal flow amplitudes.

shows a sharp increase of Ψ(t) followed by a flat regime of Ψ(t) for intermediate
times (t <∼ t1) and an exponential decay for t >∼ t1. Using the CTRW mech-
anism, such a distribution reproduces the observed diffusivities (Dentz et al.,
2004). In particular, we observe that the time scale t1 inferred from Fig. 5.3
(left) corresponds to the time t1 in Fig. 5.1. It is clear from this discussion that
the intermediate time interval which is characterized by super- and subdiffusion
can grow indefinitely as the zonal flow term gets stronger and stronger.

In previous publications, anomalous transport behavior has sometimes been
attributed to the existence of ‘chaotic jets’, i.e. special paths in a generally
chaotic environment exhibiting a large stickiness of the advected particles as
well as a coherent, ballistic motion (Afanasiev et al., 1991; Leoncini & Za-
slavsky, 2002; Leoncini et al., 2005). As an indicator, an accumulation of Lya-
punov exponents near zero was identified. In Fig. 5.3 (right), the distribution
of Lyapunov exponents is plotted for different values of Azf . These quantities
are calculated via (Leoncini & Zaslavsky, 2002)

σL = T−1 ln (δ/ε) , (5.2)

where T is the time two particles remain within a distance smaller than δ, and
ε is the initial separation of the two particles. One typically assumes δ � ε
with both quantities chosen to be rather small. We observe, however, that even
for very large zonal flow amplitudes [recall that the stochastic component of
Eq. (4.2) is

√

〈φ2〉 = 0.03], there is no accumulation of Lyapunov exponents
near σL = 0. This behavior in turn corresponds to the exponential decay of
the PDF of the ‘sticking time’ T which we observed for all the cases displayed
in Fig. 5.3 (right). Such a decay is a normal consequence of the ‘clump effect’
((Balescu, 2005), Chap. 13), and does not depend on the existence of any special
structure. Simply said, two particles starting in a close neighborhood separate
when they encounter a hyperbolic fixed point. Since in time dependent poten-
tials this is a stochastic process with a given probability, the ‘sticking time’ will
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naturally exhibit an exponential decrease. So although strong coherent struc-
tures are present in this model potential, no chaotic jets can be observed. In
(Padberg et al., 2007), the recently developed concept of Lagrangian coherent
structures (Haller, 2000) based on finite time Lyapunov exponents was applied
to the 2D turbulent transport of test particles and studied in detail. Using
visualizations of the network of repelling and attracting material lines obtained
that way, interesting new possibilites for interpreting and analyzing turbulent
transport in magnetized plasmas were presented, however, they seem to be more
of qualitative nature.

5.2.3 Poloidal drift effects

In Chapter 4 it was shown that homogeneous poloidal drifts may have the same
effect on transport as poloidal shear flows. There, a ‘drifting potential’ φdr

was defined as a (fluctuating or static) potential whose structures move in the
poloidal (y) direction with a constant drift velocity vdr. Such a potential was
modeled in Eq. (4.5). In Chapter 4 it was shown that in order to understand
the effect of such a homogeneous drift, it is useful to perform a Galilei transfor-
mation to a reference frame moving in the y direction with velocity vdr. This
led to the electrostatic potential defined by Eq. (4.7), where the prime denotes
quantities in the co-moving system. It has already been discussed that the law
of induction produces an additional electric field (second term on the right-hand
side of Eq. (4.7)), which gives the potential a completely new structure and is
responsible for the differences compared to a non-drifting potential. We have
already recognized that this structure shows similarities to that of a zonal flow.
As we will see shortly, the particle transport indeed exhibits the same behavior
as found in the previous section. This includes, in particular, not only the sup-
pression of transport in the x direction and its increase in the y direction, but
also sub- or superdiffusive transport for intermediate time scales.

Fig. 5.4 shows the running diffusion coefficient for different drift velocities
vdr. It can clearly be seen that the effect of the poloidal drift is similar to the
effect of zonal flows (compare to Fig. 5.1), in both the radial and the poloidal
direction. However, the additional term in Eq. (4.7) is not periodic now, but
corresponds to an infinite ramp. This makes the transport suppression in the
x direction stronger. For large times, we again find a transition to diffusive
behavior. The modeling in terms of a random walk model seems to be difficult
at first, since in contrast to the zonal flow potential, no reference length scale is
given explicitly. On the other hand, it is possible to define an intrinsic length
scale via the maximum excursion of an equipotential line in the x direction,
xmax ≈ 2φmax/vdr ≈ 2V λc/vdr (see discussion in Sec. 4.5). For the given
potential and vdr = 0.05, we find xmax ≈ 2. The relevance of this limit can
clearly be observed in the PDF of Fig. 5.5 (left) for small times, whereas for
larger times, the transport becomes diffusive. So the effect is basically the
same as in the zonal flow case. In Fig. 5.5 (right), the PDF is displayed for
the y direction. Again, we observe a similar behavior as in the zonal flow case
(Fig. 5.2 (left)), but we now have a single peak of trapped particles moving
upwards with the drift velocity and a bulk of particles moving downwards on
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Figure 5.4: Running diffusion coefficient D(t) for different drift velocities [Eq. (4.5),
K = 20]. The solid lines denote the x direction, the dashed lines the y
direction. In the y direction, a superdiffusive transitional regime is found
for intermediate times. In that regime, we find µ ≈ 1.35 for vdr = 0.005,
µ ≈ 1.55 for vdr = 0.05, and µ ≈ 1.39 for vdr = 0.1. The saturation
values for the x direction outside the range of the figure are Dx = 10−4

for vdr = 0.05 and Dx = 5 × 10−6 for vdr = 0.1.

open equipotential lines, whereas in the former case, we found two peaks moving
upwards and downwards within a given zonal flow channel. This behavior has
already been displayed in Fig. 4.10 (right), however, not in the long time limit,
where the transition to a Gaussian distribution function can be observed in the
present figure. Here, the transition to a normal diffusive behavior is not caused
by the transition to a flow with reversed flow direction, but by the transition
from trapped particles advected with the diamagnetic drift to free particles
moving against the drift and vice versa. A similar, though more qualitative
study of the interplay between free and trapped advected particles can be found
in Ref. (Naulin et al., 1999).

In order to further investigate the time evolution of the PDFs shown in the
last two subsections, a plot of the kurtoses for all the discussed cases is shown
in Fig. 5.6. We define the kurtosis as

γ2 =

{

1

N

N∑

i=1

[
xi − x̄

σ

]4
}

− 3 , (5.3)

whereN is the number of test particles, xi is the displacement of a single particle
from its origin, x̄ is the mean value of xi and σ is the mean square displacement.
As is well known, Gaussian distributions are characterized by γ2 = 0, whereas
γ2 > 0 (γ2 < 0) indicates a slower (faster) than Gaussian decay. The kurtoses
in Fig. 5.6 are calculated for the same data plotted as PDF in Figs. 5.2 (left
and right) and 5.5 (left and right). We clearly observe the transition γ2 → 0 for
large times. Interestingly, the kurtosis for the x direction for a drifting potential
is close to zero for all times despite the fact that there exists a spatial limit (see
Fig. 5.5 (left)). We can explain this observation by the fact that this limit is
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Figure 5.5: Left: PDF of the particle displacements in the x direction for K = 20,
vdr = 0.05 for different times. Note that τc ≈ 100. For times t < 2000 par-
ticles are trapped inside a threshold of the width xmax ≈ 2V λc/vdr ≈ 2.
For larger times, a significant number of transitions into neighboring lay-
ers occur. Right: The same, but for the y direction. For small times,
peaks can be observed at y = vdrt, displaying the motion of trapped par-
ticles with the diamagnetic flow in the positive y direction. For t > 1000,
transitions between the trapped upward-moving and the free downward-
moving particles evolve, transforming the distribution into a Gaussian
one.

not a ’hard’ one like in the zonal flow case, but rather a ’soft’ one.

Hence we have demonstrated that the existence of large coherent compo-
nents in a fluctuating potential – represented here by a static zonal flow and a
constant drift velocity – can lead to extended regimes of anomalous diffusion for
intermediate times, but always shows a transition to the diffusive regimes for
large times. In the following, we show that this simple model displays a good
correspondence to transport in realistic potentials as described by nonlinear
gyrokinetics, and it will turn out that the above interpretations for the simple
models carry over to the more realistic ones.

5.3 Diffusion in realistic turbulent fields

Until now, we have studied the transport of passive tracers in electrostatic
potentials which were created by superposing a large number of plane waves.
Applying this method, we where able to model and analyze the influence of zonal
flows and diamagnetic drifts on the transport. The variation of the strength of
those additional effects enabled us to study the regime of anomalous diffusion
for intermediate times and the conditions for a transition to normal diffusion.
Keeping these results in mind, we now want to consider the transport behavior
of test particles in realistic electrostatic potentials as they occur for ITG and
TEM turbulence. As we will see, these two cases exhibit the same effects as
discussed in the previous section.

For this purpose, we use simulation data obtained with Gene code. The
data was provided by T. Görler, F. Merz, and M.J. Püschel. As in the previous
chapter, the electrostatic potential in a perpendicular plane on the low-field
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Figure 5.6: Kurtoses for the PDFs shown in Fig. 5.2 (left and right) and 5.5 (left and
right). The kurtoses clearly approach zero for large times, indicating the
transition to a Gaussian distribution.

side is written out frequently and then subjected to post-processing. However,
for spatial interpolation, a simple bicubic scheme is used here. (In order to
test its accuracy, comparisons with Fourier interpolation – which is the most
exact interpolation method – have been performed for a few test cases, but no
significant differences were found.) We note that from now on, perpendicular
length scales are normalized with respect to ρs = cs/Ωi, whereas time scales are
normalized with respect to L⊥/cs where L⊥ is a scale length of the background
profiles (see Sec. 2.4). Since Gene uses periodic radial boundary conditions
(keeping the average background gradients fixed), the simulation box sizes were
chosen about one order of magnitude larger than the correlation lengths of the
turbulence. Therefore, finite size effects do not play a role.

First, we study the test particle transport in ITG turbulence. Here, the
so-called Cyclone base case parameter set as described in Ref. (Dimits et al.,
2000) is used. A typical contour plot of the electrostatic potential in the out-
board midplane is shown in Fig. 5.7 (left). The zonal flow structures are very
prominent. As one may expect from this figure, the running diffusion coefficient
exhibits a distinct regime of superdiffusion in the y direction for intermediate
times, together with a (less distinct) regime of subdiffusion in the x direction
(Fig. 5.7 (right)). The curves show a close correspondence to the cases with
high zonal flow amplitude in Fig. 5.1. In addition, the PDFs of the particle dis-
placements for a number of different times are given in Fig. 5.8 (left and right).
Their shape is again comparable to the PDFs plotted in Fig. 5.2 (right and
left). Especially, the threshold of ∆x = π/kzf ≈ 40 can be observed in Fig. 5.8
(left), and the disappearance of the ballistic peaks of the y-PDF corresponds
again to the transition to diffusive transport.

Second, the transport of test particles in TEM turbulence, which was already
studied in Sec. 4.6, is investigated under the aspect of the transition into a
diffusive regime. Therein, the correspondence to the studies employing self-
created potentials has already been demonstrated. In TEM turbulence, zonal
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Figure 5.7: Left: Contours of the ITG electrostatic potential (‘Cyclone base case’).
Positive contours are drawn with solid lines, negative contours with
dashed lines. Strong zonal flows are present, forming a dominant coher-
ent background. Right: Running diffusion coefficient D(t) for the ITG
electrostatic potential plotted in Fig. 5.7 (left) (K ≈ 7). The curves are
comparable to the ones obtained by the self-created potential (Fig. 5.1).
For the superdiffusive transition regime in the y direction we find µ ≈ 1.72
for intermediate times.

flows tend to be rather weak (Dannert & Jenko, 2005), such that diamagnetic
drift effects will be more important. The running diffusion coefficient for this
case has been plotted in Fig. 4.12. However, since the diamagnetic drift velocity
is relatively small in that case, the PDFs do not exhibit a clear threshold effect
in the x direction and the ballistic peaks in the y direction, and their shape is
quite close to a Gaussian even for small times.

In Fig. 5.9, the kurtoses of the particle PDFs are plotted for the ITG as well
as for the TEM potential versus time. Similar to Fig. 5.6, the transition to a
Gaussian distribution, expressed by γ2 → 0 for large times, can be observed.
Therefore, one may conclude that the studies done in Sec. 5.2 as well as the
corresponding results may be considered quite realistic. In the presence of
sufficiently strong poloidal flows, sheared or homogeneous, one may expect to
find superdiffusion in the y direction and subdiffusion in the x direction of
an intermediate time span which grows as the amplitude of the coherent flow
component increases.

5.4 Summary and conclusions

The main goal of the present chapter was to investigate the behavior of test par-
ticles in realistic turbulent fields, focusing on the question whether and under
which conditions the transport may become ‘anomalous’, i.e. super- or subdif-
fusive. For simplicity, we have restricted to electrostatic fluctuations and two
dimensions as far as the particle trajectories are concerned. Nevertheless, we
have used electrostatic potentials taken from three (space) dimensional gyroki-
netic simulations with the Gene code. Here, ion temperature gradient and
trapped electron mode turbulence cases were chosen, both exhibiting coherent
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Figure 5.8: Left: PDF of the particle displacements in the x direction for the ITG
potential for different times. The behavior is comparable to the one
shown in Fig. 5.2 (right). Right: PDF of the particle displacements in
the y direction for the ITG potential for different times. The behavior is
comparable to the one shown in Fig. 5.2 (left).

flow components in addition to stochastic fluctuations. In addition, we consid-
ered potentials which were generated by superposing a large number of random
waves. The variation of the strength of the coherent part (given by the zonal
flow amplitude or the drift velocity) enabled us to gain a basic understanding
of several transition phenomena.

While in the presence of stochastic fluctuations, one always observes that
the particle transport eventually becomes diffusive [in contrast to some previ-
ous studies which dealt with less realistic models, observing anomalous diffusion
for arbitrarily long times], sufficiently strong poloidal flows, sheared or homoge-
neous, tend to induce superdiffusion in the y direction and subdiffusion in the x
direction over an intermediate time span. The latter grows as the amplitude of
the coherent flow component increases, and it may, in fact, become much larger
than the correlation time of the fluctuations. Thus, if one is interested in tran-
sitional – not steady-state – phenomena, the effects described in the present
chapter are likely to be of relevance for the cross-field transport induced by
microturbulence.
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Figure 5.9: Kurtoses for the PDFs shown in Fig. 5.8 (left and right), and for the
TEM potential. Again, the kurtoses clearly approach zero for large times,
indicating the transition to a Gaussian distribution.
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Chapter 6

Advection of Fast Ions in
Electrostatic Turbulence in 3D
Tokamak Geometry

The diffusion of energetic ions by electrostatic turbulence in 3D tokamak ge-
ometry is investigated both analytically and numerically. It is shown that orbit
averaging (leading to a significant reduction of the diffusivity) is only valid for
low magnetic shear. At moderate or high magnetic shear, a rather slow decrease
of the diffusivity is found, proportional to (E/Te)

−1 or (E/Te)
−3/2 for particles

with a large or small parallel velocity component, respectively. The decorre-
lation mechanisms responsible for this behavior are studied and explained in
detail. Moreover, it is found that resonances between the toroidal drift of the
particles and the diamagnetic drift of the turbulence can lead to an enhance-
ment of the fast ion transport. The results of this chapter have been published
in (Hauff & Jenko, 2008) and (Hauff et al., 2009).

6.1 Introductory remarks

In Chapters 3, 4, and 5, we have studied the advection of energetic ions by
microturbulence in a 2D plane perpendicular to the magnetic field, where we
have described and understood a variety of different effects, concerning finite
gyroradii as well as the structure of the background fluctuations. While this
work was in some way the completion of a large number of past publications
about particles with large gyroradii in 2D turbulence (Manfredi & Dendy, 1996;
Manfredi & Dendy, 1997; del Castillo-Negrete, 1998; del Castillo-Negrete, 2000;
Annibaldi et al., 2002; Vlad & Spineanu, 2005; Vlad et al., 2005), the study of
fast particles in a turbulent background in 3D toroidal geometry has (re-)gained
attention only quite recently (Estrada-Mila et al., 2006; Dannert et al., 2008;
Angioni & Peeters, 2008). These investigations were, in part, motivated by re-
cent experimental investigations at ASDEX Upgrade which showed a fast radial
broadening of the plasma current profile driven by off-axis neutral beam injec-
tion in the absence of any measurable magnetohydrodynamic activity (Günter
et al., 2007), and seem to contradict earlier experimental results claiming that
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such an effect should not exist (see, e.g., Ref. (Heidbrink et al., 1991)). This
chapter wants to shed light on this crucial question (especially for future D-T-
based experiments like ITER (ITER, 2009)) by studying different decorrelation
mechanisms for passive tracers in a 3D turbulent environment. We shall find
that the transport levels generally depend on the turbulence characteristics as
well as on the orbit parameters of the fast particles in a very sensitive way. This
will enable us to explain both situations showing a fast drop of diffusivity with
growing particle energy as well as situations in which the transport remains
high for a while until it falls off rather slowly, inversely proportional to the
particle energy.

In two dimensions, the question of fast particle transport has been solved in
a quite complete way in the previous chapters. Here, a fast particle is simply
characterized by its gyroradius ρg and follows the E×B drift in the gyroaveraged
electrostatic potential. It could be demonstrated that for Kubo numbers smaller
than unity, the diffusivity is reduced monotonically with growing gyroradius,
since gyroaveraging smoothes the potential and therefore reduces the effective
drift velocity. In contrast, gyroaveraging increases the correlation lengths of the
potential, which for Kubo numbers larger than unity balances the reduction of
the drift velocity and therefore keeps the transport constant for gyroradii up to
the correlation length. In addition to that, it was shown how a constant drift
of the background turbulence affects the transport. This finding will carry over
to the 3D case.

In three dimensions, the motion of fast particles is characterized by more
than just the gyroradius, of course. Depending on the pitch angle, the particles
are passing or trapped (see the detailed discussion in Section 2.1), and in both
cases, their motion can be described – in a field-aligned coordinate system –
as a superposition of a “circular” (or slightly elliptical) periodic motion and a
constant drift in the binormal direction, in analogy with the usual gyromotion
(see Section 2.6.2). So we will have to ask whether the effects of gyroaveraging
(well understood for the 2D case) will translate into some kind of “orbit aver-
aging” in three dimensions, and to what extent the particle drifts generated by
curvature and grad-B drifts (in the 3D case) can lead to effects which resemble
those observed in two dimensions. Indeed, it has been claimed in Ref. (Mynick
& Krommes, 1979), and only recently in Ref. (Zhang et al., 2008) that gyroav-
eraging as well as drift orbit averaging both lead to a universal reduction of
transport. However, in Ref. (Myra et al., 1993), it was shown that orbit aver-
aging is not valid if the particle is decorrelated by fast parallel dynamics before
it can finish its periodic orbit.

In early 3D simulations, studying the interaction of energetic alpha particles
with high toroidal mode number instabilities, it was reported that such modes
can indeed cause significant alpha-particle transport. However, this effect was
found to strongly depend on the turbulence properties as well as on the device
(Rewoldt, 1988; Rewoldt, 1991). A further explanation of this behavior was
not given. In Ref. (Estrada-Mila et al., 2006), alpha particles were modeled as
a hot Maxwellian species, and their particle fluxes were determined quasilin-
early and nonlinearly. A large increase of the flux of the alphas was reported
compared to the particle flux of the thermal background plasma. However, as
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pointed out in Ref. (Angioni & Peeters, 2008), this interpretation was mainly
due to the special normalization used in this work. Furthermore, thermal par-
ticles were not distinguished from non-thermal ones. In another recent work
(Dannert et al., 2008), beam ions were modeled by means of an asymmetric
and anisotropic Maxwellian distribution function with a long tail in the beam
direction. In qualitative agreement with our 2D results presented in Chap-
ter 4, it was found that the fast particle transport becomes large when the
poloidal drift velocity of the particles matches the diamagnetic drift velocity of
the background turbulence. Since resonances can exist for energies up to about
10 times the thermal energy, it was shown that the redistribution of the beam
ions may remain significant up to that energy. This has also been found in a
recent quasilinear study (Angioni & Peeters, 2008) employing a slowing-down
distribution function. Interestingly, according to Ref. (Dannert et al., 2008),
fast particles interacting with turbulent fields exhibit a rather slow decrease of
diffusivity (approximately like 1/E) instead of the much faster decay observed
in quasilinear studies.

It is the aim of this chapter to provide a systematic study of the physical
mechanisms responsible for the diffusion of fast particles in a tokamak. As will
be shown, the transport is governed, in general, by the combination of a number
of different effects, including gyroaveraging, orbit averaging, resonances with the
background drift, and decorrelations caused by parallel or perpendicular orbit
motion. Furthermore, we will find that it makes a big difference whether orbit
averaging is valid or not. Since we are mainly interested in the basic principles
underlying the particle-turbulence interactions in a tokamak, we will represent
the turbulent background fluctuations by stochastic fields with realistic phys-
ical properties, a method used successfully in the 2D studies in the previous
chapters. The energetic particles, on the other hand, are still treated as passive
tracers (see Section 2.5.3). The transport will be characterized again in terms
of diffusion coefficients D corresponding to individual particle trajectories.

The remainder of this chapter is organized as follows. In Secs. 6.2 and
6.3, we provide some information about the construction of the equilibrium
magnetic field and the fluctuating electrostatic potentials used in this work. In
Sec. 6.4, the validity of orbit averaging is examined, and a number of possible
decorrelation mechanisms are discussed. In Sec. 6.5, the latter are investigated
for the simple case of a shearless magnetic field. Secs. 6.6 and 6.7 then deal
with simulations of energetic ions in a realistic sheared magnetic field, and in
Sec. 6.8, some additional information is provided, which generalizes the results.
We close with some conclusions in Sec. 6.9.

For clarification, and to avoid possible misunderstandings, it shall be men-
tioned that in this thesis, the term “orbit motion” refers to the curvature and
grad-B drift motion, leading to orbits as shown in Fig. 2.2. and described in
Section 2.1.5. The term “gyromotion”, in contrast, refers to the simple Larmor
orbits described at the beginning of Chapter 2. Although, as was demonstrated
in Fig. 2.14, both motions exhibit similarities, they are based on completely
different mechanisms and have to be strictly distinguished.
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6.2 Equilibrium magnetic and fluctuating electric

fields

In the following, we will consider a simple tokamak with circular, concentric
flux surfaces, but with a finite aspect ratio. The respective torus coordinates
– minor radius, poloidal and toroidal angle – are denoted, respectively, by r,
θ, and ϕ (see Fig. 2.1, where ζ is changed to ϕ). The distance between the
magnetic axis and the symmetry axis is denoted by R0. In Section 2.3.1, the
existence of a field aligned coordinate system r− β −χ with straight field lines
has already been introduced. Following Eq. (2.35), the safety factor (Eq. (1.1))
q can be expressed by the relation

q(r) =
1

2π

∫ 2π

0

B · ∇ϕ
B · ∇θ dθ =

1

2π

∫ 2π

0

rBϕ

RBθ
dθ (6.1)

with R = R0(1 + ε cos θ) and ε = r/R0. Note that the second equality only
holds for the simple geometry of concentric flux surfaces, while the first one is
completely generic. The corresponding magnetic field can be written as

B = Bϕeϕ +Bθeθ = (B0R0/R) (eϕ + bθeθ) (6.2)

where bθ is assumed to be independent of R. Inserting the components of B

into Eq. (6.1) and integrating over θ, we find the expression

Bθ =
B0R0

R

1

q(r)

ε

(1 − ε2)1/2
. (6.3)

Thus, an arbitrary safety factor profile q(r) may be chosen do define the mag-
netic field.

We would like to note in this context that the assumption of circular, con-
centric flux surfaces captures the key features of more complicated geometries.
Comparing particle orbits in the simple geometry with orbits in a realistic mag-
netic field constructed from ASDEX Upgrade data – using the Gourdon code
(Gourdon, 1970) – showed that only moderate differences occur which do not
affect the dependence on the field and particle parameters. This has been con-
firmed by recent numerical investigations (Dannert et al., 2008; Belli et al.,
2008). Thus, the considerations of this chapter hold also for shaped plasmas.

Next, we have to calculate the function χ(θ). For an arbitrary B-field, it
was already defined in Eq. (2.36). Inserting the identity under the integral of
Eq. (6.1) and the expression for R(ε, θ), and solving the integral, we finally
obtain the relation (Lapillonne et al., 2009)

χ = 2arctan

(√

1 − ε

1 + ε
tan

θ

2

)

. (6.4)

In the large aspect ratio limit (ε→ 0), we have χ→ θ, as expected.
Since the turbulent fluctuations in a tokamak plasma are strongly elongated

along the magnetic field lines, it is convenient for the construction of fluctu-
ating test potentials to use coordinates which are field-aligned. In the local
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approximation (see Sections 2.3.2 and 2.3.3) one thus obtains

x = r , y =
r0
q0
β , z = χ . (6.5)

Here, unlike the common definition of Eq. (2.41), z remains an angular coordi-
nate. Assuming periodic perpendicular boundary conditions, we can construct
a random electrostatic potential according to

φ(x, t) = g(z)
N∑

i=1

Ai sin(kx,i x+ ky,i y + ωi t+ ϕi) , (6.6)

which is then mapped back onto a Cartesian spatial grid that is used for cal-
culating the particle trajectories. This is an extension of the 2D potentials
constructed by Eq. (3.1). In order to avoid problems with the parallel bound-
ary conditions (see (Beer et al., 1995) and discussion in Section 2.3.3) for our
test potentials, for simplicity, we either consider a shearless case, q(r) ≡ 1.4, in
which the magnetic field lines are closed after 5 poloidal (or 7 toroidal) turns – or
we choose the envelope function in Eq. (6.6) to be g(z) = 0.5 cos(z−sin(z))+0.5
which is quite realistic and renders the parallel boundary conditions at z = ±π
irrelevant. In the y direction, the box length is chosen to be 2πr0/q0, reflecting
the real periodicity of the torus. However, provided one is careful, it is also
possible to cover the torus by M copies of a flux tube whose width in the y
direction is only 2πr0/(Mq0). A discussion of this procedure is presented below,
in Sec. 6.6.2.

The physical parameters characterizing the magnetic field and the test po-
tentials in the present study are inspired by the ITER project (ITER, 2009).
Thus, we use R0 = 6.2 m and B0 = 5.3 T. For the q profile, we either use
q(r) ≡ 1.4 or q(r) = 0.5 (r/m)2 + 1.25. The particles start at a radial position
near r0 = 0.7 m. The stochastic electrostatic potential is created according to
Eq. (6.6) such that the random field exhibits realistic space and time scales.
Using typical values obtained from our experience with the Gene code and
renormalizing them to a temperature of Ti ≡ Te = 10 keV, we find a typical
correlation length of λc ≈ 1.6 cm, a correlation time of τc ≈ 1.8 × 10−4 s, a
mean E×B drift velocity of V ≈ 900 m/s, as well as a diamagnetic drift veloc-
ity of vdr ∼ 300 m/s. However, the latter may vary strongly depending on the
gradient drive. Using this values for deuterium ions, we find a thermal Larmor
radius ρi ≡ ρs = 2.83mm and a ion thermal speed ci ≡ cs = 692 000m/s. Ac-
cording to Section 2.4, this leads to the following normalized quantities: λ̂c ≈ 6,
V̂ ≈ 3, τ̂c ≈ 20. The characteristic potential parameters lead to a ‘classical’
Kubo number of K ≡ V τc/λc ≈ 10, which is in line with nonlinear gyrokinetic
simulations. We note in passing, however, that the value of the Kubo number
as defined until now does not affect the key conclusions of the present work,
since it will turn out not to be the decisive value anymore, since faster decor-
relation mechanisms apply in three dimensions. They lead to a re-definition of
the Kubo number using a new, effective decorrelation time. Also, we will only
consider fluctuations which are isotropic in the perpendicular plane as in Chap-
ter 3; geometrical effects due to streamer formation (Chapter 4) are not treated.
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However, we will see that in the case of fast particles in three dimensions, they
are of limited relevance, anyway.

6.3 Particle motion

For simulating the particle trajectories, we now use the full equations of motion
as written down in Eq. (2.18). However, φ is replaced by φeff , which denotes the
gyroaveraged electrostatic potential. The particles are tracked by a modified
version of the Gourdon code (Gourdon, 1970), which uses an explicit Adams-
Bashforth algorithm to integrate Eq. (2.18).

As already pointed out in Section 2.1.5, particles can circulate around the
torus, following the magnetic field lines (passing orbits, large η), or they can be
reflected by the mirror force and bounce between two poloidal reversal points
(trapped orbits, small η). In both cases, the particles do not follow the magnetic
lines exactly anymore, but deviate in an oscillatory fashion in the x as well as
in the y direction due to the curvature and ∇B drifts. In addition to that, the
particles drift in the y direction with a constant velocity (toroidal precession). In
Fig. 2.14, two examples of fast particle orbits in field aligned coordinates in front
of the background potential were given. As could be seen, the orbit motion can
be described as a superposition of a circular (elliptical) motion in the x−y plane
and a constant drift motion in the y direction. Whereas an analytical treatment
of the orbit motion in the R − z plane was already derived in Section 2.1.5, a
derivation draft of the y drift has been saved for this chapter. In Ref. (Dannert
et al., 2008), the z dependent expression vy(z) = (v∇B + vcurv)h(z) is derived,
where h(z) ≡ cos z+ ŝz sin z and ŝ(r) = r/q(r) dq(r)/dr. Since we are interested
in the average value over one orbit turn, we define h̄ = 1/(2z0)

∫ z0

−z0
h(z) dz.

This yields h̄ = ŝ for passing particles (z0 = π) and h̄ → 1 for z0 → 0 for
deeply trapped particles. Absolute values for v∇B and vcurv are approached
from Eqs. (2.12) and (2.13). Since the particles do not move along z with
constant velocity, the above approximation is rather crude, though. Moreover,
we have ε ≈ 0.1 in our simulations, such that one may expect finite aspect ratio
corrections to play a role. Employing, nevertheless, this simple model, the orbit
parameters in the case of passing particles are given by Eqs. (2.29) and (2.30),
and in the case of trapped particles by Eq. (2.31). Rewriting this equations in
terms of the particle energy, we obtain

Torbit ≈
2πq0R0

η

√
m

2E
, ∆x ≈ 2ηq0

eB0

√
2mE , vy ≈ 2η2ŝ

eB0R0
E . (6.7)

for η → 1 (passing particles) and

Torbit ≈ 2πq0R0

√
m

(1 − η2)εE
, ∆x ≈ 2ηq0

eB0ε

√
2mE , vy ≈ (1 − η)2

eB0R0
E .

(6.8)
for η → 0 (trapped particles).

For our nominal parameters, these expressions read

Torbit/s ≈ 1.3 · 10−4 q0/
√

E/keV , ∆x/m ≈ 0.0025 q0
√

E/keV ,

vy/(m/s) ≈ 60 ŝ E/keV . (6.9)
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for passing particles and

Torbit/s ≈ 5.4 · 10−4 q0/
√

E/keV , ∆x/m ≈ 0.003 (q0/r0)
√

E/keV ,

vy/(m/s) ≈ 29E/keV . (6.10)

for trapped particles. The simulation results presented in this chapter show that
the expressions for Torbit and ∆x fit almost perfectly, whereas the expression for
vy is correct only within about 30%, which may be attributed to finite aspect
ratio effects and/or to our simple approach of averaging over z. Later, we
present these parameters as simulation results in tables, so that the reader can
check the validity of the above expressions on his own. We are not aware of an
analytical expression for the diameter of the elliptical motion in the y direction.
However, the simulations show that it coincides with the radial diameter up
to an error of at most a few 10%. Consequently, in the framework of simple
analytical descriptions, it seems reasonable to assume ∆y ≈ ∆x.

A particle motion similar to the one illustrated in Fig. 2.14 has already been
the subject of study in Chapter 4, where the interaction of gyrating particles
with a background turbulence drifting in the y direction has been investigated
and explained. The present case with particles circulating on drift orbits and
drifting with respect to the background potential is essentially the same, how-
ever, the time scales are distinct. In the former chapter, it was shown that an
electrostatic potential drifting with a velocity vdr in the y direction strongly re-
duces transport in the x direction above a so-called “drop time” τdrop = 2λc/vdr,
since, in a frame of reference moving with the drift velocity, Lorentz invariance
(in the non-relativistic limit) leads to an additional electric field, acting as a
transport barrier. τdrop is the mean time a particle needs to run against the
barrier and being reflected. So for τdrop < τc, a significant transport reduction
can be expected, whereas in the opposite case, no significant drift-induced effect
is observable, since the barrier does not exist long enough for the particle to feel
its presence. The gyroaveraging procedure and its influence on the transport
level has also been described before in Chapters 3 and 4.

Now, it is not only the particles which are subject to a drift, but also the
background potential (see Section 2.1.3). Depending on the temperature and
density gradients of the plasma, this drift can have velocities of up to about
5 ρscs/R0 (Dannert et al., 2008), which may be as large as several km/s for our
nominal parameters. In Ref. (Dannert et al., 2008), the effect of a resonance
between the diamagnetic drift of the background potential and the curvature
drift of beam ions has already been described. In the following, we will denote
the drift of the background potential by vdr, whereas the test particle drifts will
be denoted by vy.
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Figure 6.1: The dashed line denotes a circle over which the potential is
(orbit-)averaged for a particle starting at the origin, while the solid line
denotes a real particle trajectory with a large E×B drift velocity V̄ eff .
After one period, the particle is displaced by TorbitV̄

eff from the origin as
well as from the corresponding point on the dashed curve. Therefore, if
the particle does not return into the correlated zone [in the background,
the autocorrelation function 〈φ(0)φ(x)〉 of an isotropic stochastic poten-
tial with correlation length λc is plotted], orbit averaging is not valid.

6.4 Fundamental transport and decorrelation mech-
anisms

6.4.1 Orbit averaging

In Chapter 3, the “gyroaveraging” procedure and its influence on the new effec-
tive values of the E×B drift velocity V eff and the effective correlation length
λeff

c have been described. This, in turn, gave us scaling laws for the diffusion
coefficient with this values. Now, recalling the discussion concerning Fig. 2.14,
we may expect that a similar procedure is possible with respect to the orbit
motion of a particle, since, in principle, we just have to replace ρg with ∆x/2
and vdr with vy − vdr. In this case, and normalizing to arbitrary correlation
lengths, we can get the orbit averaged values by analogy from Eqs. (3.15) and
(3.16) for the case that ∆x/2 >∼ λc (note that ρ is the gyroradius, whereas ∆x
is the orbit diameter):

V̄ eff = V (2
√
π∆x/λc)

−1/2 , λ̄eff
c = 1.73λc . (6.11)

From now on we want to use the notation V eff and φeff for gyroaveraged values,
whereas we write V̄ eff and φ̄eff for orbitaveraged variables. However, we have
to remember that the orbit motion takes place on much slower time scales than
the gyromotion. So, in a first step, we want to clarify the condition under which
orbit averaging is valid.

In Fig. 6.1, the orbit motion of a particle with a rather large E×B drift
velocity is plotted in front of a fluctuating potential symbolized by the contours
of its autocorrelation function. As explained in the caption, a criterion for
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the validity of orbit averaging is the condition TorbitV̄
eff < λc, Torbit being the

cycle duration. [This criterion corresponds to the criterion for the validity of
gyroaveraging, given in Section 2.1.4, condition 2.] Additionally to the E×
B drift, decorrelation can be caused by the curvature drift velocity relative
to the diamagnetic drift velocity of the background potential. Moreover, the
correlation time of the fluctuations must, of course, be large compared to the
cycle duration, Torbit � τc. Consequently, we can state as a necessary condition
for the validity of orbit averaging the relations

Ξo.a. ≡ max
{

V̄ eff , |vdr − vy|
} Torbit

λc
< 1 , Torbit � τc . (6.12)

If one of those inequalities is violated, the particle is decorrelated before it
completes one turn, and therefore, orbit averaging is not applicable anymore.
If orbit averaging is valid, the gyroradius ρg in Eq. (3.4) can simply be replaced
by half of the deviation of the particle from the original flux surface, ∆x/2
(where we may assume that ∆y ≈ ∆x), and Eqs. (6.11) apply. As we will see,
the first relation of Eq. (6.12) is very critical, and the transport level for fast
particles strongly depends on its validity.

6.4.2 Decorrelation mechanisms

We now want to analyze different decorrelation mechanisms for the motion of
fast particles in a tokamak. Because of their importance also for this chapter,
we briefly repeat the some key points of the previous chapters. As long as a
Lagrangian correlation between the current particle velocity and the velocity at
its starting position exists, the transport is, in general, not diffusive. For exam-
ple, for small times, before a particle feels the structure or the time dependence
of the turbulent stream function, it moves ballistically, inducing superdiffusive
transport. This is the case for t < τfl ≡ λc/V , τfl being the average time of
flight of a particle exploring a typical fluctuation structure. On the other hand,
as long as a certain structure persists, the particle can get trapped in it, or be
bound by a transport barrier produced by the diamagnetic drift of the back-
ground potential. In this case, the transport will be subdiffusive. Only when
the particle starts to forget the information concerning its starting point, i.e.,
when there is no more correlation between the stream function at the current
position and at the starting position of the particle, its motion becomes diffu-
sive. This may be seen from the Taylor relation in Eq. (2.54) together with
Eq. (2.55). When the Lagrangian velocity autocorrelation Lvx(t) becomes zero,
Dx(t) becomes constant.

In two dimensions, the only relevant decorrelation mechanism is the time
dependence of the electrostatic potential. This means that the effective decor-
relation time of the particle motion is equal to the correlation time of the
potential, τ eff ≡ τc (Vlad et al., 1998). If there is no time dependence at all,
the particles simply follow the equipotential lines of the electrostatic potential
(the stream function); thus, their dynamics is fully deterministic. In a simple
approach, diffusion coefficients can be obtained by following the D(t) curve for
a static potential, while the curve is forced to saturate at t = τc. If there is a
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background drift, a sharp drop of the curve occurs at t = τdrop if τdrop < τc.
The figures Fig. 2.13 and 4.9 illustrate this type of behavior in two dimensions.

Now, in three dimensions, the situation is basically the same as long as orbit
averaging is valid. In this case, the only influence of the orbit motion is the
averaging of the background potential which reduces the transport for ∆x/2 >
λc (in addition to the reduction produced by averaging over the gyroorbit),
together with a possible decorrelation by the motion along the magnetic field
lines. The situation is quite different, however, if orbit averaging is not valid.
In that case, as we have seen while discussing Fig. 6.1, the decorrelation is
produced by the orbit motion of the particle perpendicular to the magnetic
field. So, as an effective decorrelation time, it is reasonable to take the time
a particle needs to cross a distance of one perpendicular velocity correlation
length during its orbit motion, i.e.,

τorbit = λV /vorbit = λV Torbit/(π∆x) . (6.13)

It must be emphasized that now, it is the autocorrelation length of the E×B
drift velocity field, λV , defined as the e-folding length of Evx(x) (Eq. (2.57)),
which becomes relevant. This is for the following reason. In two dimensions,
the particles follow the equipotential lines of φ. Therefore it was essential to
approach the distance of this structures, which was done using λc. In three di-
mensions, however, the particles do not feel these structures anymore, instead,
they only “scan and skim” them on their orbits (see Fig. 2.14). Now, the dis-
turbing force acting on the particle is governed by the velocity field, not the
potential. Therefore, it is the autocorrelation function Evx(x) and its correla-
tion length λV which is decisive. Evx(x) was defined in Eq. (2.57), where it was
already mentioned that the lengths scales may differ from the original function
E(x). For example, assuming an Gaussian autocorrelation function for E (as we
always do for our self-created potentials) leads to a velocity correlation length
λV ≡ λc in the x direction, but λV ≈ 0.51λc in the y direction, assuming the
definition of Eq. (2.57). One can argue that it is the smaller correlation length
of both directions which governs the decorrelation process. Depending on the
spectra, the relation of λc and λV may be larger or smaller, but in general,
λV <∼ λc may be assumed. [We want to note that it seems questionable that in
Eq. (6.12), λc should not also be changed to λV . The answer depends on the
question whether the structure of the stream function or the velocity field is de-
cisive in that case. Since the parameter Ξo.a. only wants to be a rough approach,
we will keep λc in the calculation of Ξo.a., but take λV for the determination of
τorbit.]

The relation of Eq. (6.13) is only valid if ∆x/2 >∼ λc. Only then is the drift
orbit wide enough to produce decorrelation. In the opposite case, if ∆x/2 <∼
λc, the situation is more complicated. Here, the particle does not necessarily
decorrelate at t = τ orbit, since the orbit radius is smaller than the correlation
length; and even if orbit averaging is not valid, the E×B motion may force the
particle to follow the equipotential lines of the stream function. So although it
travels a distance larger than λc during one orbit turn, it does not necessarily
decorrelate. On the other hand, since orbit averaging is not valid, the particle
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is not strictly bound to the equipotential lines. So, in this case, only a range of
time scales can be given at which decorrelation occurs, namely τfl ≤ τ eff ≤ τc.
The behavior of such particles is subject of detailed study in Chapter 9.

As an additional decorrelation mechanism in three dimensions, one obtains
the parallel motion of the particles. The relevant time scale is given by τ‖ =
λ‖/v‖ where λ‖ is the parallel correlation length of the fluctuations.

In summary, we thus have:

τ eff = min
{
τc, τ‖

}
∀ Ξo.a. <∼ 1

τ eff = min
{

τc, τ‖, τorbit
}

∀ Ξo.a. >∼ 1 . (6.14)

Here, τ eff is the effective decorrelation time for which the D(t) curve departs
from a reference curve without 3D effects and saturates. For the saturation level,
it remains crucial whether the effective decorrelation time is larger or smaller
than the drop time τdrop. For the later discussion, it turns out to be important
that one typically finds τ orbit < τdrop < τ‖ < τc, which means that the drift
barrier induced by the magnetic drifts of the particles and the diamagnetic drift
of the background potential exists if Ξo.a. < 1, but not if Ξo.a. > 1.

6.4.3 A simple 2D model

To gain a better understanding of the mechanisms we have just explained, it is
useful to study the drift orbit motion in the framework of a simple 2D model
defined by:

ẋ = v − 1

B
∇φeff × ez , v̇ = ωorbitv × ez . (6.15)

Eq. (6.15) describes a particle which is forced on an orbit with ωorbit = 2π/Torbit,
at the same time undergoing E×B drift motion. The orbit radius is set by choos-
ing an appropriate starting velocity of the particle, v(t = 0) = ∆xωorbit/2. In
this 2D system, we can also perform orbit averaging of the (already gyroaver-
aged) potential φeff over a circular orbit with radius ∆x/2. Simulation results
based on this model will be presented below.

6.5 Beam ions in a shearless magnetic field

Let us now turn to 3D simulations. In a first step, we consider a magnetic field
with q(r) ≡ 1.4, ŝ(r) ≡ 0. Here, the magnetic field lines close after 5 poloidal
(7 toroidal) turns, and therefore it is possible to choose λ‖ = ∞ (by g(z) ≡ 1 in
Eq. (6.6)) which makes comparisons with the simplified model easier. To ensure
continuity in the z direction, the flux surface is covered by M = 5 identical
copies of a flux tube. Moreover, we will see that this special case exhibits many
features which are typical for more general weak-shear situations. For the 3D
particle simulations with the Gourdon code, we consider deuterium ions with
η = 0.99 and energies ranging from 10 keV to 160 keV which we insert at
r0 = 0.7 at the outboard midplane (θ = 0). The characteristic orbit parameters,
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E[keV] Torbit [s] ∆x/2[m] ∆y/2[m] vy [m/s] Ξ
vdr=0
o.a. Ξ

vdr=300 m
s

o.a. τ
vdr=0

drop
[s] τ

vdr=300 m
s

drop
[s] τorbit[s]

10 5.6 · 10−5 0.0055 0.0050 68 2.0 2.0 4.8 · 10−4 1.4 · 10−4 1.4 · 10−5

20 4.0 · 10−5 0.0076 0.0075 136 1.2 1.2 2.4 · 10−4 2.0 · 10−4 7.0 · 10−6

40 2.8 · 10−5 0.0110 0.0105 273 0.7 0.7 1.2 · 10−4 1.2 · 10−3 3.3 · 10−6

80 2.0 · 10−5 0.0155 0.0148 545 0.6 0.4 6.0 · 10−5 1.3 · 10−4 1.7 · 10−6

160 1.4 · 10−5 0.0215 0.0205 1092 0.9 0.6 3.0 · 10−5 4.1 · 10−5 8.5 · 10−7

Table 6.1: Characteristic orbit parameters for beam ions (η = 0.99) in an ITER-
like tokamak with R0 = 6.2 m, B0 = 5.3 T, and q(r) ≡ 1.4. The
plasma/turbulence parameters are T = 10 keV, τc = 1.8 · 10−4 s,
λc = 0.0164 m, and V = 900 m/s. For the calculation of Ξo.a., V̄

eff has
been determined according to Eq. (6.11). Finite curvature drift velocities
vy are found although the magnetic shear vanishes.

Figure 6.2: Radial diffusion coefficient Dx for different particle energies E and
η = 0.99 in a shearless magnetic field. Black lines: no background drift
(vdr = 0). Red lines: background drift (vdr = 300 m/s). Bold solid
lines: particles in a tokamak (Eq. (2.18)). Dotted lines: simple 2D model
(Eq. (6.15)). Thin solid lines: orbit averaging in the simple 2D model.

obtained from the simulations, can be found in Table 6.1. For comparison, we
then recompute these orbits using the simple 2D model of Eq. (6.15), both for
the forced drift orbit case as well as for the orbit averaged case. In addition,
we do these simulations both with and without a background drift of vdr = 300
m/s. Fig. 6.2 shows the saturated values of the diffusion coefficients for the
described cases. We see that the 3D curves, Eq. (2.18), and the 2D curves,
Eq. (6.15), agree with each other within a factor of about 1.5, whereas the orbit
averaged curves deviate by a larger factor. This behavior can be understood
by inspecting the orbit parameters shown in Table 6.1. For the curves without
a background drift (black lines), the orbit averaged curves exhibit a rather fast
drop for energies exceeding 40 keV, which is due to the fact that τdrop < τc. The
orbit averaged curve with the background drift has its maximum at E = 40 keV,
since there the drift velocity of the particle is in resonance with the diamagnetic
drift velocity, and therefore τdrop � τc. As Ξo.a. is close to unity for all curves,
there are deviations between the orbit averaged and the exact curves, as could
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Figure 6.3: Left: Running radial diffusion coefficientDx(t) for different beam energies
and vdr = 0. Solid lines: forced orbit motion according to Eq. (6.15).
Dashed lines: orbit averaging. The saturation values are the same as in
Fig. 6.2. Right: Running radial diffusion coefficient Dx(t) for different
orbit cycle durations. Here, the orbit radius is kept fixed at ∆x/2 ≡ 0.04
m, and vy ≡ vdr ≡ 0. Lower dashed line: orbit averaging. Upper dashed
line: no orbit motion. Solid lines: full 2D orbit motion. A significant
difference in the time evolution for the regimes Ξo.a. < 1 and Ξo.a. > 1
can be observed.

be expected. However, the shape of the curves is similar. The correspondence
works best between E = 40 keV and 80 keV since for these cases, Ξo.a. � 1.
Given that the transport is governed by the validity of the orbit averaging
approach, one then finds a rather fast decline of D(E) towards higher energies.

More insight into the mechanisms at work can be gained from Fig. 6.3 (left).
Here, the running (i.e., time dependent) diffusion coefficient is plotted both
for the full 2D dynamics and the respective orbit averaged case for vdr = 0.
We first concentrate on the orbit averaged curves. Here, one observes that for
small energies (i.e., small curvature drift velocities), the diffusion coefficient first
increases linearly in time (ballistic regime), then it decreases slightly (trapping
effects), and finally it saturates (decorrelation due to t > τc). For larger energies
(i.e., larger curvature drift velocities), one has τdrop < τc, and one observes a
strong decrease due to the existence of a “drift barrier.” In the ballistic regime,
we observe the reduction of the E×B drift velocity due to the orbit averaging,
D ∼ (V̄ eff)2t. The curves obtained for the exact 2D orbit motion are similar,
but the underlying mechanisms are completely different. For t < Torbit, orbit
averaging is not applicable yet. Therefore, it is the original E×B drift which
causes the diffusion of the particles, and for small times, all the curves follow
the ballistic diffusion equation, D = V 2t. For larger times, there are now two
possibilities. If orbit averaging is valid (Ξo.a. <∼ 1), the curve jumps onto the
orbit averaged curve within τ orbit <∼ t <∼ Torbit. This relation describes the time
span during which the particle already feels the stochasticity, but the orbit is not
complete yet. As can be seen from Fig. 6.3 (left) as well as from Table 6.1, this
mechanism applies for E = 40 keV to E = 160 keV, but the saturation values of
the curves are not identical since the validity of orbit averaging seems to be not
fully established yet. The second possibility is that orbit averaging is clearly
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invalid (Ξo.a. > 1). In that case, D(t) simply saturates at t ∼ τ orbit, since, after
having crossing the correlated zone once, it never returns to a correlated region.
We observe this kind of behavior for small particle energies. For the case with
a background potential drift, we obtain similar D(t) curves.

In order to further clarify the decorrelation mechanisms at work, we consider
a more idealized situation. In Fig. 6.3 (right), the running diffusion coefficients
are plotted for a number of 2D test particles with no drift and the same or-
bit width, differing only by their orbit circulation time Torbit which, in turn,
determines the parameter Ξo.a.. For Torbit ≤ 5.6 · 10−5, we have Ξo.a. < 1,
and the curves approach the orbit averaged curve between τ orbit < t < Torbit.
For Torbit > 5.6 · 10−5, orbit averaging is not valid; hence, there is no trend
to approach the orbit averaged curve, the diffusion coefficient follows the curve
without any orbit effects, until it saturates at t ∼ τ orbit, or, if τ orbit > τc, at
t = τc(= 1.8 · 10−4s). Since in the ballistic regime, D(t) = (V̄ eff)2t for the
orbit averaging case, but D(t) = V 2t in the case that orbit averaging is not
valid (yet), the saturation levels for D are higher in the latter case. So from
this figure, it becomes clear how the fact that orbit averaging is not valid can
lead to an increase of diffusivity. Also, one can predict that in that case, a
reduction of the diffusivity can only occur if the effective decorrelation time
τ eff = τorbit = λV Torbit/(π∆x) is small enough to be in the ballistic regime
where a reduction of τ eff means a reduction of D. Since ∆x ∝ E1/2 and
Torbit ∝ E−1/2, we therefore expect a decrease like D ∝ E−1 for large en-
ergies. More precisely, since the maximum of the static D(t) curve lies at
t = τfl = λc/V , the criterion for the E−1 decrease is τ eff < τfl, i.e.,

TorbitV

π∆x
< 1 . (6.16)

Inserting the equations for Torbit and ∆x for our nominal physical parameters
and for passing orbits into Eq. (6.16), we obtain the condition E >∼ 15 keV
for the 1/E decrease. However, we have to remember that this criterion is
valid only if orbit averaging is invalid, and if τdrop > τorbit. Moreover, for the
Torbit = 5.6 ·10−6 curve, the bursty nature of the diffusion can be seen. A burst
occurs every time the particles come back into their original zone of correlation,
i.e., after ∆t = Torbit.

6.6 Beam ions in a sheared magnetic field

6.6.1 Simulation results and analytical approach

We now turn to a more realistic scenario by employing a sheared magnetic field
with q(r) = 0.5 (r/m)2 + 1.25. At the same time, we choose the envelope in
Eq. (6.6) to be g(z) = 0.5 cos(z − sin(z)) + 0.5. This ansatz reproduces the
typical ballooning structure of plasma turbulence and implies a parallel corre-
lation length of λ‖ ∼ 2πq0R0 which is in agreement with typical experimental
results (Zweben & Medley, 1989; Wootton et al., 1990; Thomsen et al., 2002;
Mahdizadeh et al., 2007). The beam ion and turbulence parameters are the
same as before, and the beam energies are varied from E = 10 keV to E = 1280
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E[keV] Torbit[s] ∆x/2[m] vy [m/s] Ξ
vdr=0
o.a. Ξ

vdr=1km
s

o.a. τ
vdr=0

drop
[s] τ

vdr=1km
s

drop
[s] τorbit[s]

10 5.6 · 10−5 0.006 249 2.4 2.6 1.3 · 10−4 4.6 · 10−5 1.3 · 10−5

20 4.0 · 10−5 0.008 501 1.3 1.3 6.7 · 10−5 6.4 · 10−5 6.0 · 10−6

40 2.8 · 10−5 0.011 1010 1.7 0.6 3.4 · 10−5 1.4 · 10−3 3.1 · 10−6

80 2.0 · 10−5 0.016 2040 2.4 1.2 1.7 · 10−5 3.4 · 10−5 1.6 · 10−6

160 1.4 · 10−5 0.023 4120 3.3 2.5 8.4 · 10−6 1.1 · 10−5 7.5 · 10−7

320 1.0 · 10−5 0.033 8420 4.9 4.3 4.2 · 10−6 4.8 · 10−6 4.0 · 10−7

640 7.0 · 10−6 0.047 17300 6.8 6.4 2.1 · 10−6 2.2 · 10−6 2.0 · 10−7

1280 5.0 · 10−6 0.067 35800 9.8 9.5 1.1 · 10−6 1.1 · 10−6 1.0 · 10−7

Table 6.2: Characteristic orbit parameters for beam ions (η = 0.99) in an ITER-like
tokamak with R0 = 6.2 m, B0 = 5.3 T, and q(r) = 0.5(r/m)2 + 1.25.
The plasma/turbulence parameters are as usual. For the calculation of
Ξo.a., V̄

eff has been determined according to Eq. (6.11). All parameters
are taken from simulations; they are in good agreement with the analytical
expressions from Eq. (6.9).

keV. Because of the magnetic shear, the curvature drift velocities vy are much
higher now than in the shearless case. All simulations are performed for a
diamagnetic drift velocity of the background fluctuations of either vdr = 0 or
vdr = 1 km/s. The characteristic orbit parameters can be found in Table 6.2.
The saturated diffusion coefficients (as a function of the beam energies) for the
3D motion, the corresponding 2D orbit motion results, and the orbit averaged
2D cases are shown in Fig. 6.4. For the moment, we want to ignore the dashed
bold lines. As can be inferred from Table 6.2, the drift velocities are higher
than in the shearless case, leading to an increase of Ξo.a.. Consequently, the
condition Ξo.a. < 1 is only fulfilled for a single case, namely E = 40 keV and
vdr = 1 km/s (vy ≈ vdr). In Fig. 6.4, we see that only for these parameters,
the orbit averaged value corresponds to the orbit motion value. Moreover, we
observe that the 2D orbit curves correspond quite well to the 3D curves, ex-
cept for E ∼ 100 keV and vdr = 1 km/s. This may be attributed to the fact
that Ξo.a. is close to unity in that case, which means that the fast drop in the
orbit averaged curves still affects the 2D orbit curves. However, we see that
Torbit <∼ τdrop, and in three dimensions, the particle decorrelates at t ∼ Torbit

because of its parallel motion. Therefore, it is not affected by the drift bar-
rier. In all the cases where orbit averaging is clearly not valid, decorrelation
is produced by τ eff = τorbit = λV Torbit/(π∆x), which is always smaller than
Torbit ∼ τ‖. Therefore, parallel decorrelation effects are irrelevant in that case,
and the 3D motion corresponds to the 2D motion. We note in passing that this
would still be valid if the parallel correlation length would be reduced by up to
one order of magnitude. Especially for larger beam energies, we observe a very
clear 1/E decrease which we have already explained in the previous section.
Only in the case of the drifting background potential, larger deviations occur
because of the existence of a drift resonance around 40 keV.

Based on these insights, the value of D can be estimated. Since the decorre-
lation due to the orbit motion occurs within the ballistic regime (τ orbit < τfl),
we get D ∼ V 2τ eff (low Kubo number limit, Eq. (2.65)). For our nominal pa-
rameters, this means D ∼ 114m2/s (E/keV)−1, which matches the simulation
values within a factor of 1.5. The small deviation can be taken into account
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Figure 6.4: Radial diffusion coefficient Dx for different particle energies E and η =
0.99 in a sheared magnetic field. Black lines: no background drift (vdr =
0). Red lines: background drift (vdr = 1 km/s). Bold solid lines: particles
in an annulus. Bold dashed lines: particles an annulus consisting of 10
flux tubes with periodic boundary conditions. Dotted lines: simple 2D
model (Eq. (6.15)). Thin solid lines: orbit averaging in the simple 2D
model. Blue dashed-dotted line: analytic approach. The blue curve has
been multiplied by a factor of two to become distinguishable from the
simulation results.

assuming that the decorrelation occurs not exactly at τ eff but already at about
τ eff × 2/3. [We note in passing that our definition of the correlation time as
the e-folding time is in some way arbitrary. A reduction does only mean that
the effective decorrelation occurs already at larger values of the autocorrelation
function.] Including this correction factor and generalizing to arbitrary physical
parameters, we find the relation

D ≈ V 2λVR0B0e

3η2E
(6.17)

for beam ions in electrostatic tokamak microturbulence for Ξo.a. > 1. We re-
member λV ≈ λc/2 (see Section 6.4.2).

Using the normalizations that are common in simulations of plasma tur-
bulence it is possible to rescale Eq. (6.17) to arbitrary temperatures and ma-
chine sizes. To this aim, we use the normalizations V̂E = VE/(ρici/R0) and
λ̂V = λV /ρi defined in Section 2.4 where we attribute to Te (and Ti) the dimen-
sion of an energy, so that the Boltzmann constant can be dropped. Inserting
these relations into Eq. (6.17), we obtain

D(E) ≈ V̂ 2
E λ̂V

3η2

(
E

Te

)−1 ρ2
i ci
R0

∝
(
E

Te

)−1

DgyroBohm . (6.18)

This is the well known gyro-Bohm diffusion coefficient, DgyroBohm = ρ2
scs/R0,

multiplied with the inverse of the particle energy normalized with respect to
the thermal energy of the background plasma. In this context, we would like to
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point out that the occurrence of the ratio E/Te is not trivial since the thermal
energy determines the scales of the background turbulence while the particle
energy governs the orbit motion of the energetic particles. Both influence the
fast particle transport, but they are a priori independent. To clarify this point,
let us give a counter-example. Assuming that the decorrelation is not caused
by the perpendicular orbit motion but by the parallel motion, then the effec-
tive decorrelation time would be τ eff = Torbit ∝ E−1/2 instead of τ eff ∝ E−1.
This, in consequence, would lead to the scaling D(E) ∝ (Te/E

1/2)DgyroBohm.
Moreover, it should be clear that the structure of the background turbulence
(e.g. streamers) is of minor relevance for the transport of fast particles if decor-
relation is caused by the orbit motion, since τ orbit < τfl. This means that the
particles are no more able to ‘feel’ the geometric structure of the turbulent
vortices, i.e., a new effective Kubo number is now K eff ≡ τorbitV/λc � 1.

In closing this section, we briefly want to compare the results of Fig. 6.4
with those of previous works. In Ref. (Dannert et al., 2008), a 1/E decay of the
diffusion coefficient was found for large particle energies in nonlinear gyrokinetic
simulations, whereas an approximate 1/E2.6 decay was found in quasilinear runs
based on generalized Maxwellian distributions. An explanation for this behavior
with respect to the underlying physics could not be given. In Ref. (Angioni
& Peeters, 2008), quasilinear calculations for slowing-down distributions lead
to a 1/E3 decay. Comparing those results with each other as well as with
ours, we may conclude that it is indeed the turbulent (i.e., random) nature
of the advecting field which is responsible for the slow decay of the particle
transport with increasing energy. A more rapid decay (faster than 1/E) is
only obtained in cases for which the particle is not decorrelated after one orbit
turn. This applies if orbit averaging is valid (Ξo.a. <∼ 1), as we have already
seen. In linear simulations, orbit decorrelation does not occur, since there is no
turbulence. Hence, orbit averaging remains valid and the reduction of D with
E is overestimated.

It is instructive to generalize the expression for the validity of orbit averaging,
Eq. (6.12), to arbitrary machine sizes and background temperatures as we have
just done for the diffusion coefficient. For very large particle energies, we have
vy � {vdr, V̄

eff}, and therefore Ξo.a. = vyTorbit/λc. Inserting the respective
terms into that equation, we find

Ξo.a. =
23/2πηŝqE1/2

λ̂cT 0.5
e

∼ ŝ q

(
E

Te

)1/2

. (6.19)

Interestingly, this expression is independent of R0 and B0. Thus, a reduction
of the fast particle transport through a reduction of Ξo.a. can be achieved, e.g.,
through a reduction of the safety factor or the magnetic shear. This result
explains, on general grounds, why one can expect orbit averaging to apply
and the fast ion transport to drop quickly with increasing particle energy in
low-shear regions of a tokamak. Thus, the latter can, in fact, act as kind of
“transport barriers” for energetic particles.
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Figure 6.5: This figure is similar to Fig. 6.1. It illustrates the mechanism of un-
physical re-correlations if a flux surface is covered by several flux tubes.
Here, the real drift velocity vy is replaced by the effective velocity
veff

y = (Torbitvy modLy)/Torbit.

6.6.2 Some comments on reduced-volume simulations

At this point, it seems worthwhile to briefly discuss an unphysical aliasing-type
effect which can occur if, in energetic particle studies, a flux surface is covered,
for convenience, by M identical copies of a thin flux tube, and M is chosen
too large. Our standard simulations are performed with M = 1, i.e., the box
width in the y direction is chosen to be 2πr0/q0, and the particles only feel the
true periodicity of the flux surface. Now, to reduce the computational effort in
setting up the test potential, one might want to use M > 1 instead (see Section
2.3.3). Here, one has to be careful, however, as will become clear presently. The
dashed lines in Fig. 6.4 have been obtained by using M = 10 instead of M = 1,
corresponding to a box width in the y direction of Ly ≡ 2πr0/(10q0) ≈ 0.31
m. For thermal particle velocities, such a choice would be fully adequate, since
the time a particle needs to cross the box is much larger than the turbulence
correlation time τc. Hence, the particle encounters a new realization when
reentering the simulation volume. Now, for M = 10, the minimum velocity
a particle needs to have to feel the periodicity is vmin = Ly/τc ≈ 1750 m/s
(for r0 = 0.7 m). From Table 6.2, we can infer that the critical velocity is
reached at E ∼ 80 keV, and from Fig. 6.4, we see that this is indeed (at least
approximately) the particle energy at which the curves begin to deviate (in fact,
since we have only simulated a discrete number of energies, E = 160 keV is the
first one where we observe the difference).

In Fig. 6.5, the mechanism is explained which leads to an unphysical de-
crease of the diffusivity for M = 10. It displays a trajectory subject to a
large drift velocity which takes the particle out of the correlated zone (see also
Fig. 6.1). However, because of the imposed periodicity, the particle gets back
into the zone of correlation when it reenters the simulation volume. So after
one turn, the particle, although having traveled a distance of Torbitvy, feels a
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potential which corresponds to the much smaller distance Torbitv
eff
y , where veff

y =
(Torbitvy modLy)/Torbit. For the transport, this means that the decorrelation
does not occur at τ orbit = λV /vorbit anymore. Since Ξo.a. = Torbitv

eff
y /λc < 1,

orbit averaging applies again, and, if τdrop < min{τ‖, τc}, the drift barrier be-
comes dominant and the transport is reduced. It should be clear that such a
re-correlation can only occur if the characteristic time scales are smaller than
the correlation time τc of the potential. This is true in our case. So, in general,
if performing fast particle simulations with M > 1, one should always ensure
that M is small enough for such aliasing effects not to occur. It is crucial to
be aware that the particle is able to ‘remember’ a former correlation, although
being decorrelated at an earlier time.

For the interested reader, a more detailed study of the effect of unphysical
re-correlations is provided in Appendix A.

6.6.3 Breaking of adiabatic invariants

Our above findings can also be looked at from a more abstract point of view. As
is well known, the radial transport of both thermal and suprathermal particles
is fundamentally connected with the breaking of certain adiabatic invariants.
From the discussion in Section 2.1.2 we already now the magnetic moment as
the first adiabatic invariant in a tokamak. In 3D, the phase space can be param-
eterized by the three adiabatic invariants J = (µ, Jφ, Jp) and θ = (θg, θφ, θp),
where µ is the magnetic moment, Jφ is the canonical angular momentum, and
Jp is the poloidal flux enclosed by the drift surface (Kaufman, 1972; Mynick &
Boozer, 2005). The vector θ contains the corresponding phases (the canonical
conjugate values to J), and Ωg = θ̇g, Ωφ = θ̇φ, and Ωp = θ̇p are the frequencies
of the periodic motions. Diffusion in real space corresponds to a diffusion in J

space which presupposes a breaking of one or more of the adiabatic invariants
µ, Jφ, and Jp. This may be caused by resonances between the frequencies as-
sociated with the respective periodic motions and the perturbation frequencies
ωturb of the background turbulence. The resonance condition can be expressed
as ωturb = lgΩg + lφΩφ + lpΩp, (lg,lφ, lp integer) (Kaufman, 1972; Mynick &
Boozer, 2005). While Ωg will always be much too large to be in resonance with
the turbulence and, for fast ions, ωturb/Ωφ ∼ (kyρs) (cs/R0) (q0R0/v‖) � 1,
the frequency corresponding to the third invariant is often found to be compa-
rable to or smaller than the typical frequencies of the fluctuations (Mynick &
Krommes, 1979). Since Ωp is the frequency with which the particles drift around
the torus in the toroidal direction, it is given by Ωp = vy/r0. Our test potential
was created using a Gaussian frequency spectrum with an e-folding frequency
of about 16700 1/s. This frequency is only reached by Ωp at E ∼ 500 keV.
Therefore, a significant radial transport of fast particles with E . 500 keV is
possible due to the breaking of the third adiabatic invariant by the background
turbulence.
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E[keV] Torbit [s] ∆x/2[m] ρg [m] vy [m/s] Ξ
vdr=0
o.a. Ξ

vdr=1 km
s

o.a. τ
vdr=0

drop
[s] τ

vdr=1 km
s

drop
[s] τorbit[s]

10 2.6 · 10−4 0.011 0.0038 237 5.3 12.1 1.4 · 10−4 4.3 · 10−5 3.4 · 10−5

20 1.8 · 10−4 0.016 0.0054 472 5.2 5.8 7.5 · 10−5 6.2 · 10−5 1.7 · 10−5

40 1.3 · 10−4 0.023 0.0076 938 7.4 1.3 3.5 · 10−5 5.5 · 10−4 8.5 · 10−6

80 9.0 · 10−5 0.033 0.011 1860 10.3 4.8 1.7 · 10−5 3.7 · 10−5 4.2 · 10−6

160 6.4 · 10−5 0.047 0.015 3680 14.7 10.8 8.7 · 10−6 1.2 · 10−5 2.1 · 10−6

320 4.5 · 10−5 0.067 0.021 7270 20.6 17.9 4.4 · 10−6 5.0 · 10−6 1.1 · 10−6

640 3.2 · 10−5 0.096 0.031 14300 29.4 27.4 2.2 · 10−6 2.3 · 10−6 5.5 · 10−7

1280 2.3 · 10−5 0.139 0.042 28000 41.2 40.8 1.1 · 10−6 1.1 · 10−6 2.7 · 10−7

Table 6.3: Characteristic orbit parameters for ions with η = 0.2 in an ITER-like
tokamak with R0 = 6.2 m, B0 = 5.3 T, and q(r) = 0.5(r/m)2 + 1.25. The
plasma/turbulence parameters are as usual. All parameters are taken from
simulations; they are in good agreement with the analytical expressions
from Eq. (6.10). The finite gyroradius of the particles has been taken into
account via gyroaveraging.

6.7 Trapped ions in a sheared magnetic field

Up to now, we have concentrated on beam-like ions, characterized by η ∼ 1.
This was, in part, motivated by recent experimental results (Günter et al., 2007)
concerning the efficiency of neutral beam injection, and the need to explain
them. In the present section, however, we would like to investigate in which
way the D(E) behavior is modified if the test particles only have a small parallel
velocity component such that they are trapped on the outer side of the torus,
moving along banana orbits. Taking η = 0.2, the respective orbit parameters
are shown in Table 6.3. Comparing them with the ones in Table 6.2, one sees
that the orbit circulation is slower than for the passing particles with η = 0.99,
as could be expected from comparing Eq. (6.7) with Eq. (6.8). Therefore, Ξo.a.

is larger, and orbit averaging cannot be applied. Hence, the decorrelation is
expected to be caused by τ orbit in all cases. On the other hand, since the parti-
cles now have a significant perpendicular velocity component, finite gyroradius
effects have to be taken into account. As can be inferred from the table, ρg > λc

for E > 160 keV. Since τ orbit is larger than for the η = 0.99 case, we expect
the base level of D(E) to be larger, too. However, due to gyroaveraging, the
effective E×B drift velocity is reduced for larger particle energies, leading to
a faster drop of the diffusivity. In Fig. 6.6, several D(E) curves are plotted. It
can be seen that the fall-off of the diffusivity with growing particle energy is
clearly faster than for the beam ion case. It is interesting to compare the D(E)
curves obtained with gyroaveraging with those, for which finite gyroradius ef-
fects have not been included. In the latter case, the decay is ∝ 1/E as in the
beam ion case, but on a higher level, indicating that only the increased orbit
decorrelation time is at work, but not the reduced E×B drift. Although orbit
averaging is clearly not valid, a peak can be observed at E = 40 keV for the
case with the background drift, reflecting the existence of a resonance between
the particle curvature drift and the drift of the fluctuations. We attribute this
behavior to the fact that only for that case, τdrop � τorbit, whereas a small
influence of the drift barrier may remain for the other energies.

As in the previous section, we now want to devise a quantitative formula for
D(E). To this aim, we again approximate the diffusivity in the large energy
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Figure 6.6: Radial diffusion coefficientDx for different particle energiesE and η = 0.2
in a sheared magnetic field. Black lines: no background drift (vdr = 0).
Red lines: background drift (vdr = 1 km/s). Bold solid lines: parti-
cles in a tokamak (Eq. (2.18)). Finite gyroradius effects are included via
gyroaveraging. Bold dashed dotted lines: the same, but without finite gy-
roradius effects. Thin solid lines: orbit averaging in the simple 2D model.
Blue dashed lines: analytic approach with and without gyroaveraging.

limit by the expression D ∼ (V eff)2τorbit × 2/3, where the factor 2/3 follows
from the observation that in practice, the decorrelation occurs already before
the nominal decorrelation time is reached. With Eq. (6.8) we then find

D ≈
√

2(V eff)2λeff
V R0.5

0 r0.5
0 B0e

3η
√

1 − η2E
(6.20)

(again, λV ≈ λc/2). In the case without gyroaveraging, we simply set V eff = V
and λeff

c = λc. Inserting the nominal physical parameters as introduced in
Sec. 6.2 yields D = 181m2/s (E/keV)−1. Fig. 6.6 shows that this approach fits
the respective simulation results quite well in the high energy limit. To obtain
a realistic description of the behavior for low-η particles, we have to calculate
the effective (i.e., gyroaveraged) values. In the large gyroradius limit, they are
already known from Eqs. (3.15) and (3.16), where ρg is replaced by the relative

quantity ρg/λc. Expressing the gyroradius as ρg =
√

1 − η2
√

2Em/(eB) and
inserting the effective values into Eq. (6.20), we get

D ≈ 1.73V 2λcλV e
2B2R0.5

0 r0.5
0

12
√
πη(1 − η2)m0.5E3/2

. (6.21)

Employing again the nominal physical parameters, we findD = 607/(E/keV)3/2,
which, as can be inferred from Fig. 6.6, matches the simulation results quite
well in the large energy limit. At this point, we have to recall that the validity
condition for this approach is that both the gyroradius and the orbit radius
exceed λc, such that the effective E×B drift approach applies, and that the
orbit decorrelation is dominant. In Eq. (6.21), a 1/E decay is produced by the
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orbit decorrelation, and an additional E−1/2 decay comes from the gyration.
We note in passing that for our beam ion case (η = 0.99), finite gyroradius
effects become relevant only for energies exceeding 1 MeV, and that a E−3/2

decay may also be expected in this “ultra fast” regime. Moreover, for beam
ions where η is clearly smaller than 1, finite gyroradius effects may become
important for smaller energies, and a E−3/2 decay may be observed, too.

Replacing the parameters characterizing the background potential by dimen-
sionless values, as we have also done in the previous section, one obtains

D(E) =
1.73 V̂ 2

E λ̂cλ̂V
√
ε

12
√
πη(1 − η2)

(
E

Te

)−3/2 ρ2
i ci
R0

∝
(
E

Te

)−3/2

DgyroBohm . (6.22)

We thus find a slightly faster decay than in the large-η case, which is due to
finite gyroradius effects.

6.8 Scaling of fast ion transport for arbitrary orbit
parameters

Up to now, we have based our discussion of the high energetic particle scaling
in electrostatic turbulence on two constraints:
1. We have parameterized the particles by their pitch angle η and their total
energy E, which means that the scaling laws derived in the foregoing sections
assume an increase of energy for a constant pitch angle, i.e. energy is uniformly
transferred into both parallel and perpendicular direction.
2. Although we have used the parameter η in our scaling laws for D, they are
- strictly spoken - only valid in the limits η → 1 and η → 0. In this section, we
will generalize the scaling laws concerning these points.

6.8.1 Scaling laws for arbitrary pitch angles

The orbit parameters given in Eqs. (6.7) and (6.8) have been derived assuming
the limits η → 1 and η → 0, respectively (Wesson, 1997). However, we could
demonstrate using particle orbit simulations with the Gourdon code, that the
respective expressions can be assumed to be valid for all values of η to a good
approximation. One only has to ensure whether the particles are trapped or
passing. A criterion for this discrimination has already been given at the end
of Section 2.1.5. There is no continuous transformation with η from trapped to
passing orbits, but a sharp jump.

In Section 6.6, we have assumed that beam ions have a vanishing gyroradius.
However, this is true for large energies only if the pitch angle is very large. For
this reason, we have assumed η → 1 in this section. However, as was shown in
Section 2.1.5, passing particles can also have significantly smaller pitch angles
(
√

2 − 2R0/R1 <∼ η ≤ 1), where the perpendicular component can be already
large enough to produce finite gyroradius effects. We therefore have to include
them in the same way as we did for trapped particles in Section 6.7. Moreover,
since we have τ orbit < τfl, decorrelation occurs in the small Kubo number regime,
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which means that corrections are not only necessary for ρg > λc, but already
for smaller gyroradii (see red curve in Fig. 3.5).

In Section 6.7, we have included finite gyroradius effects with ρg > λc for all
trapped particles. For small particle energies, this does not need to be true, so
in this case, Eq. (6.22) should be corrected, too.

Complete equations of motion for the four cases (passing/trapped and small/
large gyroradius) are given in Appendix B. They are a generalization of Eqs. (6.18)
and (6.22) to arbitrary pitch angles.

6.8.2 Scaling laws in the µ − v‖ plane

Instead of characterizing a particle by its total energy E and its pitch angle η,
it is also possible to chose µ and v‖, or E⊥ and E‖, respectively, instead. The
transformation reads

E‖ = η2E ; E⊥ = (1 − η2)E . (6.23)

If we replace η and E that way in Eqs. (6.18) and (6.22), we obtain

D(E) ≈ V̂ 2
E λ̂V

3

(
E‖

Te

)−1 ρ2
i ci
R0

. (6.24)

for beam ions with η → 1, and

D(E) =
1.73 V̂ 2

E λ̂cλ̂V
√
ε

12
√
π

E−1
⊥ E

−1/2
‖

T
−3/2
e

ρ2
i ci
R0

(6.25)

for trapped ions with small η. A systematic scaling draft in the v‖ − µ plane is
given in Fig. 6.7. The large pitch angle / vanishing gyroradius regime is given
by Eq. (6.24), and the small pitch angle / large gyroradius regime is represented
by Eq. (6.25). The two other regimes together with scaling laws for E, η as well
as for E‖, E⊥ are given in Appendix B, Eqs. (B.4) to (B.7).

It is interesting to note that regimes exist, where the selective input of energy
into a single velocity component does not influence the transport, or weakens
the transport more slowly than changing v‖ and µ equally.

6.9 Summary and conclusions

In the present chapter, we have studied – in the passive tracer limit – the
interaction of energetic ions with electrostatic microturbulence for an idealized
ITER-like tokamak, where the full 3D equations of motion were used. It was
found that although many findings of the 2D investigations in the previous
chapters carry over to the 3D case, the transport mechanisms are in principle
of different nature. In this context, several details of both the particle orbit
parameters and the properties of the turbulent fluctuations turn out to be
important. Nevertheless, it is possible to understand and quantitatively predict
the behavior of fast particles both in the high-energy regime, E/Te � 1, as well
as in the moderate-energy regime, 1 . E/Te . 10.
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Figure 6.7: Scaling of D with E‖ and E⊥. The axes scale with the parallel velocity (x
axis) and with the magnetic moment (y axis). Curves of constant pitch
angle have the form µ ∝ v2

‖. Trapping and passing regimes are separated
by the pitch angle η1, whereas large and small gyroradius regimes are
separated by ρg = λc (constant µ).

A first crucial insight is that while, in principle, regimes exist for which it is
possible to average the E×B drift motion over one drift orbit time (for example
for very low magnetic shear), such a procedure is usually not valid. In the
former case, a particle follows the orbit averaged structures, and the existence
of a drift barrier (caused by the poloidal drift of the particles) leads to a strong
reduction of the diffusivity with increasing particle energy. In the latter case,
however, a particle decorrelates from its original position in the turbulent field
already along its orbit. The respective time scale is typically smaller than the
autocorrelation time of the fluctuations or the drop time associated with the
drift motion. This explains why the observed reduction of the diffusivity is
weaker than expected based on orbit averaging arguments. For beam ions, a
(E/Te)

−1 fall-off has been found analytically as well as numerically, whereas
for ions with a smaller parallel and larger perpendicular velocity component,
a (E/Te)

−3/2 decrease was found, due to additional finite gyroradius effects.
Modified scaling laws have been derived by treating E‖ and E⊥ separately.

Besides the high energy limit, we also studied the behavior of particles with
1 . E/Te . 10. It turned out that the transport of such moderately suprather-
mal particles may remain on a level comparable to that of thermal particles.
This can be attributed to the existence of resonances between the particle drifts
and the diamagnetic drift of the background turbulence. In the case of reso-
nance, orbit averaging may become valid, whereas at the same time, the drift
barrier does not exist anymore – two effects which work together synergistically.
The parallel decorrelation was found to be of minor relevance for all particle
energies, since decorrelation due to the perpendicular motion is typically faster
by up to one order of magnitude.

By means of these findings and insights, one is able to explain in detail the
simulation results reported in Ref. (Dannert et al., 2008). Moreover, they can
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be applied to try to understand and interpret recent experimental observations
(Günter et al., 2007) concerning the efficiency of neutral beam injection. A
discussion of the latter problem is the subject of Chapter 8.
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Chapter 7

Advection of Fast Ions in
Magnetic Turbulence in 3D
Tokamak Geometry

The diffusion of energetic ions caused by magnetic field fluctuations in 3D toka-
mak geometry is investigated analytically. In analogy to electrostatic turbu-
lence, it is found that orbit averaging usually is not valid. A regime of constant
transport, independent from the particle energy, is found for particles with a
large parallel velocity, whereas a decrease with E−1/2 is found for particles with
a significant perpendicular velocity component. The main results of this chapter
have been published in (Hauff et al., 2009).

7.1 Introductory remarks

In Chapter 6, we have studied the variety of mechanisms governing the interac-
tion of the fast particles’ orbits with the background electrostatic turbulence.
A criterion has been defined for the validity of ‘orbit averaging’ (Eq. (6.12) or
(6.19)). In the case that orbit averaging is not valid, it was shown that the
decorrelation time τ orbit (Eq. (6.13)) is the decisive value which governs trans-
port according to the low Kubo number approach D ≈ (V eff)2τorbit, where V eff

has to be modified according to the gyroaveraging approach for smaller pitch
angles.

The reason why, up to now, we have concentrated on the electrostatic tur-
bulent transport was that, according to the discussion in Section 2.5.4, the
electrostatic and the magnetic component of the perturbed particle velocity
are identical concerning their mathematical structure. In this chapter, we will
therefore simply transfer the results of Chapter 6 to magnetic transport, using
Eqs. (2.59) and (2.60).

As we know from these equations, the quantity vB ≡ v‖(B̃r/B0), which
represents the projection of the parallel velocity onto the radial direction along
a fluctuating field line, takes over the role of the radial component of the E×B
drift velocity in the context of magnetic transport. Here, B0 is the unperturbed
magnetic field and B̃r is its radial perturbation. Thus, not unexpectedly, it will
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Figure 7.1: Left: Contour plot of the radial perturbation part of the magnetic field,

B̃r(x, y). Right: Corresponding autocorrelation functions C in the x and
y direction.

turn out that many of the previous findings and insights carry over to this case
in a more or less straightforward manner.

7.2 Fast ions in a perturbed magnetic field

It is known, for example from nonlinear electromagnetic Gene simulations, that
the structure of the magnetic field line fluctuations (the vector potential Ã‖)
is similar to the structure of the turbulent electrostatic field (the electrostatic
potential φ). In Fig. 7.1, contours of B̃r and the corresponding autocorrela-
tion functions are plotted. The correlation length of the radial magnetic field
perturbations is found to be comparable to the fluctuations of the electrostatic
velocity field, i.e., λB ≈ 3ρi in the y direction. This lies between previous as-
sumptions reported in the literature, ranging from 1ρi (Esposito et al., 1996)
to 6ρi (Mynick & Strachan, 1981).

Simulations of ion temperature gradient turbulence for Cyclone Base Case
parameters (Dimits et al., 2000) presented in Ref. (Pueschel et al., 2008) show
that the magnetic fluctuation level tends to scale linearly with the ‘plasma β’.
This parameter is defined as the ratio between the plasma pressure pkin = nkBT
and the magnetic pressure pmag = B2/(2µ0):

β ≡ pkin

pmag
=

nkBT

B2/(2µ0)
. (7.1)

Although one of the requirements for a commercial fusion reactor is a sufficiently
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high β, it can be shown that instabilities evolve at higher values of β, when
‘ballooning modes’ become unstable (Wesson, 1997). We denote the critical
value as βcrit. So for the fluctuation level of the magnetic field, we specifically
find the relation

B̃r/B0 ∼ C
β

βcrit

ρi

R0
(7.2)

with C ∼ 1, which is in line with the analytical predictions in Ref. (Waltz, 1985).
From now on, B̃r will denote the mean value of the magnetic field fluctuations.
Consequently, one obtains the estimate

VB ∼ B̃r

B0
v‖ =

B̃r

B0
η

√

E

Te
ci ∼ C

β

βcrit
η

√

E

Te

ρici
R0

(7.3)

for the mean value VB of the magnetic turbulent velocity vB . A maximal value
can be approached by choosing β = βcrit.

For magnetic transport, the validity condition for orbit averaging is identical
to the electrostatic one, except that VE is replaced by VB in Eq. (6.12). Since
for larger energies vy � (vdr, VB), Eq. (6.19) applies, too. Therefore the mag-
netic values Ξo.a. are in general comparable to the electrostatic ones, and orbit
averaging is invalid for E/Te � 1.

The magnetic orbit decorrelation time is the same as that already defined in
Eq. (6.13), only λV has to be replaced by λB . Subsequently applying the same
reasoning that lead to Eq. (6.18) and making the ansatz DB ≈ V 2

Bτ
orbit × 2/3,

we obtain the expression

DB(E) ≈ λ̂B

3

(
C β

βcrit

)2 ρ2
i ci
R0

(7.4)

for the diffusion coefficient of beam ions with large pitch angle (η → 1).
Thus, e.g., for C = 0.76 and β/βcrit = 0.6 (Pueschel et al., 2008), one gets
DB ∼ 0.1 ρ2

i ci/R0 (≈ 0.12m2/s for ITER parameters as introduced in Sec. 6.2),
which is a reasonably large number. It is important to note in this context that
the magnetic transport is independent of the particle energy. The reason for this
behavior is that the 1/E dependence caused by the perpendicular decorrelation
is balanced by the increase of the magnetic drift velocity since, in contrast to
the electrostatic case, the magnetic perturbation velocity depends on the to-
tal parallel particle velocity. For trapped particles, finite Larmor radius effects
have to be taken into account as before, and one obtains

DB(E) ≈ 1.73 λ̂2
B

√
εη

12
√
π(1 − η2)

(
C β

βcrit

)2(E

Te

)−1/2 ρ2
i ci
R0

, (7.5)

i.e. DB(E) ∝ E−1/2. Thus, the magnetic expressions deviate even more pro-
foundly from the expectations based on the validity of orbit averaging.

As in Chapter 6, we have studied only two rather simplified cases here,
namely beam ions with vanishing gyroradius (η → 1) and trapped ions with
large gyroradii (ρg > λB). A complete study, including passing particles with
finite gyroradius effects as well as trapped particles with small gyroradii, can
be found in Appendix B.
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Figure 7.2: Scaling of D with E‖ and E⊥. The axes scale with the parallel velocity
(x axis) and with the magnetic moment (y axis). Curves of constant pitch
angle have the form µ ∝ v2

‖. Trapping and passing regimes are separated
by the pitch angle η1, whereas large and small gyroradius regimes are
separated by ρg = λc (constant µ).

7.3 Scaling laws in the µ-v‖ plane

In Section 6.8.2, it was already discussed how the scaling laws change if one pa-
rameterizes the energy and the direction of the particles relative to the magnetic
field with µ and v‖, or E⊥ and E‖, respectively. The transformations are given
by Eq. (6.23). Replacing the parameters in Eqs. (7.4) and (7.5), we obtain mod-
ified scaling laws which are sketched in Fig. 7.2. Additionally, the figure also
distinguishes large and small gyroradii for both trapped and passing ions. The
complete scaling laws, including all four cases (trapped/passing and small/large
gyroradius) are given in Appendix B, Eqs. (B.8) to (B.11). Following η = const
curves, the scaling laws of Eqs. (7.4) and (7.5) can be observed in the figure.
However, a selective input of energy in either the perpendicular or the paral-
lel component leads to different scalings, as we already have seen in Fig. 6.7.
For example, a selective input of energy in the parallel direction can lead to
an increase of diffusivity in the small pitch angle regime. This is a somewhat
peripheral but interesting result.

7.4 Summary and conclusions

Applying the same analytic scaling approach to the transport of fast particles in
perturbed magnetic fields in a tokamak as we did to the electrostatic transport
in the previous chapter, we found that for beam ions with large pitch angles, the
transport is independent of the particle energy, even for very high energies. For
trapped ions with a large perpendicular component, we found a rather small
reduction of transport with the particle energy, which is ∝ E−1/2. For arbitrary
pitch angles and gyroradii, modified scaling laws have been derived. The rele-
vance of the present results concerning the explanation of recent experimental
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findings is discussed further in Chapter 8.
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Chapter 8

Simulation Results with Gene

and Relevance of the Results
for Fusion Experiments

Simulation results with the Gene code are presented for passing and trapped
particles in electrostatic as well as magnetic turbulence. For this purpose, fast
test particles were added as a third passive species. The scaling laws found in
Chapters 6 and 7 are confirmed in the E-η plane as well as in the µ-v‖ plane.
Furthermore, the influence of the now well-confirmed scaling laws on the overall
transport in a tokamak is studied, and the ability to explain recent surprising
experimental results in ASDEX Upgrade is discussed. This chapter contains
some results published in (Hauff et al., 2009).

8.1 Simulation results with the Gene code

In Chapter 6, an analytical model for the scaling of the diffusion coefficient
with the particle energy has been developed and confirmed in simulations with
the Gourdon code, where artificially produced electrostatic potentials were
mapped onto the torus geometry. In Chapter 7, the same model was applied to
magnetic turbulence, and modified scaling laws have been found.

In order to test these analytical predictions, we present electromagnetic sim-
ulations with the gyrokinetic turbulence code Gene in this section. Here, the
particles are put into realistic electrostatic and magnetic turbulent fields, which
means that some simplifications of the previous chapters, e.g. the idealized z
dependence or the simplified spectrum coming from the self-created stochastic
potentials, are not used anymore. For that reason, the Gene simulations may
be regarded as the (numerical) test of our model under realistic conditions.
They have been performed by Moritz Püschel (IPP Garching), and the data
was provided to the author for post-processing.

First efforts to use Gene for fast particle simulations have already been
presented by Tilman Dannert (Dannert et al., 2008) for beam ions in electro-
static turbulence. In this context, a first curve for magnetic transport of beam
ions has been produced (but was not published), which inspired the work pre-
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Figure 8.1: Electrostatic (solid lines) and magnetic (dashed lines) particle diffusivi-
ties of fast ions for large (black lines) and small (red lines) pitch angles as
obtained from Gene simulations. The results agree well with the theoret-
ical expectations (Eqs. (6.18), (6.22), (7.4), and (7.5)) which are shown
for comparison.

sented here. For simplicity, our present simulations have been performed in a
local flux-tube environment with ŝ-α geometry (circular flux surfaces). This is
a common approximation, and recent numerical investigations show that the
resulting turbulence characteristics exhibit moderate quantitative, but no qual-
itative differences compared to simulations in more realistic geometries (see
comments in Section 6.2). We were employing Cyclone Base Case parame-
ters (Dimits et al., 2000) and β/βcrit = 0.6 (as in the simulations presented in
Ref. (Pueschel et al., 2008)). Here, we have added an additional passive particle
species. Since gyrokinetic δf codes require an equilibrium particle distribution
function, we employ an isotropic Maxwellian with T/Te = 50 for the fast ion
species. During the saturated turbulent phase, the energy dependent particle
transport was written out on a v‖-µ grid. The results – normalized with re-
spect to the equilibrium distribution at the respective position in velocity space
and interpolated for constant pitch angles – are shown in Fig. 8.1. They are
found to be in very good agreement with the previous theoretical considerations.
In particular, the magnetic transport is independent of the particle energy for
larger energies, and at a level reasonably close to the one predicted by Eq. (7.4).
Since the theoretical models and predictions of the previous chapters are not
only summarized, but confirmed by simulations based on much more complete
models, Fig. 8.1 represents a central result of this thesis. These curves prove
that the test particle model based on decorrelation effects is indeed able to
explain the observed scaling laws.

For further comparison with our analytical results, plots of the diffusion co-
efficient in the E⊥-E‖ plane are presented in Fig. 8.2 for electrostatic transport.
The scaling of D can be compared directly to the theoretical approach con-
structed in Fig. 6.7, which was based on the scaling laws obtained in Chapter
6, or on the more complete laws given in Appendix B, respectively. In Fig. 8.2,
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Figure 8.2: Diffusion coefficient in the E‖-E⊥ plane for electrostatic transport as ob-
tained from the Gene simulations. The black lines denote equipotential
lines of the diffusion coefficient; the solid lines are separated by a factor
of 10, the dotted lines by a factor of 101/4 ≈ 1.78. The red dotted lines
denote E ≡ 10 and E ≡ 100. The colored solid lines denote curves of
constant pitch angle. Violet: η = 0.2 (trapped). Blue: η = 0.4 (trapped).
Green: η = 0.7 (passing). Red: η = 0.9 (passing). Cyan: η = 0.99
(passing).

the E−1 decrease for large pitch angles and the E−3/2 decrease for small pitch
angles can roughly be observed on the η = const curves. Moreover, it can be
seen that for beam ions with large η, there is practically no dependence of D
on E⊥ for small E⊥, and only a weak dependence for large E⊥, as predicted
by Eqs. (B.4) and (B.5). Only for small total energies, the predicted scaling
laws are not reproduced, e.g., the decline of D with E seems to be much faster
than predicted. However, this can clearly be attributed to the fact that orbit
averaging is valid in this case (see discussion concerning Fig. 6.4), and therefore
the scaling laws do not apply.

In Fig. 8.3, the diffusion coefficient in the E⊥-E‖ plane is plotted for magnetic
transport. It confirms the scaling draft given in Fig. 7.2, which was based on
the approaches in Chapter 7 or, in a more complete way, in Appendix B. Again,
a good agreement can be observed. In particular, the constancy of D for large
pitch angles is clearly visible, as well as the rather flat E−1/2 decrease for small
pitch angles and large energies. Furthermore, for trapped particles with large
E⊥, an increase of D with increasing E‖ can be observed which appears to be
even stronger than predicted. For small total energies, we expect orbit averaging
to be valid, so that the scaling laws do not apply.

8.2 Overall transport coefficients

Up to now, for electrostatic as well as for magnetic transport, we have treated
the diffusion coefficients depending on the particle’s energy and pitch angle,
D(E, η) (or D(E‖, E⊥)). If one aims to understand the transport behavior and
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Figure 8.3: Same as Fig. 8.2, but for magnetic transport.

the underlying mechanisms, this is the only feasible method. However, if one
looks at the problem from the experimental perspective, it is the overall trans-
port that is of interest since only this quantity is accessible in measurements in
a tokamak.

The overall transport coefficients resulting from the derived scalings of the
energetic ion diffusivities are treated next, focusing on beam ions. In order
to calculate them from our expressions, it is necessary to know the concrete
fast particle distribution function. Such a distribution function evolves since
fast particles are normally created or inserted at a certain energy, and are
then ‘slowed down’ by collisions with other, mainly thermal particles. For
example, alpha particles are created at 3.5 MeV, whereas beam ions in ASDEX
Upgrade are inserted at energies of about 90 keV (and up to 1MeV in ITER).
The distribution which emerges is the so-called slowing down distribution, which
can be expressed as (Gaffey, 1976)

Fs(v) =
S0τs
4π

H(vb − v)

v3
c + v3

(8.1)

by solving the Fokker-Planck equation with a delta-function source and assum-
ing isotropy. Here, S0 is the fast particle source intensity, τs is the slowing down
time (the characteristic collision time, see (Gaffey, 1976) for a definition), vb is
the fast particle birth speed, vc the crossover velocity, which is also defined in
Ref. (Gaffey, 1976), and H is the well-known Heaviside function. Since vc � vb,
the slowing down distribution can be approximated by Fs(E) ∝ E−3/2H(Eb−E)
for energetic particles (in this case, Eb is the birth energy).

So for the overall fluxes of particles (Γp), momentum (Γm), and energy (ΓE),
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the following expressions hold:

Γp ∝
∫

D(E)Fs(E)E1/2 dE

Γm ∝
∫

D(E)Fs(E)E dE (8.2)

ΓE ∝
∫

D(E)Fs(E)E3/2 dE .

Here, the relation dv ∝ v2dv ∝ E1/2dE was used. Inserting the high energy
approach for Fs(E) together with D(E) ∝ 1/E for the electrostatic transport
of beam ions, we obtain

Γel.stat.
p ∝ −(Eb/Te)

−1 + (E0/Te)
−1

Γel.stat.
m ∝ −(Eb/Te)

−0.5 + (E0/Te)
−0.5 (8.3)

Γel.stat.
E ∝ ln(Eb/Te) − ln(E0/Te) = ln(Eb/E0)

as corrections due to the 1/E tail. Eb is the beam energy, Te the thermal
(electron) background temperature, and E0 is an arbitrary energy with Te <
E0 < Eb, which shall give a lower limit for the fast particles and the applicability
of the slowing down distribution, distinguishing them from the thermal ones.
This is the case since for E ∼ Te, the particles thermalize and rather obey a
Maxwellian distribution. We observe from Eqs. (8.3) that, although we have
shown in Chapter 6 that the 1/E decrease is much slower than assumed or
expected in the past, its contribution to the overall particle or momentum
fluxes is still fairly small. However, the electrostatic heat flux corrections scale
with ln(Eb/Te) and therefore constitute a potentially significant influence.

For the magnetic fluxes of beam ions, we insert D(E) = const into Eqs. (8.2)
and obtain

Γmag.
p ∝ ln(Eb/Te) − ln(E0/Te) = ln(Eb/E0)

Γmag.
m ∝

√

Eb/Te −
√

E0/Te (8.4)

Γmag.
E ∝ Eb/Te −E0/Te .

This means that for magnetic transport, already the particle transport may be
influenced significantly by the turbulence, whereas for the heat transport, the
influence of fast particles is quite strong and absolutely dominates the transport.
However, we have to keep in mind that the prefactors of D(E) are different for
electrostatic and magnetic transport. Whereas in the former case, we found
D(E) ≈ 8(E/Te)

−1 ρ2
i ci/R0, we obtained D(E) ≈ 0.1 ρ2

i ci/R0 in the latter case,
which is a difference of almost two orders of magnitude. In Fig. 8.4, the flux
proportionalities of Eqs. (8.3) and (8.4) are weighted with these prefactors, and
E0/Te = 5 is chosen. As can be seen, although the magnetic total fluxes grow
faster with energy than the electrostatic ones, the former exceed the latter only
for very large particle energies. In a future burning plasma, one can expect Te ∼
10 keV, which means that the relative energy of alpha particles is Eα/Te ∼ 350.
For these energies, the magnetic energy flux may become comparable to the
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Figure 8.4: Electrostatic and magnetic fluxes of particles, momentum, and energy
according to Eqs. (8.3) and (8.4), weighted with the prefactors 8 and 0.1,
respectively.

electrostatic one. It is important to note that the choice of E0/Te is arbitrary
in Fig. 8.4. The relative strength of the magnetic fluxes grows if E0/Te is
increased.

8.3 Relevance for experimental findings

The discovery of a regime of constant particle transport independent of the
particle energy is possibly of great relevance for the explanation of recent ex-
perimental findings on ASDEX Upgrade. In (Günter et al., 2007) a fast radial
broadening of the plasma current profile driven by off-axis neutral beam injec-
tion has been observed. This was attributed to turbulent transport, since no
measurable magnetohydrodynamic activity was present. Such a behavior of the
beam driven plasma current is of relevance for a future burning plasma, since
it is the goal to complement the inductive current drive (see Chapter 1) by a
beam ion drive. If the observed behavior carries over to ITER, it could confound
this intention. Therefore, an understanding of the mechanism is of great im-
portance. In order to describe the fast broadening of the neutral beam driven
current phenomenologically, the ad hoc assumption of a transport coefficient
independent of the particle energy was introduced. In (Günter et al., 2007), a
diffusion coefficient of D ≡ 0.5m2/s was found to describe the observed phe-
nomena. There, simulations were done with the Transp code (Pankin et al.,
2004) in order to model the beam current distribution. To compare the re-
sults of this thesis with the experimental findings, the graphs of Fig. 8.5 where
produced by Giovanni Tardini (IPP Garching) using the Transp code in the
same way as in the forementioned publication, but with different inputs for
D(E). The curve with D ≡ 0.5m2/s is the one which fits the experimental
data best. How does this compare to our results? The diffusion coefficients de-

rived in Chapters 6 and 7 were normalized to ρ2
scs/R0 = m

1/2
i T

3/2
e /(e2B2R0).
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Figure 8.5: Current profiles for an off-axis beam in ASDEX Upgrade simulated with
the Transp code. Left: Blue: No fast particle diffusion. Green: D ≡
0.2 m2/s. Red: D ≡ 0.5 m2/s. Right: Red: No fast particle diffusion.
Blue: D(E) = (E/Te)

−1 m2/s. Black: D(E) = 5(E/Te)
−1 m2/s. Green:

D ≡ 0.5 m2/s.

For the values used in Ref. (Günter et al., 2007) – R0 = 1.65m, B = 2.5T,
Te ≈ 1.5 keV – we get ρ2

scs/R0 ≈ 0.81m2/s. The pitch angle of the beam was
η = 0.78 (Günter, 2009). Thus, applied to ASDEX, our scaling laws derived
in Chapters 6 and 7 give D(E) ≈ 12.0(E/Te)

−1 m2/s for electrostatic transport
(Eq. (6.18)) and D(E) ≈ 0.17m2/s for magnetic transport (Eq. (7.4)). Com-
pared to Fig. 8.5, the results of both approaches seem slightly too small to be
able to fully explain the experimental results. Now, whereas the results for the
electrostatic transport seem to be quite well established (the parameters V̂E

and λ̂V in Eq. (6.18) are fairly universal), we have already emphasized that this
is not the case for magnetic transport. In Eq. (7.4), especially the parameter
C has been determined only for a relatively small number of Gene runs and
cannot be regarded as universal. For the plasma beta, however, β/βcrit ≈ 0.6
can be estimated to be a realistic value for the ASDEX discharge (Günter et al.,
2007), so that our previous assumption appears to be justified. However, due to
the quadratic dependence of the diffusion coefficient on both the prefactor and
the plasma beta, already slight modifications may lead to a significant increase.
The same is true for an adjustment of the electron temperature, to which values
like λB are normalized. Rewriting Eq. (7.4) for ASDEX Upgrade machine sizes
and the established value for λ̃B, we obtain

DB ≈ 0.44 × C2

(
β

βcrit

)2

(Te[keV])3/2 (8.5)

for the magnetic particle diffusivity in ASDEX Upgrade. Now, in Fig. 8.6, the
measured profile of the electron temperature (Günter et al., 2007) is plotted. It
increases towards the magnetic axis since the off-axis injection is accompanied
by central ECRH (electron cyclotron resonance heating). Although the electron
temperature is Te ≈ 1.5 keV at the position of the beam, it can be seen in Fig. 8.5
that the most significant deviations of the current profiles with diffusion from
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Figure 8.6: Electron temperature profiles for on- and off-axis beam deposition in the
ASDEX Upgrade discharge (Günter et al., 2007). ρtor = r/a.

the non-diffusive one occur towards the magnetic axis, i.e., between r/a = 0
and r/a = 0.2. There, however, we find Te ≥ 3 keV. If we keep C = 0.76
and β/βcrit = 0.6 in Eq. (8.5) and adjust Te, we find DM = 0.48m2/s, which
is more or less the value which was claimed to fit best assuming dominant
magnetic transport. In general, even larger values are possible, since the upper
limit for beta is β/βcrit = 1. So, although there are some uncertainties about
the exact values of C and β/βcrit as well as on the point where the electron
temperature should be measured, it could be shown that the desired value can
be reached with our model.

The diffusion coefficient can also be expressed via B̃r/B0 = C(β/βcrit)ρs/R0.
This way, we can rewrite Eq. (8.5) for the ASDEX parameters:

DB ≈ 6.5 × 105
(

B̃r/B0

)2
(Te[keV])1/2 . (8.6)

This means that for Te = 1.5 keV, a value of B̃r/B0 = 7.9 × 10−4 would be
necessary to retain the assumed value of D = 0.5m2/s, whereas under the
assumption of Te = 3keV, a somewhat lower value of B̃r/B0 = 6.7 × 10−4

would be sufficient. Both of these values are rather large. However, values
B̃r/B0 <∼ 10−3 have been found in the literature (Entrop et al., 1998; Entrop
et al., 2000) and are also expected to be possible for ASDEX Upgrade (Günter,
2009).

Although we have just demonstrated that magnetic transport is in principle
able to explain the radial beam broadening found in the experiment, the possi-
bility of a significant electrostatic contribution should still be considered, even
though the required level is not known precisely. If we insert the ASDEX pa-
rameters (including η = 0.78) into Eq. (6.18) and use the dimensionless values
for V̂E and λ̂V found in Chapter 6, we obtain

DE ≈ 6.5 (
E

Te
)−1 (Te[keV])3/2 . (8.7)
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With Te = 3keV, this is DE ≈ 34(E/Te)
−1. Although such a high prefac-

tor was not simulated with Transp, we can extrapolate from Fig. 8.5 that
electrostatic transport on this level may probably also be able to explain the
experimental observations. However, since in (Günter et al., 2007) only a dif-
fusivity independent of the particle energy has been used for comparison with
the measurements, a final answer has to be left to future investigations. It is
possible that eventually both magnetic and electrostatic transport will turn out
to have significant contributions to the radial beam broadening.

The discussion of Eqs. (8.5) and (8.6) has shown that magnetic transport as
introduced in Chapter 7 is a suitable candidate to explain the reported ASDEX
Upgrade results, possibly in conjunction with electrostatic transport. If this
suspicion turns out to be true, it will have a serious impact on the ITER project,
unfortunately not in a positive way, since a well confined beam is needed for
an economic current drive which is thought to be a necessary condition for
a continuous operation. In order to get more clarity in this matter, a more
exact determination of the critical values is still in progress, including a closer
collaboration with the experimental side.

8.4 Summary and conclusions

To summarize, self-consistent gyrokinetic simulations were performed with the
Gene code, where fast particles were added as a third species. The results
support the scaling laws derived in Chapters 6 and 7 and confirm that the
test particle model underlying this work is indeed able to describe the diffusion
coefficients of fast particles correctly. Moreover, it became clear that the thor-
ough understanding of the underlying processes was possible by reducing the
complexity of the transport problem in the way presented here. To allow for a
comparison of the scaling laws with experimental observations, their influence
on the overall transport of particles, momentum, and energy was studied. It
was shown that it is foremost the magnetic energy transport which is influenced
significantly by the contributions of fast particles, since it scales linearly with
the beam energy. For the magnetic momentum flux and the electrostatic en-
ergy flux, the fast particles influence the overall transport moderately, whereas
for the electrostatic particle transport, the 1/E decrease is too strong for fast
particles to constitute a significant influence.

Moreover, the results of the models developed in this thesis were compared
with recent experimental measurements on ASDEX Upgrade in Garching. Sur-
prisingly, a fast broadening of the beam ion current was observed to which
a rather large constant diffusion coefficient D(E) = 0.5m2/s could be fitted.
It was shown that this value can be reproduced with the model for magnetic
transport. Due to the quadratic dependence on values like C and β/βcrit which
are not definitely established yet, a final answer to the question whether the
turbulent magnetic diffusion is responsible for the observed behavior cannot be
given at this point. It may have a serious impact on the future fusion project
ITER, where neutral beam injection is expected to play a prominent role in the
toroidal current drive.
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Chapter 9

Advection of Thermal
Electrons in 3D Electrostatic
Turbulence

In Chapters 6 to 8 the transport of fast particles was studied based on orbit
decorrelation. However, this procedure does not apply to thermal particles,
which are situated in a regime where orbit averaging is not valid, but at the
same time the orbits are too small to support perpendicular decorrelation. In
the present chapter an alternative decorrelation process for thermal electrons in
electron temperature gradient (ETG) turbulence is studied, and the question if
and how streamers (i.e., radially elongated vortices) can lead to an enhancement
of the cross-field transport is addressed. A substantial increase of transport is
found in a wide region of parameter space; however, the enhancement is reduced
compared to the 2D case described in Chapter 4. The results of this chapter
have been published in (Hauff & Jenko, 2009b).

9.1 Introductory remarks

In Section 6.4.2, the question how particles are advected if on one hand orbit
averaging is invalid, but on the other hand ∆r < λc, was only raised briefly
and was left to a more complete discussion in the present chapter. In this case,
the particles do not follow the equipotential lines strictly anymore, as assumed
in the discussion in Chapter 4. However, an instantaneous decorrelation due
to the orbit motion is also not possible, since the orbit diameter is too small.
Here, we want to deal with the transport of thermal electrons in ETG turbu-
lence and the question, whether streamers (radially elongated vortices) lead to
an increase of transport (as shown for two dimensions in Sec. 4.3) or not. Since
the mechanism described in Sec. 4.3 is valid only in the case that the particles
follow equipotential lines for a time larger than the ‘flight time’ τfl, the questions
of orbit averaging and the influence of streamers are closely linked. We note in
passing that since electrons are treated in this chapter, quantities are normal-
ized to the electron gyroradius or the electron thermal velocity. However, the
mechanisms described here apply to ions in the same way, of course, provided
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that the normalized quantities are comparable.
It is well known by now that microturbulence in toroidal magnetized plas-

mas often tends to form anisotropic structures like zonal flows or streamers.
The former are the E×B flows resulting from purely radial variations of the
electrostatic potential (for a review, see Ref. (Diamond et al., 2005)), whereas
the latter are radially elongated vortices, generally localized at the outboard
side and pointing away from the torus axis (see, e.g., Refs. (Drake et al., 1988;
Cowley et al., 1991; Jenko et al., 2000)). Due to their fundamentally different
character, a coexistence of both types of structures can be excluded; rather, one
(or none) of them will dominate. However, in both cases, it can be expected that
the presence of the structures may have a significant impact on the resulting
turbulent transport. While in the case of zonal flows, it is widely accepted that
the cross-field transport is reduced or even quenched (see the discussion and
references in Sec. 4.4), there are only few dedicated investigations concerning
the streamer case. It is thus the main goal of the present chapter to address the
key issue in this context, namely: To which degree and in which way will the
presence of streamers enhance the radial turbulent transport? To this aim, we
will systematically study the behavior of passive tracers advected in turbulent
electrostatic potentials exhibiting streamers.

This question was raised, in particular, by gyrokinetic simulations which
showed that the transport levels in electron temperature gradient (ETG) tur-
bulence can clearly exceed naive mixing length expectations, χe � ρ2

eve/LTe

(Jenko et al., 2000; Dorland et al., 2000; Jenko & Dorland, 2002). Here, χe is the
electron heat diffusivity, ρe is the electron thermal gyroradius, ve is the electron
thermal velocity, and LTe is a characteristic scale length of the electron tempera-
ture profile. For Cyclone Base Case parameters (Dimits et al., 2000), neglecting
magnetic electron trapping as well as kinetic ion effects, χe > 10 ρ2

eve/LTe was
obtained in these studies. More recently, taking magnetic trapping into account,
it was found that the simulations can reach very high transport levels, generally
even failing to saturate (see, e.g., Refs. (Idomura, 2006; Bottino et al., 2007;
Candy et al., 2007)). Therefore, in the context of a careful comparison between
five different gyrokinetic codes, the magnetic shear value was reduced from 0.8
to 0.1 in order to circumvent these problems (Nevins et al., 2006; Nevins et al.,
2007). Here, it was found that χe > 5 ρ2

eve/LTe in well-resolved runs for a given
box size, and all codes agreed with each other within fairly narrow margins. Fi-
nally, recent gyrokinetic simulations including both ion and electron space-time
scales self-consistently (but working with a reduced ion-to-electron mass ratio
of 400) confirmed these findings in the framework of a more complete and real-
istic physical setting (Görler & Jenko, 2008). In particular, if ion temperature
gradient (ITG) modes are sufficiently close to marginality (as they will be in
any experiment) or even stable (as they are in certain dedicated experiments
with strong electron heating), one again finds χe � ρ2

eve/LTe . The common
feature in all of these simulations is the existence of streamers and relatively
weak zonal flow activity. (We note in passing that another such example is
trapped electron mode turbulence in the cold ion regime (Dannert & Jenko,
2005; Lang et al., 2007).)

On general grounds, it is reasonable to expect an enhancement of the turbu-
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lent transport in the presence of streamers. First, the very existence of stream-
ers is an indicator of the relative weakness of zonal flows, thus allowing for
potentially larger fluxes. Second, according to the common notion that in the
saturated state, the radial gradients of the background temperature and the
temperature fluctuations should be similar (on average), the amplitude of radi-
ally elongated streamers should exceed those of isotropic vortices with the same
poloidal extension, increasing the resulting transport level. And third, even
if the amplitude of the vortices is kept constant, a radial elongation can raise
the cross-field diffusivity due to the larger radial correlation length. The latter
effect has already been investigated in detail in Sec. 4.3 for particles in two
dimensions, and shall be reinvestigated including finite orbit effects as well as
parallel effects in the present chapter, establishing a closer link between turbu-
lent structures and corresponding transport levels. To this aim, we will employ
the passive tracer description which allows for a simpler, more accessible, and
more rigorous treatment of the questions under consideration.

The remainder of this chapter is organized as follows. In Section 9.2, a brief
review of pure orbit center motion in anisotropic turbulence is given, and the
impact of the invalidity of orbit averaging on the transport of suprathermal par-
ticles is reviewed. In Section 9.3, the diffusive motion of thermal test particles
is studied in detail, and the consequences of the invalidity of orbit averaging
for the decorrelation mechanisms of these particles are examined by means of
a simplified model. In Section 9.4, the scaling of the diffusion coefficient with
the turbulence amplitude and correlation length is studied for ETG turbulence.
Finally, in Section 9.5 we provide a summary along with some conclusions.

9.2 Transport scaling for particle orbit centers and
suprathermal particles

At the beginning, we would like to restrict to pure E×B motion in two dimen-
sions – various generalizations will follow later. In Section 2.6.1, the influence
of turbulent structures in an isotropic 2D potential has already been explained
in terms of the Kubo numberK. As can be inferred from Eq. (2.68), the spatial
structure of a turbulent field is only relevant for γ < 2, i.e., for K >∼ 1.

In Chapter 4, it was shown that anisotropic structures (like streamers) can be
described in a similar way by using λx and Vx for the diffusivity in the x direction
and λy and Vy for the diffusivity in the y direction in Eq. (2.68). Defining an
anisotropy factor ζ ≡ λx/λI (the index I denotes the isotropic value), one
therefore finds Dx ∝ ζ2−γ if λy is kept unchanged. This means that in the large
Kubo number regime, anisotropic structures enhance the tracer transport. Since
realistic Kubo numbers are found (in nonlinear gyrokinetic simulations) to lie
between about 1 and 10 (corresponding to γ values somewhere between 0.7 and
1), this effect is relevant if no faster decorrelation mechanism exists (as is the
case in two dimensions).

In Section 4.5, the influence of a homogeneous background drift of the turbu-
lence on the transport was also a subject of study. It was shown that a potential
drift with velocity vdr in the y direction leads to a strong suppression of trans-
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port at a characteristic ‘drop time’ τdrop ≡ 2λy/vdr. This effect is important
for τdrop <∼ τc, whereas it has no influence for τdrop � τc. Typically, one finds
τfl < τdrop <∼ τc, which implies a moderate decrease of the diffusion coefficient
compared to a non-drifting case.

In the respective discussion, the only relevant decorrelation mechanism was
the time dependence of the electrostatic potential. However, decorrelation may
also be caused by the parallel motion of the particles along the magnetic field
lines or, if orbit averaging is not valid, by the orbit motion perpendicular to the
magnetic field lines. If we denote the respective effective decorrelation time by
τ eff , and one has τ eff < τc, τc is to be replaced by τ eff in the preceding discussion
to obtain the correct scaling behavior of the diffusion coefficient.

In Eq. (6.12), the parameter Ξo.a. was introduced in order to describe the
validity of orbit averaging. Following this finding, energetic particles with E �
Ti,e were discussed. Their orbit diameter ∆r is much larger than the correlation
length of the potential, for both trapped and passing particles. Therefore the
particle decorrelates already after a time τ orbit = λc/vorbit = λcTorbit/(π∆r).
Since τ orbit ≡ τ eff < τfl, the particles are in the ballistic regime when they
decorrelate, and the diffusion coefficient can therefore be approximated by D ≈
V 2τorbit ∝ V 2λc. This expression cannot be associated with an exponent γ
in the context of Eq. (2.68). Moreover, although the transport in that regime
depends on the turbulence correlation length λc, it is not affected by structural
anisotropies, because the particles do not follow equipotential lines. Instead,
they decorrelate due to the orbit motion, which is governed by the smallest
correlation length. For radial streamers, this means that only λy contributes to
D, but not λx. Furthermore, it was found that for suprathermal particles, the
orbit decorrelation time is smaller than the parallel one (τ orbit < τ‖). Hence,
the parallel motion was ignorable. In the following sections, we will study to
which degree the findings for energetic particles on one hand and for pure E×B
motion in two dimensions on the other hand carry over to thermal particles in
a tokamak, namely electrons in ETG turbulence.

9.3 Basic studies of thermal particles in ETG-like
turbulence

In order to get an idea of a reasonable choice of various quantities mentioned
above, we have performed nonlinear gyrokinetic simulations (in the local limit)
of ETG turbulence with kinetic ions for Cyclone Base Case parameters, em-
ploying the Gene code. These simulations were done by Tobias Görler (IPP
Garching). This way, we found

√

〈φ2〉 ≈ 60 (ρe/R0) (Te/e), τc ≈ 12R0/ve

λx ≈ 23 ρe, λy ≈ 7.0 ρe

Vx,0 ≈ 12 ρeve/R0, Vy,0 ≈ 7.5 ρeve/R0 (9.1)

vdr ≈ 2.2 ρeve/R0, τdrop ≈ 6.4R0/ve

τfl,x ≈ 1.8R0/ve, Kx ≈ 7 .

130



9.3. Basic studies of thermal particles in ETG-like turbulence

Here, R0 is again the major radius, and the other quantities have already been
defined above, however, they are now on electron scales instead of ion scales.
These numbers are in good agreement with those obtained in the framework
of recent benchmarking simulations (Nevins et al., 2006). Thus, they seem to
represent rather typical values for the above quantities. (In global adiabatic-ion
simulations of ETG turbulence (Lin et al., 2007), much larger correlation lengths
and times have been observed, but the difficulties of using the adiabatic-ion ap-
proximation in the presence of trapped electrons mentioned in the introduction
make their interpretation hard.) Nevertheless, in the following discussions, we
do not want to restrict to those values. Instead, we will study the transport
of thermal electrons in ETG turbulence under rather general conditions. This
procedure seems to be adequate since we will see that the transport behavior
may depend on the interplay of various different time scales in a very sensitive
way, rendering it impossible to claim that the transport scaling of a particular
realization of ETG turbulence applies universally. In this context, we would like
to note that, as before, we have used the e-folding length or time to determine
the correlation parameters, since our practical experience shows that this pro-
cedure yields the most reliable results. The circulation time and orbit diameter
of a thermal electron can be calculated to be Torbit = 2πq0R0/ve ≈ 9R0/ve

and ∆r = 2q0ρe ≈ 2.8 ρe, respectively, with q0 being the safety factor (see
Sec. 2.1.5).

To gain a basic understanding of the electron dynamics under such condi-
tions, we simulate the orbit motion of the particles relative to the field aligned
coordinates by the simple 2D model of Sec. 6.4.3, which we write

ẋ = v −∇φ× ez , v̇ = ωorbitv × ez (9.2)

in dimensionless units. Eq. (9.2) describes a particle which is forced on a circular
orbit with ωorbit = 2π/Torbit, at the same time undergoing an E×B drift
motion. The orbit radius is set by choosing an appropriate initial velocity of the
particle. This model is very useful for general studies, since all orbit parameters
can be varied independently, and the real orbit in field aligned coordinates is
fitted well. Its validity has already been demonstrated via direct comparisons
with simulations in tokamak geometry in Chapter 6. Of course, no parallel
decorrelation effects can be observed with this model. We will include them
later.

Using Eq. (6.12), one obtains Ξo.a. ≈ 5, which means that orbit averaging
is not valid. Additionally, Torbit ≈ τc. So on one hand, the thermal electrons
will not follow the equipotential lines of the (orbit averaged) vortex structures
exactly. On the other hand, since ∆r � λx,y, the particles are not able to
significantly depart from their initial equipotential line and decorrelate during
one orbit turn. What we therefore expect to happen is that the particles at
least roughly follow the turbulent structures, deviating, in particular, at certain
positions, e.g., at a saddle point, or at a point where the equipotential line
exhibits a sharp bend.

In Fig. 9.1, an electrostatic potential with the scales of Eq. (9.1) is plotted
together with trajectories of particles with thermal velocity. The drift in the
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Figure 9.1: ETG-type electrostatic potential with drift in the y direction and particle
trajectories, transformed into the co-moving frame (field aligned coordi-
nates). Yellow dashed line: Pure E×B drift without orbit effects. Solid
lines: E×B drift with particle orbit motion (black line: particle trajec-
tory; red line: orbit center). The deviation from the equipotential lines
at a saddle point can be observed.

y direction is kept, but the fluctuations are frozen for the purpose of a better
demonstration of the interaction effects. Both the potential and the trajectories
have been transformed into the co-moving frame. The potential in that frame
is given by Eq. (4.7), and is a superposition of the stochastic part without y
drift and a static ramp in the x direction, which acts as a transport barrier. In
Fig. 9.1, a pure E×B drift trajectory without any 2D orbit effects is compared
with the trajectory of a thermal particle which undergoes both E×B drift
and orbit motion. As expected, this particle roughly follows the isolines of the
stream function due to its small orbit diameter. However, we see that at a
point where neighboring lines diverge (this seem to be saddle points coinciding
with a sharp bend), the oscillating trajectory diverges from the non-oscillating
one. This, in turn, means that the orbit motion of a particle weakens the
barrier caused by the background drift of the potential, and defines a time
scale on which the transport becomes diffusive, since the departure from the
equipotential lines can be interpreted as a random process.

What is the time scale of that random process? It depends on the typical
time between two random departures from the equipotential line. The distance
between two of these points (saddle points or points of large curvature of the
stream function) can be approximated by the extension of the structures of the
potential in the co-moving frame. As can be seen in Fig. 9.1 (and was pointed
out in Sec. 4.5), there are dominant structures on two scales in the x direction.
The first scale is given by the correlation length λx (closed equipotential lines in
Fig. 9.1), whereas the second scale is given by the maximal extent of the open
contours in the x direction, which is xmax = 2Vxλy/vdr (Sec. 4.5). In Fig. 9.1,
we have λx ≈ 23 and xmax ≈ 80. The respective time scales are λx/Vx = τfl and
xmax/Vx = τdrop. For a potential with a significant drift velocity vdr, the open
equipotential lines are dominating the closed vortices in the co-moving frame.
Therefore we will find that the larger scales, xmax or τdrop, on the spatial or
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Figure 9.2: Running diffusion coefficient in an artificially created, ETG-like electro-
static potential. For the nominal amplitude V , τfl ≡ τdrop. V is then
varied according to the values plotted left of the curves. Dashed lines:
Pure E×B drift. Solid lines: E×B drift with 2D orbit effects.

temporal scale, respectively, are dominating the decorrelation process. Here, we
would like to note that while the curve in Fig. 9.1 has been chosen to illustrate
our argument, the latter can be shown to be generally applicable.

In order to do that, we put a sufficiently high number of test particles into a
artificially created electrostatic potential and calculate the diffusion coefficient
for both the 2D orbit model of Eq. (9.2) as well as a pure E×B drift motion
without any orbit effects. The electrostatic potential is created as a superposi-
tion of 103 plane waves, as was shown in the previous chapters, and its scales
correspond to the ones of Eq. (9.1) – with two exceptions: the turbulence is
frozen (but the y drift is kept), and the amplitude is reduced by a factor of 3.6.
The former change is done in order to ignore temporal decorrelation effects for
the moment, whereas the latter is done to enforce τfl = τdrop. Moreover, no
parallel dynamics effects are included.

The result is plotted in Fig. 9.2. Here, V is varied, and the actual value of
τfl is indicated. We see that for the pure E×B motion, the diffusivity drops to
zero at t ∼ τdrop for all amplitudes, since there is no decorrelation mechanism
which would allow the particles to cross the barrier produced by the y drift
(remember that we have switched the time dependence of the fluctuations off).
For the particles on the 2D drift orbit, however, we observe that they decorrelate
at t ∼ τdrop, which leads to the saturation of the diffusion coefficient. So in that
case, τdrop resumes the role of τ eff , and we can assume that for τfl � τdrop

we will find D ∝ V 2 (γ = 2), whereas for τfl � τdrop, we will find D ∝ V 0.7

(γ = 0.7), which will correspond to an effective low or high Kubo number
regime, respectively. From Fig. 9.2, we read γ = 2 for τfl � τdrop and γ ≈ 0.85
for τfl � τdrop. This result confirms the claims we have made at the beginning
of this section.

Finally, we would like to emphasize one important point. If a V 2 depen-
dence of the transport is observed (ballistic regime), this does not necessarily
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mean that the particles decorrelate due to the temporal decorrelation of the
fluctuations, or due to the parallel motion with a decorrelation time τ‖ � τfl,
as was claimed, e.g., in Ref. (Lin et al., 2007). The perpendicular decorrelation
at τdrop, caused by deviations from the equipotential lines due to finite orbit
effects at hyperbolic fix points, is able to induce the same behavior. Therefore,
decorrelation will occur at τ eff = min

{
τdrop, τ‖

}
. In the next section, we will

examine which decorrelation time is the smaller, i.e., dominating, one.

9.4 Thermal particles in gyrokinetic ETG turbulence

We now return to the gyrokinetic ETG turbulence simulated with Gene, which
produces the parameters of Eq. (9.1). In order to obtain the values of the elec-
trostatic potential between grid points, the original data is interpolated via
spectral methods, which provides the highest possible spatial accuracy. The
differential equation (9.2) is solved via a fourth-order Runge-Kutta algorithm.
In order to obtain the scalings of the diffusion coefficient with Vx and λx, the
original values are modified. In the preceding section, we have discussed the
consequences of a decorrelation at τdrop, whereas we have ignored possible decor-
relation effects due to the parallel motion of the thermal particles. While for
very energetic particles, it could be shown in Chapter 6 that decorrelation due
to the perpendicular motion is much faster than due to the parallel one, this is
not necessarily the case for thermal particles. This is due to their smaller orbit
diameter (∆r < λc), which does not bring them out of the correlated zone on
a time scale smaller than the orbit time.

The time scales which can be inferred from Eq. (9.1) (and which are close to
the values presented in Ref. (Nevins et al., 2006)), imply that τdrop ≈ 6.4R0/ve,
whereas an orbit time for passing particles with a pitch angle of unity can be
calculated to be Torbit = 2πq0R0/ve ≈ 8.8R0/ve. Our ETG simulations exhibit
λ‖ ≈ 0.8πq0R0, meaning that τ‖ ≈ 3.5R0/ve, which is smaller than τdrop and
therefore dominates the decorrelation process.

We mimic the effect of parallel decorrelation by artificially reducing the cor-
relation time of the fluctuations. For example, for passing particles, a reduction
to τc = 3.5R0/ve has the same effect than a decorrelation due to the finite
parallel extension of the turbulent structures with λ‖ = 0.8πq0R0. This is al-
lowed since for the transition from the initial ballistic regime to a later diffusive
regime, it is irrelevant if the decorrelation is temporal or spatial. We have to
keep in mind, though, that only the passing particles with large pitch angles
are subject to this parallel decorrelation, whereas for trapped particles, the
decorrelation comes from temporal or perpendicular effects. For conditions of
a particle to be trapped or passing, see Sec. 2.1.5.

Fig. 9.3 (left) shows the saturated diffusion coefficient for a number of different
mean drift velocities Vx. The black curve ignores parallel decorrelation effects,
whereas the green curve corresponds to a realistic parallel correlation length
by reducing τc to 3.5R0/ve. All curves show a decline of diffusivity when the
drift velocity is reduced. The black curve shows a scaling exponent γ growing
with the reduction of the mean drift velocity, which can be explained by the
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Figure 9.3: Left: Saturated diffusion coefficient in a gyrokinetic ETG potential,
with V reduced artificially starting from the original value of Vx =
12.5 ρeve/R0. Black line: No parallel decorrelation. Red line: Mim-
icked parallel correlation length λ‖ = 1.6πq0R0 using τc = 7.0R0/ve.
Green line: Mimicked parallel correlation length λ‖ = 0.8πq0R0 using
τc = 3.5R0/ve. Blue dashed lines: Ideal scaling Dx ∝ V γ

x , with γ = 1
(upper line) and γ = 2 (lower line). Inset: Scaling exponent γ vs. V .
Right: Same as left figure, but λx is varied instead of Vx, starting from
the original value of λx = 23 ρe.

fact that τfl gets larger than τdrop for Vx < 3.6. This, in turn, means that the
effective decorrelation time moves into the ballistic regime. For the green curve,
the effective decorrelation time is τ eff = τ‖ = 3.5R0/ve, which is smaller than
τdrop and therefore dominating. Hence, the transition to the ballistic regime
γ → 2 occurs already at larger Vx.

Fig. 9.3 (right) shows the saturated diffusion coefficient for a number of dif-
ferent radial correlation lengths, while Vx,0 stays constant. Here, we observe
a transition to the ballistic regime for large anisotropy (large λx), which is
stronger for the curves with parallel decorrelation. τfl increases with growing
λx, which means that for large λx, it exceeds the effective decorrelation time.
Since the latter is smaller with parallel decorrelation effects, the transition oc-
curs earlier in that case. A consequence of that behavior is that, for the green
curve (passing particles with parallel decorrelation) there is no increase of the
diffusivity for very large radial correlation lengths, since the particles are effec-
tively in the low Kubo number regime.

For the nominal parameters of our ETG simulations with Gene, we find
γ ∼ 1.2 for trapped particles (decorrelation at τdrop), and γ ∼ 1.6 for passing
particles (decorrelation at τ‖), which is between the ballistic and the vortex
trapping regime. This means that the presence of streamers indeed increases
the transport of passive tracers. This increase is less than linear in the streamer
length, however. Generally, γ is larger for passing particles with parallel decor-
relation than for trapped particles, since decorrelation occurs earlier. For both
trapped and passing particles, a transition to ballistic transport (γ = 2) occurs
for small turbulence amplitudes or large radial vortex extension. As a rough
criterion for ballistic transport (and therefore no influence of the geometric
structure of the streamers), we find τ eff = min

{
τdrop, τ‖

}
< τfl = λx/Vx. This
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rule of thumb can serve as a first test to find out if a particular turbulence
simulation is likely to exhibit streamer-induced transport enhancement or not.

9.5 Summary and conclusions

In the present chapter, we have addressed the question if and how streamers
(i.e., radially elongated vortices) can lead to an enhancement of the cross-field
transport of passive tracers in a realistic three dimensional environment, in-
cluding finite orbits and parallel decorrelation. Here, our focus was on the
dynamics of thermal electrons in the context of electron temperature gradient
(ETG) turbulence, although our results may also be applied to other types of
streamer-dominated turbulence, driven, e.g., by trapped electron modes.

We have shown that for thermal electrons in ETG turbulence, orbit averaging
is not valid. Nevertheless, due to its small orbit diameter, a particle is not able
to decorrelate after one orbit turn and therefore still roughly follows the contour
lines of the electrostatic potential. We have seen that decorrelation typically
occurs at hyperbolic fixed points, whose typical distance is xmax = 2Vxλy/vdr.
This decorrelation scale is dominated by the potential structure in the frame
moving with the diamagnetic background drift of the vortices and leads to an
effective decorrelation time of τ eff = τdrop. However, the decorrelation due to
the finite parallel extension of the turbulent structures is typically on a smaller
time scale, leading to a decorrelation at the minimum value of τdrop and τ‖.

If this effective decorrelation time is significantly smaller than the vortex
turnover time τfl = λx/Vx, the transport is in the ballistic regime, which means
that γ = 2 and that the spatial vortex structure has no influence on the trans-
port. This implies that there is an upper limit to the streamer-induced geomet-
ric transport enhancement – while there still might be an indirect, amplitude-
dependent contribution. However, for the nominal turbulence parameters of
our simulations (and as well as from other codes), we get τfl < τ eff , and we
find 1 < γ < 2. This amounts to a significant influence of the spatial vortex
structure on the transport.
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Chapter 10

Runaway Electrons

In this chapter, the mechanisms found for magnetic ion transport in Chapter 7
are extended to the diffusion of runaway electrons. Due to their smaller mass
and larger energy, they behave strongly relativistic, for which reason the orbit
parameters and scaling laws defined previously have to be modified. We find
that due to these changes, the constant magnetic transport regime does not exist
anymore, but diffusivity scales with E−1 for magnetic transport, or even with
E−2 in the case that finite gyroradius effects become important. It is shown
that our modified analytical approaches are able to explain the surprisingly
small values found in experiments, although we can not exclude that possibly
other reduction mechanisms are present at the same time. The results of this
chapter have been published in (Hauff & Jenko, 2009a).

10.1 Introductory remarks

Until now, we have studied the transport behavior of fast ions with energies
up to the MeV range. They are created in fusion processes (alpha particles)
or launched into the plasma by neutral beam injection. We applied the test
particle approach, since their density is small and their velocities and orbits are
clearly distinct from the bulk plasma. In this chapter, we use the mechanisms
introduced in Chapters 6 and 7 in order to describe the transport behavior of
so-called ‘runaway electrons’. In contrast to alpha particles or beam ions, they
are created in the plasma by accident and can have a serious impact on the inner
vessel wall as well as on the plasma current. Although, in principle, their orbits
are similar to the suprathermal ion orbits, important differences occur. E.g.,
the transport is now dominated by magnetic fluctuations, and relativistic effects
become dominant. Both effects are due to the much larger parallel velocities of
the electrons.

The following review of the concept of a critical electric field which is respon-
sible for the runaway generation is based on Ref. (Helander et al., 2002). In a
tokamak, situations can occur where large electric fields are induced. In that
case, some electrons experience unlimited ‘runaway’ acceleration. The reason
for this behavior is that the friction force F (v) acting on an electron is a non-
monotonic function of the particle’s velocity, having a global maximum around
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the thermal speed vth. For electrons moving faster, the characteristic collision
frequency can be derived to (Wesson, 1997)

νe =
e4ne lnΛ

4πε20m
2
ev

3
, (10.1)

where Λ ≡ λD/λL is the ratio of the Debye length and the Landau length of
the plasma (Wesson, 1997). [The expression for ν is similar to simple collision
models in solid state physics.] Therefore, the friction force is

F (v) ≡ meνev ∝ v−2 , (10.2)

which means that for a sufficiently fast electron in a sufficiently large field, the
friction force gets smaller and smaller, and the particle accelerates until the
electric field force is balanced by another mechanism, e.g. the synchrotron ra-
diation of the particle. The requirement for a significant generation of runaway
electrons is that the force due to the electric field exceeds the maximum friction
force F (vth). So a critical electric field can be defined as

Ecrit =
nee

3 lnΛ

4πε20Te
, (10.3)

above which even electrons with thermal velocities are accelerated continuously
and become runaway electrons. For particles in the high energy tails of the dis-
tribution function, the critical electric field is smaller. Apart from this primary
generation mechanism, secondary runaway electrons can be generated by single
‘hard’ collisions of runaways with thermal electrons, which kick the latter above
the threshold, while the former remain above that threshold themselves. This
process can cause an ‘avalanche’ – an exponential growth of the runaway popu-
lation. Runaway acceleration has also been found to provide a novel mechanism
for the electric breakdown in gases, e.g. in the generation of atmospheric light-
nings (Gurevich et al., 1992), in addition to the classical ionization avalanche.

What are the conditions under which the electric field becomes large enough
so that runaway generation occurs? Due to magnetohydrodynamic instabilities,
the equilibrium in a tokamak can be destroyed, which leads to an abrupt and
uncontrolled loss of energy. Such an event is called disruption (Wesson, 1997).
Apart from damages of the vessel wall due to the high thermal impact during
a disruption, the fast cooling of the plasma drastically reduces its conductiv-

ity (σ ∝ T
3/2
e ). According to Lenz’s law, the sudden reduction of the toroidal

current induces a large toroidal electric field. This is the reason why runaway
electrons are created mainly during such disruption events. Since synchrotron
radiation is nearly the only friction mechanism, they are accelerated to ener-
gies of several 10 MeV in existing tokamaks as TEXTOR (Jaspers et al., 1994;
Entrop et al., 1998; Entrop et al., 2000) or JET (Esposito et al., 1996), or, as
expected for ITER, up to 500 MeV in the worst case scenario (Jaspers et al.,
1996). If these fast particles hit the vessel wall, they can cause substantial
damage. Although this constitutes a serious concern even in present-day toka-
maks, it has been predicted that in ITER, not only the maximum energy of
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runaways will be increased, but also their number due to the secondary gen-
eration caused by the avalanche mechanism. It is therefore obvious that the
diffusion mechanisms of runaway electrons are of great interest. Since, as we
have seen, runaway electrons are extremely collisionless, the application of the
test particle model is justified to an exceptionally high degree.

Similarly to the diffusion of fast ions described in the previous chapters,
we find that the basic mechanisms of transport seem to be not completely
understood. Most works on this topic find that the experimentally measured
transport is by one or more orders of magnitude smaller than the theoretical
approach based on magnetic field line diffusion. According to that approach,
the particles just follow the turbulent magnetic field lines, which is exactly the
situation described by the magnetic part of Eq. (2.59). If we denote the mean
perpendicular magnetic drift velocity for a particle just following the magnetic

field lines with VB ∼ B̃r
B0
v‖ and assume a parallel decorrelation at τ‖ ∼ πqR0/v‖,

we obtain, according to Eq. (2.65) (small Kubo number limit)

DM = πqR0

(

B̃r

B0

)2

v‖ . (10.4)

The electrostatic transport, in contrast, is denoted with

DE = πqR0V
2
E/v‖ . (10.5)

This makes clear why for runaway electrons only the magnetic transport is
assumed to be relevant, in general. Now, experimental measurements in toka-
maks like JET (Esposito et al., 1996), TEXTOR-94 (Jaspers et al., 1994; Entrop
et al., 1998; Entrop et al., 2000), or the Madison Symmetric Torus (O’Connell
et al., 2003) have shown that the diffusion coefficient of the runaway electrons is
by one or more magnitudes smaller than predicted by Eq. (10.4). Experimental
values are found to be, for example, D ≈ 0.2m2/s at JET, D ≈ 0.01m2/s at
TEXTOR-94, and D ≈ 3m2/s at the Madison Symmetric Torus.

Two possible explanations have been put forward in order to explain the
rather low transport level. The first explanation [used, e.g., in (Entrop et al.,
2000; Wingen et al., 2006; Esposito et al., 1996; Helander et al., 2002)] at-
tributes the reduction to gyroaveraging and orbit averaging effects similar to
which was done in the past for fast beam ions (remember the discussion in Chap-
ter 6). The standard reference which was used in these works is Ref. (Myra &
Catto, 1992), where the effect of orbit averaging was included by multiply-
ing Eq. (10.4) with a factor Υ ≡ λB/(

√
2π∆r/2). This is equivalent (except

for the prefactor) to the influence of gyroaveraging for small Kubo numbers
which we have derived in Eq. (3.18), replacing ρg by ∆r/(2λB). However, we
find again the same situation that the validity of the orbit averaging approach is
taken for granted and not discussed further in the cited publications. Moreover,
Eq. (10.4) together with the factor Υ has been used to determine the perturbed

magnetic field strength B̃r
B0

(Entrop et al., 2000; Esposito et al., 1996), so that
the validity of the approach could not be justified.

The second explanation for the transport reduction of runaway electrons
which is used in the literature is the assumption that in the torus so-called
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‘good surfaces’ exist, where there is no stochasticity of magnetic field lines and
therefore the cross-field transport is suppressed. In (Hegna & Callen, 1993) it
was shown that already a small fraction of these ‘good surfaces’ or magnetic
islands inside the ‘stochastic sea’ can be sufficient to drastically drop the run-
away diffusivity, which may easily get even smaller than the thermal transport.
In (O’Connell et al., 2003), the transport scaling of Eq. (10.4) could be ex-
perimentally confirmed for standard plasmas, however, ‘improved confinement’
plasmas could be generated where the transport was observed to be indepen-
dent from the parallel runaway electron velocity, and a reduction of transport
from D ≈ 25m2/s to D ≈ 3m2/s was observed. A very interesting observation
is reported in (Jaspers et al., 1994). After the injection of a deuterium pellet,
an increase of runaway electron transport up to D ≈ 300m2/s was measured,
however, after reaching equilibrium again, the remaining runaways were ob-
served to be narrowly localized and had diffusivities of D ≈ 0.02m2/s, which is
a reduction by four orders of magnitude. The explanation which was given is
that only the pellet injection leads to a full stochastization of the magnetic field
fluctuations, which makes Eq. (10.4) to apply. However, small islands would
remain, where the fast electrons are not affected. After reaching an equilibrium
again, these remaining particles dominate the transport.

At this point, it shall be noted that we are not able to make any contribu-
tions to the second explanation, since magnetic islands are beyond the scope of
this work. So we concentrate on the possibility of explaining the reduced trans-
port regimes from the assumption of a full ergodized perturbed magnetic field.
The importance of this approach is twofold. On one hand, the understanding
of the mechanisms of the first explanation will make it easier to decide which
mechanism is really responsible for the reduced transport. On the other hand,
improvements in the determination of the magnetic field fluctuations are pos-
sible, since in reality, Eq. (10.4) is frequently used to determine the fluctuation

level B̃r
B0

from the diffusivity. This is because due to the synchrotron radiation of
the runaway electrons, their position and therefore the diffusion coefficient can
be measured quite easily, whereas this is not the case for the field fluctuations.
So it is possible that corrections may be necessary not concerning the absolute
values of the runaway electron transport, but of the magnetic fluctuations.

10.2 Runaway electron orbits

In the preceding discussion of fast ion orbits (see Secs. 2.1.5 and 6.3), it was
not necessary to include relativistic effects, since due to the rather large ion
mass, they were not relevant for the observed particle energies. In Fig. 10.1,
the particle velocity is plotted versus the kinetic energy for both deuterium
ions and electrons. For deuterium ions, the classical approach deviates from
the relativistic calculation by 10 per cent only at around 260 MeV, whereas this
is the case for electrons already at about 70 keV. For energies exceeding 1 MeV,
electrons already approach the speed of light.
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10.2. Runaway electron orbits

Figure 10.1: Particle velocity vs. kinetic energy for electrons (black) and deuterium
ions (red). Solid lines: Relativistic. Dotted lines: Classical limit.

First, we define the well-known Lorentz factor as

γ ≡ 1
√

1 − v2

c2

=
Ekin

m0c2
+ 1 , (10.6)

where c is the speed of light. The relativistic relation between energy, mass,
and velocity is given as

E = mc2 = γm0c
2 = m0c

2 +Ekin , (10.7)

where m0 is the rest mass and m = γm0 the relativistic mass.
For re-writing the drift orbit parameters of Eqs. (2.29) and (2.30) relativisti-

cally in terms of the particle’s kinetic energy, it is necessary to replace the rest
mass by the relativistic mass, and the classical velocity v =

√

2E/m0 by the
relativistic relation

v = c

√

1 − 1

γ2
= c

√

1 − 1
Ekin
m0c2 + 1

. (10.8)

Inserting these changes into Eqs. (2.29) and (2.30), we obtain

Torbit =
1

√

1 − 1
γ2

2πqR0

c

∆r =
√

γ2 − 1
2qm0c

eB
(10.9)

vy = (γ − 1

γ
)
m0c

2ŝ

eBR0

ρg =
√

γ2 − 1
√

1 − η2
m0c

eB
.

Since runaway electrons have a pitch angle close to 1 (in (Jaspers et al., 1996),
η = 0.98 was found), the parameter η is neglected here. According to the
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Figure 10.2: Drift orbit radius normalized to the magnetic fluctuation length vs. ki-
netic energy for runaway electrons with ITER-like (black) and JET-
like parameters (red). Solid lines: Relativistic calculation according to
Eq. (10.9). Dotted lines: Classical limit.

normalizations defined in Sec. 2.4, we write

x ≡ x̂ρs =
x̂(Temi)

1/2

eB

v ≡ v̂
csρs

R0
=

v̂Te

eBR0
(10.10)

φ ≡ φ̂
Bcsρ

2
s

R0
= φ̂

(Te)
3/2m

1/2
i

e2BR0
.

For the normalized values, we chose λ̂B = 2.5, λ̂c = 6, V̂E = 3, as was found by
Gene simulations (Chapters 6 and 7). Further, we set B̃r/B0 = 10−4 for the
plots presented here, similar to the value found in Chapter 7. We will perform
orbit approaches for typical parameters of different fusion devices. For ITER
parameters we apply R0 = 6.2 m, B0 = 5.3 T, and Te = 10 keV, whereas for
JET parameters, we take R0 = 3.0 m, B0 = 2.75 T, and Te ≈ 2 keV. For curves
based on TEXTOR data, we apply the parameters R0 = 1.75 m, B0 = 2.25 T,
and Te ≈ 2 keV. Further, we chose q = 2, ŝ = 0.8 for all three.

It shall be emphasized that while these values may be viewed as typical, they
should not be regarded as fixed. The ITER parameters are chosen for compari-
son with the previous chapters and as a contribution to the future fusion device.
The JET parameters are taken in order to compare our scaling approach to re-
sults published in (Esposito et al., 1996), where the orbit averaging approach
was used. Since larger machine sizes go along with larger fields and tempera-
tures, we will find that the absolute values of the orbits and diffusivities do not
differ so much.

Fig. 10.2 shows the drift orbit radius ∆r/2 normalized to the magnetic field
correlation length for both the ITER and the JET parameters. Between 2MeV
and 5 MeV, the orbit radius exceeds the correlation length, which means that
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10.2. Runaway electron orbits

Figure 10.3: Critical pitch angle ηcrit versus the electron kinetic energy. ηcrit(Ekin)
is determined as the curve where ρg ≡ aλB . Solid lines: a = 0.36.
Dashed lines: a = 1. Dotted lines: a = 10. The curves are drawn for
ITER-like (black) and JET-like parameters (red). For η > ηcrit and
a > 0.36, the large gyroradius approximation as definied in Eq. (B.3)
applies. All curves are calculated relativistically according to Eq. (10.9).
In the classical limit, finite Larmor radius effects would become relevant
only for energies exceeding 1GeV.

either orbit averaging effects (as described in Sec. 6.4.1) or orbit decorrelation
(as described in Sec. 6.4.2) occur. As can also be observed, relativistic effects
are responsible for a stronger increase of ∆r for large energies.

Further, we want to include the influence of finite gyroradius effects. In
the discussion in Appendix B, we have claimed that they become relevant for
ρg/λB >∼ 0.36. In contrast to the orbit radius, the gyroradius has a sensi-
tive pitch angle dependence for large pitch angles, since it is proportional to
√

1 − η2. Therefore, in Fig. 10.3 the critical pitch angle (where ρg/λB = 0.36)
is plotted versus the electron energy. Only for pitch angles exceeding ηcrit, finite
gyroradius effects can be ignored. We see that for η = 0.98 (as measured in
(Jaspers et al., 1996)), they become relevant for energies larger than 10 MeV
to 20 MeV, however, they get stronger influence only for higher energies, when
the gyroradius clearly exceeds the correlation length.

In Fig. 10.4, the orbit averaging validity parameter Ξo.a. as defined in Eq. (6.12)
is plotted versus the particle energy. We note that for Ekin > 10 keV, vy is the
dominating velocity. As can be observed, Ξo.a. > 1 for Ekin exceeding 200 keV
to 700 keV, which means that typical runaway electrons are clearly not in an
orbit averaging regime.

Before calculating diffusion coefficients, we have to learn more about the
decorrelation process responsible for the transition to a diffusive behavior. As
pointed out in Sec. 6, it is of special importance which of the times τ‖, τ

orbit, τdrop

is the smallest one. As can be inferred from Fig. 10.5, the ‘drop time’ τdrop is
always larger than the minimum of orbit decorrelation time τ orbit and parallel
decorrelation time τ‖. This means that the drift barrier due to the toroidal
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Figure 10.4: Orbit averaging validity parameter Ξo.a. vs. kinetic energy. for runaway
electrons with ITER-like (black) and JET-like parameters (red). Solid
lines: Relativistic calculation according to Eq. (10.9). Dotted lines:
Classical limit.

precession drift (as described in Sec. 4.5) has no influence, since decorrelation
always occurs on a smaller time scale. For energies smaller than about 500 keV
to 1 MeV, the parallel motion provides the relevant decorrelation mechanism,
whereas for larger energies, decorrelation occurs due to the perpendicular orbit
motion, as described already in Sec. 6.

So we can state:
1. For the orbit decorrelation scaling to be valid, the following assumptions
have to be fulfilled: Ξo.a. > 1,∆r > 2λB , τ

orbit > τ‖. So according to Figs. 10.2,
10.4, and 10.5 it is the orbit diameter which is the limiting value, leading to
the precondition that Ekin >∼ ‘some MeV’. For larger values (Ekin >∼ 10 MeV for
η ≈ 0.98), finite gyroradius effects have to be taken into account additionally.
2. On the contrary, for the particles following the perturbed magnetic field
lines, only Ξo.a. < 1 has to be fulfilled, i.e. Ekin <∼ ‘some hundred keV’. In that
case, the parallel motion leads to decorrelation at τ‖ and to the saturation of
the diffusion coefficient. In the range between these extremes, orbit averaging
is not valid, however, the orbit diameter is still too small for orbit decorrelation
to occur. Here we are in a regime which corresponds to the one studied in
Chapter 9, however, we will not examine this more closely here.

10.3 Diffusion coefficient assuming field line diffu-
sion

First, we want to derive the diffusion coefficients for case 2, i.e. the assump-
tion that the particles strictly follow the perturbed magnetic field lines (or, for
electrostatic transport, the equipotential lines). Finite gyroradius or drift orbit
averaging effects can be neglected, since they become relevant only for ener-
gies where the assumption does not hold anymore. For magnetic transport, we
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10.3. Diffusion coefficient assuming field line diffusion

Figure 10.5: Relevant time scales for the particle diffusivity vs. kinetic energy. Solid

lines: Orbit decorrelation time τ orbit ≡ λBTorbit

π∆r . Dashed lines: Par-
allel decorrelation time τ‖ ≡ λ‖/v‖ ∼ πqR0/v‖. Dotted lines: ‘Drop
time’ τdrop ≡ 2λB/vy. The curves are drawn for ITER-like (black) and
JET-like parameters (red) and calculated relativistically according to
Eq. (10.9).

therefore obtain

DM ≈ V 2
Bτ‖ = πqR0

(

B̃r

B0

)2

v‖ = πqR0

(

B̃r

B0

)2

c

√

1 − 1

γ2
. (10.11)

Similarly, neglecting finite gyroradius and drift orbit effects, electrostatic trans-
port obeys to the equation

DE ≈ V 2
Eτ‖ =

πqR0

v‖
V 2

E =
πqR0V

2
E

c

1
√

1 − 1
γ2

. (10.12)

If we now – despite its invalidity – include drift orbit averaging, we have to
multiply VE and VB with the factor (4

√
π∆r/(2λE,B))−1/2 (see Eq. (3.15)),

which is valid for ∆r/(2λE,B) >∼ 0.36, i.e. Ekin >∼ 1 MeV. Small orbit corrections
can be treated via an adjustment of Eq. (3.11). For including finite gyroradius
effects, Eqs. (3.15) and (3.11) are applied directly.

In Fig. 10.6 both electrostatic and magnetic diffusivity are plotted versus the
electron’s kinetic energy. The curves neglecting finite orbit effects saturate as
soon as the particle velocity approaches the velocity of light, since the diffusivity
is proportional (inversely proportional) to the parallel velocity. Additionally,
orbit averaging effects are included for the magnetic transport. For large en-
ergies, the orbit averaging leads to a 1/E decrease of the diffusion coefficient,
which can be attributed to the increase of the relativistic particle mass. From
Fig. 10.6 we learn that relativistic effects strongly reduce the magnetic particle
diffusivity in the field line diffusion limit, which is on one hand due to the lim-
ited particle velocity, and on the other hand due to the relativistic increase of
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Figure 10.6: Diffusion coefficients vs. kinetic energy according to the model that par-
ticles follow the perturbed field lines (magnetic transport, Eq. (10.11))
or the equipotential lines (electrostatic transport, Eq. (10.12)). For
magnetic transport B̃r/B0 = 10−4 has been assumed, whereas for elec-
trostatic transport, VE = 912m/s was taken (as used in Chapter 6).
Solid lines: Magnetic transport (no orbit effects). Dashed lines: Electro-
static transport. Dotted lines: Magnetic transport with orbit averaging.
The curves are drawn for ITER-like (black) and JET-like parameters
(red) and calculated relativistically using the orbit parameters defined
in Eq. (10.9).

the particle mass, leading to a stronger increase of the orbit diameter compared
to the classical case. We want to add that for particle energies larger than about
10 MeV, finite gyroradius effects have to be included, leading to an additional
1/E decrease, which means an overall decrease of D(E) ∝ E−2. However, since
this effect strongly depends on the pitch angle (see Fig. 10.3), we have neglected
it for the moment. We would like to emphasize the strong (quadratic) depen-
dence on B̃r/B0. In the figure, B̃r/B0 = 10−4 was chosen similar to the Gene

results underlying Chapter 7, however, smaller values are possible in tokamaks,
which can drastically reduce the magnetic runaway diffusion. In Sec. 10.5, we
will re-determine the fluctuation strength based on measurements of the run-
away diffusion coefficients in JET (Esposito et al., 1996).

10.4 Diffusion coefficient assuming orbit decorrela-
tion

Now, we want to establish relations for case 1, i.e., the orbit decorrelation
mechanism already discussed in Chapters 6 and 7. As we have seen above,
this is the correct description for Ekin >∼ ‘some MeV’. According to the model
applied in Sec. 7.2, using the orbit parameters of Eq. (10.9), we obtain

DM ≈ 2

3
V 2

Bτ
orbit =

2

3

(

B̃r

B0

)2

v2
‖

λBTorbit

π∆r
=

2

3

(

B̃r

B0

)2
λBR0eB

m0

1

γ
. (10.13)
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10.4. Diffusion coefficient assuming orbit decorrelation

Figure 10.7: Diffusion coefficients vs. kinetic energy according to the orbit decorrela-
tion model for magnetic transport (Eq. (10.13)) and electrostatic trans-
port (Eq. (10.12)). The orbit averaging curve for magnetic transport
from Fig. 10.6 is given for comparison. B̃r/B0 = 10−4 was chosen. The
values inserted for B̃r/B0 and VE correspond to the ones Fig. 10.6. Solid
lines: Magnetic transport (orbit decorrelation). Dashed lines: Electro-
static transport (orbit decorrelation). Dotted lines: Magnetic transport
with orbit averaging. The curves are drawn for ITER-like (black), JET-
like (red), and TEXTOR-like parameters (blue) and calculated relativis-
tically according to Eq. (10.9).

Similarly, for electrostatic transport, we find (see Sec. 6.6)

DE ≈ 2

3
V 2

Eτ
orbit =

2

3

V 2
EλVR0eB

m0c2
1

γ − 1/γ
. (10.14)

These curves, adjusted for the JET-like and ITER-like parameters, are drawn in
Fig. 10.7, together with the orbit averaged curve for the magnetic transport from
Fig. 10.6. Possible finite gyroradius effects are still neglected. We recall that the
orbit decorrelation approach is valid only in the range Ekin >∼ 1 MeV, whereas
below, the field line diffusion approach (dotted lines) is valid. Interestingly, for
magnetic transport, a 1/E decrease for large electron energies is found which
not only corresponds to the (invalid) orbit averaging approach concerning the
energy scaling, but also very well in the absolute values. Is this a systematic
effect or pure chance? To answer this question, we compare Eq. (10.11) with
Eq. (10.13). Although distinct in the ansatz, they become similar if Eq. (10.11)
is multiplied with the orbit averaging correction factor (4

√
π∆r/(2λB))−1, so

that it attains the same dependence on 1/∆r as in Eq. (10.13). However, this
dependence comes from the reduction of the average magnetic drift velocity due
to orbit averaging, whereas in the orbit decorrelation case, it comes from the
reduction of the effective decorrelation time. So, it is reasonable to attribute
the similarity to an accidental coincidence. If the effective Kubo number was
larger than one, the orbit averaging scaling would be different and the curves
would differ from each other again.
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Figure 10.8: Diffusion coefficients vs. kinetic energy. Combined approach taking the
field line diffusion model with orbit averaging (Eq. (10.11)) for small
energies (Ξo.a. < 1,∆r/2 < λB) and the orbit decorrelation model
(Eq. (10.13)) for large energies (Ξo.a. > 1,∆r/2 > λB) As before,
B̃r/B0 = 10−4 was chosen. Solid curves: No finite gyroradius effects
(η → 1). Dashed lines: Finite gyroradius effects included for η = 0.98,
using gyroaveraging. The curves are drawn for ITER-like (black), JET-
like (red), and TEXTOR-like parameters (blue) and calculated relativis-
tically according to Eq. (10.9).

In Fig. 10.8, the field line diffusion (including orbit averaging corrections for
∆r/2 < λB) for small kinetic energies is combined with the orbit decorrelation
for large kinetic energies to a continuous curve, which gives something like the
expected real behavior of runaway diffusivity. The solid curves neglect finite
gyroradius effects as before, whereas the dashed curves include them for an
assumed pitch angle of η = 0.98, as found in (Jaspers et al., 1996). They lead
to an additional factor E−1, which results in an overall scaling ofDM (E) ∝ E−2.
Depending on the pitch angle, this last transition can occur at larger or smaller
energies. Once more it shall be emphasized that the difference between the
scaling laws illustrated in Fig. 10.8 and the ones presented in Chapter 7 lies
only in the relativistic behavior of the runaway electrons. Since the gyroradius
and orbit radius grow stronger with energy than in the classical limit, but the
orbit circulation time is limited due to the upper limit for the particle’s velocity,
the decline of diffusivity according to Eq. (10.13) is stronger.

At this point, one question is forced upon the watchful reader. Why have we
just found that for runaway electrons, orbit averaging – despite its clear inva-
lidity – leads to the same results than the correct orbit decorrelation approach,
whereas in Chapters 6 and 7, we have claimed that this would not be the case?
In Chapter 6, it was already emphasized that the reason for the strong reduc-
tion of transport in the case that the orbit averaging mechanism is applied (as
can be seen, e.g., in Figs. 6.4 and 6.6) is not just the reduction of the turbulent
drift velocity due to orbit averaging itself, but the fact that due to the toroidal
precession drift vy, the ‘drift barrier’ (as described in Sec. 4.5) dominates the
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transport. We have learned that this barrier strongly reduces transport in the
case that τdrop < τ eff , i.e., if the drop time is smaller than the effective decor-
relation time. For fast ions, this was the case for orbit averaging, but not for
orbit decorrelation, since we found τ orbit < τdrop < τ‖ for large ion energies
(see Tables 6.2 and 6.3). For runaway electrons, it can be seen in Fig. 10.5,
that τdrop is always larger than τ orbit, i.e. as for ions, the drift barrier has no
influence onto the orbit decorrelation mechanism. However, if orbit averaging
is applied, we see that for Ekin >∼ 2MeV to 5MeV, τdrop gets smaller than τ‖, so
that we have indeed the same situation than in Figs. 6.4 and 6.6. The drift bar-
rier leads to a very strong decrease of D(E). This effect has not been included
in the dotted lines in Fig. 10.7. Therefore we can state that the coincidence of
the orbit averaging approach and the orbit decorrelation mechanism is not only
accidental in the sense that different approaches lead to the same scaling law,
it is also only possible since in the former case the effect of the drift barrier is
completely ignored. So it should be allowed to state that the interpretation of
experimental results based on the orbit averaging approach as done by (Entrop
et al., 2000; Wingen et al., 2006; Esposito et al., 1996; Helander et al., 2002), is
correct due to a ‘lucky strike’, where a combination of two wrong assumptions
(orbit averaging and omission of the drift barrier) leads to almost the correct
result by chance.

10.5 Comparison with the literature

We now want to compare the consequences of our results with the approaches
of previous publications, where we want to turn a special attention to the deter-
mination of B̃r/B0. At the JET tokamak (Esposito et al., 1996), the diffusion
coefficient of runaway electrons was measured in the energy range between
133 keV and about 1.5 MeV using a FEB (fast electron bremsstrahlung) diag-
nostic. A diffusion coefficient averaged over that energy range was determined
to D = 0.2m2/s. Since finite orbit effects are negligible for the smallest energy
which was measured, Ekin = 133 keV, the magnetic field fluctuations were de-
termined according to Eq. (10.11) to be B̃r/B0 ≈ 8×10−6. However, this value
was regarded as a lower limit, since it was claimed that for larger energies, the
finite orbit influence would increase, therefore the magnetic field perturbation
should increase to obtain the measured value of D. The red dotted curves in
Fig. 10.6 and Fig. 10.7 describe the field line diffusion model including orbit
averaging effects and have been normalized exactly to the values of (Esposito
et al., 1996), except that B̃r/B0 = 10−4 was taken. If we replace that value
by B̃r/B0 ≈ 8 × 10−6 in Eq. (10.11), this would lead to a reduction in the
D(E) curves by a factor of 156, which would give a maximum value of ex-
actly D = 0.2m2/s. However, it was pointed out in (Esposito et al., 1996)
that the maximum runaway electron energy is about 30 MeV. Here, according
to Fig. 10.8, the diffusion coefficient should be expected to be smaller than the
value around 300 keV by a factor of about 30 (without finite gyroradius effects),
i.e. D ≈ 0.007m2/s. Assuming η = 0.98, we would even find D ≈ 0.0009m2/s.
Unfortunately, diffusivities were not measured in the high energy limit in (Es-
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posito et al., 1996).
At the TEXTOR tokamak, different diffusion regimes were found, which

were explained by a different level of stochastization of the magnetic field lines
(Jaspers et al., 1994). By synchrotron emission, a population of 30 MeV run-
away electrons was observed. After pellet injection, a rapid loss has been de-
tected with diffusion coefficients up to 300 m2/s. If we apply Eq. (10.13) (or
adjust Fig. 10.8), we find the corresponding magnetic field perturbation to be
B̃r/B0 = 2.3 × 10−3 if finite gyroradius effects are neglected, which is a rather
large value. However, if we remember Eq. (7.2), we can approximate the maxi-
mal possible value to (B̃r/B0)max ∼ ρi/R0 ≈ 2.9×10−3, which means that such
a large value can in principle be possible. Since the pellet injection raises the
plasma pressure and, according to Eq. (7.1), also the plasma beta, such a behav-
ior can qualitatively be understood. Including the effects of a finite gyroradius
with the assumption η = 0.98, we would obtain (B̃r/B0)max ≈ 7×10−3, a value
which would actually be too large. However, it must be emphasized that the real
pitch angle is unknown in that experiment. Moreover, in (Jaspers et al., 1994)
it is assumed that all runaway electrons have 30 MeV, which need not be true.
If a significant number of lower energetic electrons exists, their diffusivity can
reach the measured value for smaller values of (B̃r/B0). Now in (Jaspers et al.,
1994), after pellet injection, a remaining runaway electron population with an
extremely slow diffusivity of D <∼ 0.02m2/s was detected, which was attributed
to the existence of intact magnetic islands within the chaotic sea. However, if
we assume stochasticity also here and apply the standard orbit decorrelation
approach without gyroradius effects, this corresponds to B̃r/B0 ≈ 1.9 × 10−5,
which is still a reasonably large number. Assuming again η = 0.98 and includ-
ing the finite gyroradius effects resulting from this choice, we would even obtain
B̃r/B0 ≈ 1.7× 10−4, which would be an ordinary magnitude. The diffusion co-
efficients derived that way correspond to findings of Ref. (Entrop et al., 2000),
reported from TEXTOR, too, where B̃r/B0 ≈ 5 × 10−5 was found for Ohmic
plasmas, but B̃r/B0 ≈ 10−3 if an NBI (neutral beam injection) current is ap-
plied. Similar findings are reported from the Tore Supra tokamak (Zou et al.,
1995). Here, the determination of the magnetic field fluctuations was done di-
rectly via the polarization change of electromagnetic waves scattered by the
fluctuations, thus independent from a determination of the diffusion coefficient.
So it may possibly be that the concept of ‘good surfaces’ and magnetic islands
is not necessary for explaining the observed small diffusion coefficients, since
they can also be explained conventionally by our model, assuming stochastic
field fluctuations of the order of 10−5 to 10−4, as reported in the literature.
However, an exact determination of B̃r/B0 depends on the knowledge of the
pitch angle, which is normally not known from measurements. In the litera-
ture reviewed here, finite gyroradius effects have always been neglected, which
indicates that in general, the determination of the field fluctuations has led to
values which are too small.
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10.6 Summary and conclusions

We have applied the same mechanisms to fast runaway electrons that were pre-
viously applied to fast ions. As before, orbit averaging was found to be invalid
for large particle energies, so that the orbit decorrelation mechanism has to be
used to describe transport correctly. Due to their smaller mass and higher en-
ergy, runaway electrons behave strongly relativistically, which leads to different
scaling laws compared to the non-relativistic ions described in Chapters 7 and
8. For example, the magnetic transport drops with 1/E for large energies as
long as the pitch angle is large enough for finite gyroradius effects to be ne-
glected. If this is no more the case, we obtain even D ∝ E−2. It was found that
despite the wrong ansatz, orbit averaging leads to almost the same result in the
case that the influence of the toroidal precession drift is neglected. Whereas the
transport is found to be weak for runaway electrons close to saturation, a maxi-
mum is found around 1MeV, which may strongly exceed the thermal transport.
Due to the quadratic dependence, the magnetic field perturbation was shown
to be a crucial parameter. Perturbations as measured in experiments are found
to be – in principle – sufficient to explain the weak transport for large kinetic
energies, however, the determination of B̃r/B0 from the diffusion coefficient
strongly depends on the pitch angle, which is a quantity often unknown.
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Chapter 11

Conclusions

In the course of this Ph.D. project, a number of new and important contri-
butions concerning the transport of fast particles in tokamak microturbulence
have been made. In many cases, previous models and assumptions, often based
on rather rough approximations and sometimes contradicting each other, were
improved and corrected by careful and detailed analyses, based on first prin-
ciples. Moreover, new results were obtained in areas disregarded in the past,
like the magnetic transport of fast particles. By comparison with complex gy-
rokinetic codes as well as with measurements on ASDEX Upgrade, the results
of the analytical models could be confirmed, and, vice versa, the start of new
experimental campaigns was inspired.

A short overview of the main results of this thesis is given in the following;
detailed summaries can be found at the end of each chapter.

11.1 Summary

Fast particles in 2D electrostatic turbulence

Based on analytical studies of the gyroaveraged autocorrelation function of
turbulent electrostatic potentials, expressions for the dependence of the diffusion
coefficient on the Larmor radius were derived. As for the transport of pure
gyrocenters, the Kubo number was identified as an important parameter in
distinguishing different regimes and scaling laws. Concerning the large Kubo
number regime (in which realistic tokamak turbulence was found to lie) both
naive expectations and previously published results were corrected. It was found
that transport is not affected by finite Larmor radius effects for radii up to the
correlation length of the electrostatic potential, whereas for radii exceeding this
value, the decay of diffusivity is more moderate than expected in the low Kubo
number regime.

The influence of geometric structures like radially elongated vortices and
zonal flows has been studied. For the former, the resulting increase of trans-
port could be observed and described analytically, whereas for the latter a
decrease was confirmed. The modification of finite gyroradius effects by these
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structures was described both qualitatively and quantitatively. Moreover, the
influence of homogeneous poloidal drifts of the background turbulence was stud-
ied, and its action as a transport barrier for the radial particle transport was
demonstrated, as well as its modification by finite Larmor radius effects. In par-
ticular, the ‘drop time’ was introduced as the decisive time scale, above which
the transport barrier begins to act, provided that the decorrelation time of the
fluctuations is larger. These studies were later found to be of great relevance
in three dimensions, where – due to magnetic effects – the particles themselves
are subject to a poloidal drift.

The identification of zonal flows and homogeneous poloidal drifts as trans-
port barriers was the start of further investigations concerning the nature of
diffusion within these structures. Although they can give rise to non-diffusive
regimes for rather large times, it was found that the stochastic parts of the
stream function always induce a transition to diffusive transport above a cer-
tain threshold in time. The processes underlying this transition were studied
qualitatively, comparing them to continuous time random walk models. More-
over, effects like ‘chaotic jets’ which were claimed to appear by some authors,
could not be confirmed to apply under realistic conditions.

Fast particles in 3D electrostatic turbulence

Many results of the two dimensional studies were found to carry over to three
dimensions, especially the gyroradius dependence and the poloidal drifts acting
as transport barriers. However, a number of new effects could be identified.
Among the most important is the identification of the perpendicular drift or-
bit motion (relative to the magnetic field lines) of fast particles as the decisive
decorrelation mechanism governing the transition to a diffusive regime. This
result was found to be in contrast to older as well as more recent publications,
assuming that decorrelation occurs due to the motion parallel to the magnetic
field lines, i.e., on much larger time scales. From this finding, it followed that
the assumption of ‘orbit averaging’ (i.e., averaging the electrostatic or magnetic
potentials over one drift orbit) – which has been widely used by many authors
and together with the poloidal drift barrier would lead to a drastic reduction
of transport with the particle energy – is not valid for typical conditions in a
tokamak. Instead, an analytical model based on the perpendicular decorrela-
tion of particles experiencing the pure potential was developed. This model led
to analytical expressions for the diffusion coefficient depending on parameters
like the correlation length of the fluctuations and the energy of the fast par-
ticles. In particular, a decrease of diffusivity with E−1 (E−3/2) was found for
beam ions (trapped ions) which is much more moderate than applying the orbit
averaging mechanism. Comparing our analytical formula with simulations with
the Gourdon code as well as with the gyrokinetic Gene code, an excellent
agreement was found. Moreover, it was shown that the diffusion coefficient is
maximal when the toroidal precession drift of the particles is in resonance with
the homogeneous diamagnetic drift of the background potential, since in this
case, the drift barrier as described for the 2D case is weak.
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Fast particles in 3D magnetic turbulence

Applying the mechanisms of electrostatic transport of fast particles to mag-
netic transport, even more interesting scaling laws were derived. It was found
that for beam ions, the diffusion coefficient does not depend on the particle
energy anymore, even for very high energies, provided that the pitch angle is
sufficiently large. For trapped ions or beam ions with smaller pitch angle, a
rather weak E−1/2 dependence was found. These analytical findings could be
confirmed by simulations with the Gene code. Whereas in the past, magnetic
transport was mostly disregarded as a candidate for fast ion transport due to
the smaller amplitudes of the turbulent magnetic fields compared to the elec-
trostatic ones, it was shown that for large beam energies, this effect is balanced
by the constant level of diffusion for arbitrary energies, so that magnetic trans-
port should be considered as a hot candidate for governing the transport of fast
particles.

Comparison with experimental measurements

It was shown that our analytical approach for magnetic transport is able
to reproduce the almost exact value introduced ad hoc at ASDEX Upgrade in
order to describe the radial NBI (neutral beam injection) broadening observed
in measurements. Whereas this observation had been quite surprising at the
beginning, the results obtained in this thesis provided them with a well-founded
theoretical basis. Although the main emphasis was laid on an explanation via
magnetic transport (which was mainly due to the ad hoc assumption of a con-
stant diffusion coefficient from the experimental side), it was shown that, in
principle, electrostatic transport can lead to a similar broadening of the cur-
rent beam according to the respective scaling laws. So whereas one can state
that likely, both magnetic and electrostatic transport can contribute, a definite
answer to the question of the nature of diffusion in that specific case has to
be left to future experimental examinations. Particularly, energy-resolved mea-
surements of the beam current are required in that case. Such investigations
are currently underway.

Runaway electrons

Extending the scaling laws derived for ions to relativistic ‘runaway’ electrons,
it could be demonstrated that the experimentally measured low diffusivities can,
in principle, be explained by the orbit decorrelation model, possibly making
different explanations reported in the literature redundant. In particular, it was
found that it is the relativistic behavior in conjunction with finite gyroradius
effects which leads to an E−2 decrease of the magnetic transport, strongly
differing from the ion transport.
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11.2 Outlook – Applications in astrophysics

In this thesis, the diffusive transport of fast particles due to electrostatic and
magnetic field fluctuations has been studied for the conditions in a tokamak.
The purpose of these studies was the modeling and understanding of fast particle
phenomena in present and future fusion devices. As far as the transport of
passive test particles is concerned, their discussion can probably be regarded as
more or less complete.

At the end of this work, an outlook shall be given in which way the ba-
sic transport and decorrelation mechanisms derived here can be applied to
astrophysical scenarios, particularly the transport of highly energetic ‘cosmic
rays’ (i.e. particles) within intergalactic, interstellar, or interplanetary magnetic
fields. Due to the interstellar or solar wind plasma, these fields often exhibit
a turbulent nature, as can be observed, for example, for the fields within the
spiral arms of galaxies (Beck, 2003) or for the fields trapped in the solar wind
(Zimbardo, 2005; Tu & Marsch, 1995). This leads to scattering of the cosmic
rays perpendicular to the background field which is in principle the same as the
diffusive magnetic transport in a tokamak, although the scales are extremely
different.

The highest measured energies of cosmic rays are larger than 1020 eV. While
the acceleration of particles to energies up to 1014 eV can be explained by shock
waves in supernovae, the origin of cosmic rays with larger energy remains un-
known (Shalchi, 2007). The form of the observed magnetic fields often shows
a spiral shape like in the arms of spiral galaxies or in the solar wind (‘Parker
Spiral’), but it can also show a cell-type shape as observed in intracluster gas,
or a helical shape in synchrotron jets (Vallée, 2004). The strength of these fields
ranges from 10−14 T in the intergalactic space to 10−8 T in the solar wind in the
neighborhood of the earth. Although the absolute value of these fields is small,
the turbulent part is quite high. For the solar wind, e.g., one finds B̃/B0 ≈ 0.5
- 1 (Zimbardo, 2005; Tu & Marsch, 1995). Moreover, the fluctuations in the
solar wind do not show a strong elongation along the magnetic field lines. In-
stead, satellite measurements find λ‖ ∼ λ⊥ ∼ 106 km (Tu & Marsch, 1995).
The nature of these fluctuations does not seem to be fully understood yet. Pos-
sibly, they are either passive remnants of coronal processes or an example for
dynamically evolving MHD (magnetohydrodynamic) turbulence, or a mixture
of both (Tu & Marsch, 1995).

If the knowledge from the tokamak is applied to the amplitudes and scales
of, e.g., the solar wind magnetic field, it is found that the effective magnetic
Kubo number Kmag = B̃/B0 λ‖/λ⊥ is of order unity. This is in the transition
zone between the high and the low Kubo number regime, so that, using the
experience from Chapter 3, different regimes of the scaling of transport with
the particle energy can be expected if the scales of the magnetic field are varied.
Moreover, it can be shown that for large cosmic ray energies, gyroaveraging is
not valid anymore. This means that the same mechanisms as described in
Chapters 6 and 7 concerning the invalidity of orbit averaging can be applied if
the parameters concerning the drift orbits are replaced by the ones concerning
the gyromotion. Rough estimates show this to happen for particle energies
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exceeding 1 GeV.
More exact expressions and models strongly depend on a better knowledge

of the amplitudes and scales of the turbulent magnetic fields. This has to be
left to future work, possibly in cooperation with researchers from the field of
astrophysics.
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Appendix A

Some more Comments on
Reduced-volume Simulations

This annex is a continuation of the discussion in Section 6.6.2. The mechanisms
which determine artificial re-correlation effects are described in more detail by
means of the running diffusion coefficient.

Fig. A.1 shows the running diffusion coefficients for the saturated values
already plotted in Fig. 6.4. The orbit decorrelation times τ orbit range from
1.2 · 10−5 s for E = 80 keV to 1.0 · 10−7 s for E = 1280 keV and are outside
the plot range. Now, caused by the mechanisms explained in Section 6.6.2, the
large energy curves show a drop at times larger than this orbit decorrelation
time, which is responsible for the reduction of transport. We assume that this
drop is caused by the ‘drift barrier’ at τdrop = 2λc/v

eff
y . What is the value of

veff
y (the value of vy is known to be 31256m/s)? Since in our 3D simulations,

the starting points of the tracers were split from r0 = 0.6 to r0 = 0.8, it does
not make sence to study one single orbit in detail, since the dependence on
transport is very sensitive (see the discussion with respect to Fig. A.2) and we
can only expect to observe an average over a number of slightly different orbits
by studying Fig. A.1. Instead, we use a probabilistic approach. The particle gets
re-correlated if, by moving into the neighbor box, it returns into the correlated
zone. This happens with a probability of λc/Ly, which is 0.053 in our case.
The first chance for a re-correlation is after two turns, since 2Torbitvy ≈ Ly,
this is, at 1 · 10−5 s. After 12 of these double orbits, approximately 50% of the
particles are re-correlated ((1 − 0.053)12 ≈ 0.5). Indeed, the time span from
1 · 10−5 s to 1 · 10−4 s is roughly the range where the drop occurs. For larger
times, the potential itself gets decorrelated (remember τc = 1.8 · 10−4 s), and so
the remaining particles do not get re-correlated again.

Last, we want to study the effect of re-correlation in more detail. To this
aim, we use the well established 2D approach, where it is possible to arbitrarily
vary the orbit parameters, here the drift velocity vy. The box width is kept as
Ly = 0.31m. For E = 1280 keV, we have Torbit = 5·10−6 s, therefore Ly/Torbit =
62831m/s is the velocity where the particle gets re-correlated exactly after one
orbit. In Fig. A.2 we can see that, after a first saturation around τ orbit ∼ 10−7 s,
the transport increases in steps of ∆t = Torbit, until it saturates around τc =
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Figure A.1: Running diffusion coefficient for the 3D values already plotted in Fig. 6.4.
The dashed lines represent D(t) for a torus filled with 10 identical
fluxtubes. The energies vary from E = 10 keV to E = 1280 keV top
down. The solid lines, in contrast, show the curve D(t) for energies from
E = 320 keV to E = 1280 keV, if the torus is filled by only one fluxtube,
i.e. no aritificial periodicity is present. As can be seen clearly, this avoids
the drop around t ∼ 5 · 10−5s.

Figure A.2: Running diffusion coefficient with the parameters for E = 1280 keV (see
Tab. 6.2), but with variable curvature drift vy. The curves are simulated
using the 2D approach (Eq. 6.15). As can clearly be seen, the diffusivity
depends on the curvature drift velocity in a very sensitive way. Whereas
transport is large for the resonance cases (solid lines, vyTorbit modLy =
0), it shows rapid drops if there is no exact resonance (dashed lines).
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1.8m/s. If we reduce the drift velocity by a factor of 2 or 4, the step width
increases by the same factor, since now, the particle must circulate for 2 or 4
times until it reaches the correlated zone in the neighbor box. Since we have an
effective drift velocity of veff

y = 0, there is no drift barrier and the transport is
high. The dashed lines in Fig. A.2 describe situations, where there is no exact
resonance. For the particle with vy = 64800m/s, the relative position to the
correlation maximum after one turn is (vyTorbit modLy)Ly = 0.0098m, which is
smaller than λc, and we expect orbit averaging to be valid (since Ξo.a. < 1). The
effective curvature drift velocity would be veff

y = 0.0098m/Torbit = 1968m/s,

which leads to a drop time of τdrop = 2λc/v
eff
y = 1.7 · 10−5 s. This is what

we observe in the figure. For the case where vy = 27256m/s, the particle
is outside the correlated zone after one orbit turn. It can easily be shown
that the particle needs 7 orbit circulation periods to return inside a radius of
λc of the correlation maximum. In that time, it crosses 3 boxes. We find
(7vyTorbit modLy)Ly = 0.011m < λc. This leads to a effective drift velocity of
veff
y = 0.011m/(7Torbit) = 314m/s and a drop time of τdrop = 1 · 10−4 s, which

also corresponds quite well to the observation in Fig. A.2.
From this discussion, it should become clear how aliasing effects caused by

box sizes which are smaller than the distance a fast particle travels within the
correlation time of the fluctuations influence the transport. For well defined
orbits, this leads to an arbitrary behavior of the diffusion coefficient. We have
seen that in the discussion of Fig. A.2. For an ensemble of slightly different
orbits, averaging effects lead to a reduction of diffusivity, since the non-resonant
particles dominate the more or less resonant ones (Fig. A.1). This effect seems
to be very important to consider if simulations of fast particles are done in the
common flux tube approach. It is crucial to recall that the particle is able to
‘remember’ a former correlation, although being decorrelated at an earlier time.
This re-correlation is responsible for the re-validity of orbit averaging, which in
turn forces the particle transport into a completely different regime compared
to the non-periodic case.

161



Chapter A. Some more Comments on Reduced-volume Simulations

162



Appendix B

Scaling Laws for Arbitrary
Pitch Angles and Gyroradii

B.1 Gyroradius effects

In Chapters 6 and 7, we have already mentioned that the Equations (6.18) and
(6.22), as well as (7.4) and (7.5), strictly spoken only describe the cases η → 1
and η → 0, since we have assumed either beam ions with very small gyroradii
ρ � λc, where the gyroradius can be neglected, or trapped ions with small
η, where it was assumed that the energy is substantially in the perpendicular
component (v⊥ ∼ v) and therefore large gyroradii ρ >∼ λc occur, where the
large gyroradius approach can be used. In this annex, we will expand these
equations to arbitrary pitch angeles and gyroradii. In the following equations,
we include FLR effects for both the case 0 < ρ < ρcrit and ρ > ρcrit, where we
refer to the formulas for V eff and λeff derived in Eqs. (3.11), (3.12), (3.15), and
(3.16). However, for the sake of simplicity, we restrict the expansions for the
small gyroradius limit to second order, and we set the ‘critical gyroradius’ ρcrit

to the value where the small gyroradius approach for D(E) equalizes the large
gyroradius approach. Moreover, the second order expressions are modified so
that they fit the higher order expressions of Chapter 3 in the limit ρ < ρcrit. For
our approaches of the diffusion coefficient, the product (V eff)2λeff is decisive.
We approach this expression in second order by

(V eff
small ρ)

2λeff
small ρ = V 2λc(1 − 5

2

ρ2

λ2
c

) , (B.1)

(V eff
large ρ)

2λeff
large ρ = 1.73V 2(4

√
πρ/λc)

−1 . (B.2)

As a criterion for distinguishing the small from the large Larmor radius
regime, we find

ρ̂2

λ̂2
c

=
E

λ̂2
cTi

(1 − η2) <> 0.132 . (B.3)

This is where (V eff
small ρ)

2λeff
small ρ ≈ (V eff

large ρ)
2λeff

large ρ.
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B.2 Electrostatic transport for passing ions

For beam ions with small gyroradius effects, we obtain (modified Eq. (6.18)):

Dsmallρ(E) ≈ V̂ 2
E λ̂V

3η2

(
E

Te

)−1
[

1 − 5

2λ̂2
c

E

Te
(1 − η2)

]

ρ2
i ci
R0

(B.4)

∝ 1

η2E

[

1 − 5

2λ̂2
c

E

Te
(1 − η2)

]

=
1

E‖

[

1 − 5

2λ̂2
c

E⊥

Te

]

for
E

λ̂2
cTi

(1 − η2) =
E⊥

λ̂2
cTi

< 0.132 .

In Chapter 6, the term in angular brackets was neglected, since we assumed
η → 1 (i.e. ρ→ 0). For large gyroradii this expression changes to:

Dlargeρ(E) ≈ 1.73 V̂ 2
E λ̂cλ̂V

12
√

π(1 − η2)η2

(
E

Te

)−3/2 ρ2
i ci
R0

(B.5)

∝ 1
√

1 − η2η2E3/2
=

1

E
1/2
⊥ E‖

for
E

λ̂2
cTi

(1 − η2) > 0.132 .

For beam ions, both cases can occur. Whereas for example for η = 0.99,
E/Ti >∼ 500 for reaching the large gyroradius regime this value reduces to
E/Ti >∼ 9 for η = 0.7, where particles can still be in the passing regime.

B.3 Electrostatic transport for trapped ions

For trapped ions with small gyroradius effects, we obtain:

Dsmallρ(E) ≈ 2V̂ 2
E λ̂c

√
ε

3
√

η2(1 − η2)

(
E

Te

)−1
[

1 − 5

2λ̂2
c

E

Te
(1 − η2)

]

ρ2
i ci
R0

(B.6)

∝ 1

η
√

1 − η2E
[...] =

1

E
1/2
‖ E

1/2
⊥

[...]

for
E

λ̂2
cTi

(1 − η2) < 0.132 .

However, since η is small for trapped ions, this will only be the case for energies
not exceeding the thermal energy very much. Since for those small energies,
orbit averaging is valid in general, one can assume that Eq. (B.6) does not apply
in reality.

For large gyroradii, what can be assumed for almost all fast particles with
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small η, this expression changes to (Eq. (6.22)):

Dlargeρ(E) ≈ 1.73V̂ 2
E λ̂cλ̂V

√
ε

12
√
πη(1 − η2)

(
E

Te

)−3/2 ρ2
i ci
R0

(B.7)

∝ 1

η(1 − η2)E3/2
=

1

E
1/2
‖ E⊥

for
E

λ̂2
cTi

(1 − η2) > 0.132 .

B.4 Magnetic transport for passing ions

For beam ions with small gyroradius effects, we obtain (modified Eq. (7.4)):

DB,smallρ(E) ≈ (C β/βcrit)
2λ̂B

3

[

1 − 5

2λ̂2
c

E

Te
(1 − η2)

]

ρ2
i ci
R0

(B.8)

∝ const× [...]

for
E

λ̂2
cTi

(1 − η2) < 0.132 .

For beam ions with large gyroradius effects, the relation becomes

DB,largeρ(E) ≈ 1.73(C β/βcrit)
2λ̂2

B

12
√

π(1 − η2)

(
E

Ti

)−1/2 ρ2
i ci
R0

(B.9)

∝ 1
√

1 − η2E1/2
=

1

E
1/2
⊥

for
E

λ̂2
cTi

(1 − η2) > 0.132 .

B.5 Magnetic transport for trapped ions

For trapped ions with small gyroradius effects, we obtain

DB,smallρ(E) ≈ 2(C β/βcrit)
2λ̂B

√
εη

3
√

1 − η2

[

1 − 5

2λ̂2
c

E

Te
(1 − η2)

]

ρ2
i ci
R0

(B.10)

∝ η
√

1 − η2
[...] =

E
1/2
‖

E
1/2
⊥

[...]

for
E

λ̂2
cTi

(1 − η2) < 0.132 .

Analogue to the electrostatic case, since η is small for trapped ions, this will
only be the case for energies not exceeding the thermal energy very much. Since
for those small energies, orbit averaging is valid in general, one can assume that
Eq. (B.10) does not apply in reality.
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If finite gyroradius effects for large gyroradii are included, what can be
assumed for almost all fast particles with small pitch angles, this expression
changes to (Eq. 7.5):

DB,largeρ(E) ≈ 1.73(C β/βcrit)
2λ̂2

B

√
εη

12
√
π(1 − η2)

(
E

Te

)−1/2 ρ2
i ci
R0

(B.11)

∝ η

(1 − η2)E1/2
=
E

1/2
‖

E⊥

for
E

λ̂2
cTi

(1 − η2) > 0.132 .

B.6 Pitch angle dependence

Although the above expressions have been modified for arbitrary pitch angles
concerning the FLR effects, they are, strictly spoken, still only valid in the
limits η → 1 for passing particles and η → 0 for trapped particles, since the
formulas for the orbit circulation time and the shift away from the magnetic
flux surfaces are derived in this limit (Wesson, 1997). However, as we could
demonstrate using particle orbit simulations with the Gourdon code, the con-
cerning expressions can be assumed to be valid for all values of η in a good
approximation. One only has to ensure whether the particles are trapped or
passing, so there is no continous transformation with η from trapped to passing
orbits, but a sharp jump. The question whether a particle is trapped or passing
can be obtained the normal way, see the discussion at the end of Section 2.1.5.

166



Appendix C

List of Physical Abbreviations

B magnetic field
B0 constant background part of B

B̃ turbulent part of B (local or mean value)
c velocity of light
C parameter (∼ 1)

ce =
√

Te/me thermal electron velocity

ci =
√

Ti/mi thermal ion velocity

cs =
√

Te/mi ion sound speed

D(t) = 1
2

d
dt〈δx2(t) test particle diffusion coefficient

e (elementary) charge (pos. or neg.)
e (index) electron
E test particle energy or Eulerian autocorrelation func-

tion or electric field
i (index) ion (mostly deuterium)
K = τcV/λc Kubo number
Keff = τ effV/λc effective Kubo number
L Lagrangian autocorrelation function in general, in par-

ticular of the electrostatic potential
Lvx Lagrangian autocorrelation function of the velocity

field (x direction)
L⊥ typical perpendicular global scale length
M number of fluxtubes filling the torus
pmag = B2/(2µ0) magnetic pressure
q = Ntor/Npol safety factor
r radial torus coordinate (Fig. 2.1)
∆r ≡ ∆x max. deviation of the drift orbit from the magnetic

flux surface, ‘orbit diameter’
R distance from major axis (Fig. 2.1)
R0 major radius of a tokamak (Fig. 2.1)
Rc curvature radius
ŝ(r) = r/q(r) dq/dr magnetic shear
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T background plasma ‘temperature’ in dimension of en-
ergy (Joule or eV)

Tg = 2πm/(eB) gyro (Larmor) period
Torbit drift orbit period
v, (v⊥, v‖) particle velocity (component)

vB = v‖B̃/B0 turbulent magnetic drift velocity

v∇B gradient-B drift velocity
vcurv curvature drift velocity
vd diamagnetic drift velocity
vdr poloidal (diamagnetic) drift velocity of the background

turbulence
vD drift velocity in general
vE E×B drift velocity
vy ≡ vζ toroidal precession drift velocity
V mean turbulent drift velocity in general, in particular

E×B drift
VE mean E×B drift velocity
VB mean turbulent magnetic drift velocity
x, y, z cartesian or fluxtube coordinates
∆x ≡ ∆r max. deviation of the drift orbit from the magnetic

flux surface, ‘orbit diameter’
β = (qχ− ζ) mod 2π field line coordinate
β = p/pmag ‘plasma beta’
βcrit maximal value for β before kinetic ballooning modes

appear

γ (D ∝ λ2−γ
c V γτγ−1

c ) diffusion scaling exponent

γ ≡ 1
q

1− v2

c2

= Ekin
m0c2

+ 1 ‘Lorentz factor’

Γ = 〈ñṽ〉 cross-field transport (particle flux)
Γ = D∇n0 diffusive particle flux
ε = r/R0 inverse aspect ratio
ζ toroidal torus coordinate (Fig. 2.1)
ζ = λx/λy ‘anisotropy parameter’
η = v‖/v pitch angle

θ poloidal torus coordinate (Fig. 2.1)
λc, λ⊥ perpendicular correlation length in general, in partic-

ular of the electrostatic potential
λx, λy correlation lengths in x or y direction
λV perpendicular correlation length of the E×B velocity

field
λB perpendicular correlation length of the magnetic field
µ = mv2

⊥/(2B) magnetic moment
Ξo.a. ≡ orbit averaging validity parameter

max
{
V̄ eff , |vdr − vy|

} Torbit
λc
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ρe = mece/(eB) electron thermal gyro (Larmor) radius
ρg ≡ ρ = mv⊥/(eB) particle gyro (Larmor) radius
ρi = mici/(eB) ion (Zi = 1) thermal gyro (Larmor) radius
ρs = mics/(eB) gyro (Larmor) radius of a ion (Zi = 1) with v = cs
τ correlation time in general
τc correlation time of the electrostatic (magnetic) poten-

tial
τdrop = 2λy/vdr (2λy/vy) ‘drop time’
τ eff effective decorrelation time responsible for transition

to diffusive regime
τfl = λc/V flight time
τorbit = λV Torbit/(π∆x) perpendicular orbit decorrelation time
τ‖ = λ‖/v‖ parallel decorrelation time

φ electrostatic potential
φeff gyroaveraged electrostatic potential
φ̄eff orbit averaged electrostatic potential
ϕ phase
ϕ ≡ ζ toroidal torus coordinate
χ modified (straight) ‘poloidal’ coordinate
Ωg = eB0/m gyro (Larmor) frequency
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Gene-Simulationen, ganz besonders aber für die tolle und freundschaftliche
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