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Amtierender Dekan
beim Abschluss des Promotionsverfahrens: Prof. Dr. Axel Groß

Erstgutachter: apl. Prof. Dr. Frank Jenko

Zweitgutachter: Prof. Dr. Peter Reineker

Drittgutachter: Prof. Dr. Steven Cowley

Tag der Promotion: 16. Dezember 2009



Abstract

Microinstabilities are one of the key physics problems on the way to efficient power
plants based on nuclear fusion. They cause anomalous heat and particle transport which
significantly degrades the plasma confinement quality, thus preventing self-sustaining
plasma burning in present-day experiments. However, due to their complex dynamics
and highly nonlinear character, it is impossible to solve the underlying equations of
turbulent systems analytically—a problem which is also well known in several other
physics research fields, e.g. aerodynamics. Theoretical descriptions and predictions are
therefore typically based on numerical simulations. Here, the multitude of involved
space and time scales may cause problems since the parameters required for a numerical
treatment – e.g., the grid resolutions – often turn out to be infeasible for computations.
However, if scales are clearly separated – as it is the case in magnetically confined fusion
plasmas – multiscale approaches allow for a reduction of the problem under investigation
to the relevant domain of interest. In this context, gyrokinetics is well-established as
one of the most powerful theoretical descriptions. It serves as a basis for the plasma
turbulence code Gene which numerically solves the modified Vlasov-Maxwell system of
equations and which is used throughout this work.

During this thesis project, the Gene code has been significantly extended. While
previous versions were restricted to a local approximation and therefore only able to de-
scribe a small part of a fusion plasma, it is now possible to consider radial temperature
and density profiles as well as corresponding variations of the magnetic geometry. The
inclusion of these additional macroscopic scales is essential for the investigation of non-
local effects. The according modifications of the equations underlying the Gene code
as well as the changes in the numerical schemes are discussed in detail, and successful
tests of the new code to several scenarios and benchmarks are presented. Furthermore,
first implementations of heat sources and sinks terms are introduced.

Another part of this work deals with coupled microturbulence on different space and
time scales which are not affected by the gyrokinetic approximation. Traditionally, much
of the heat transport and thus the confinement degradation in fusion experiments is at-
tributed to ion temperature gradient (ITG) or trapped electron mode (TEM) driven
turbulence which predominantly exhibits wavelengths of the order of the ion gyroradius.
However, several recent theoretical and experimental findings indicate significant con-
tributions originating from the considerably smaller electron scales which are predicted
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by näıve models to be negligible. The high potential relevance of small-scale turbulence
even in the presence of large-scale turbulence for future fusion experiments and power
plants motivated several simulations covering both ion and electron spatial and temporal
scales self-consistently. Due to the associated enormous computational effort, the mul-
tiscale investigations performed in the course of this work represent one of the first such
attempts worldwide. It is found that for realistic ion heat (and particle) flux levels and
in the presence of unstable ETG modes, there tends to be a scale separation between
electron and ion thermal transport. In contrast to the latter, the former may exhibit
substantial or even dominant small-scale contributions. Furthermore, it is investigated
in which way this behavior is reflected in several experimentally accessible quantities,
including frequency or density spectra.
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Zusammenfassung

Auf dem Weg zur technischen Energiegewinnung durch Kernfusionsreaktionen mittels
magnetisch eingeschlossener Plasmen bilden kleinskalige Fluktuationen eine der zen-
tralen physikalischen Problemstellungen. Der durch sie verursachte anomale Transport
reduziert die Qualität des Einschlusses derart, dass ein eigenständiges Plasmabrennen
in heutigen Experimenten nicht möglich ist. Wie auch aus anderen Bereichen der Phy-
sik, bspw. der Aerodynamik, bekannt, sind die Grundgleichungen turbulenter Systeme
aufgrund ihrer komplexen Dynamik und ihres hochgradig nichtlinearen Charakters nur
in wenigen Spezialfällen analytisch lösbar. Theoretische Beschreibungen und Vorhersa-
gen beruhen daher in der Regel auf numerischen Simulationen. Hierbei ist allerdings die
Vielzahl involvierter Raum- und Zeitskalen problematisch, da die für eine numerische
Behandlung benötigten Parameter, bspw. die Gitterauflösung, in der Praxis nicht an-
wendbar sind. Liegen allerdings, wie bei magnetisch eingeschlossenen Plasmen, deutlich
von einander abgegrenzte Skalen vor, kann mit Hilfe von Multiskalentheorien eine Re-
duktion des vorliegenden Problems auf den eigentlich relevanten Bereich vorgenommen
werden. Eine der bedeutendsten theoretischen Beschreibungen dieser Art ist die Gyro-
kinetik. Sie bildet die Grundlage für den in dieser Arbeit verwendeten Gene-Code, der
die modifizierten Vlasov-Maxwell Gleichungen numerisch löst.

Diese Software wurde im Rahmen der vorliegenden Dissertation bedeutend erwei-
tert. Während frühere Versionen auf eine lokale Näherung beschränkt waren und somit
nur einen kleinen Teil eines Fusionsplasmas beschreiben konnten, werden nun radiale
Temperatur- und Dichteprofile sowie Änderungen der Geometrie berücksichtigt. Diese
Aufnahme zusätzlicher makroskopischer Skalen erlaubt nun die Untersuchung nichtlo-
kaler Effekte. Hierfür notwendige Modifikationen der Gene-Grundgleichungen, bzw. der
Normierung derselbigen, sowie der numerischen Verfahren werden ausführlich diskutiert
und die erfolgreiche Anwendung des neuen Codes auf diverse Testfälle präsentiert.

Ein weiterer Teil der Arbeit beschäftigt sich mit gekoppelter Mikroturbulenz auf ver-
schiedenen Raum- und Zeitskalen, die auch in der reduzierten, gyrokinetischen Beschrei-
bung auftreten können. Traditionell wird ein Großteil des Wärmetransports und damit
der Einschlussverminderung u.a. auf Ionentemperatur-Gradienten (ITG) oder gefangene
Elektronen (TEM) getriebene Turbulenz zurückgeführt, die vorwiegend Wellenlängen im
Bereich des Ionengyroradius aufweist. In jüngster Zeit haben sich jedoch immer mehr
Anzeichen für signifikante Beiträge von den deutlich kleineren Elektronenskalen gefun-

v



den, die in einfachen Modellen als vernachlässigbar erachtet wurden. Die hohe Relevanz
der Frage, ob und unter welchen Umständen diese Elektronentemperatur-Gradienten
(ETG) getriebene Turbulenz bei gleichzeitiger Anwesenheit von großskaliger Turbulenz
bedeutende Transportbeiträge liefert, erfordert numerische Untersuchungen, bei denen
sowohl die Elektronen- als auch die Ionen-Skalen selbstkonsistent in Raum und Zeit be-
handelt werden. Da der hierfür benötigte Rechenaufwand enorme Ausmaße annimmt,
gehören die im Rahmen dieser Arbeit durchgeführten Multiskalensimulationen zu den
weltweit ersten Repräsentanten dieser Art. Anhand dieser wird gezeigt, dass die kurz-
wellige Elektronenskalenturbulenz bei realistischen Ionenwärmeflüssen durchaus einen
signifikanten Anteil des Elektronenwärmetransports verursachen kann, so dass eine Ska-
lentrennung gegenüber dem Ionenwärmetransport auftritt, der weiterhin auf langwellige
Beiträge beschränkt bleibt. Darüber hinaus werden die Einflüsse der ETG Moden auf
experimentell beobachtbare Größen wie Dichte- und Frequenzspektren untersucht.

vi



Contents

1 Introduction 1

1.1 Fusion energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Magnetic confinement fusion . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Plasma modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Multiple scales in plasma microturbulence . . . . . . . . . . . . . . . . . . 7
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 An introduction to and an application of gyrokinetic theory 9

2.1 Basic ideas of gyrokinetic theory . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1 The gyrokinetic ordering . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Elimination of the gyroangle dependence . . . . . . . . . . . . . . . 10

2.2 The gyrokinetic Vlasov equation . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 The field aligned coordinate system . . . . . . . . . . . . . . . . . 18
2.2.2 Splitting of the distribution function . . . . . . . . . . . . . . . . . 19
2.2.3 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Velocity space moments of the particle distribution function . . . . . . . . 24
2.4 The gyrokinetic field equations . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 The Poisson equation . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 Ampère’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Upgrading GENE to a nonlocal code 33

3.1 Local vs. global simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Axisymmetric systems . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Arbitrary geometries . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Flux tube approach and boundary conditions . . . . . . . . . . . . . . . . 40
3.3.1 Radial boundary condition . . . . . . . . . . . . . . . . . . . . . . 40
3.3.2 Boundary condition in y direction . . . . . . . . . . . . . . . . . . 40
3.3.3 Parallel boundary condition . . . . . . . . . . . . . . . . . . . . . . 41

3.4 The gyroaverage operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vii



Contents

3.4.1 Global representation . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.2 The local limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Further numerical schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.1 Time stepping scheme . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.2 Spatial and velocity space derivatives . . . . . . . . . . . . . . . . 52
3.5.3 Numerical integration . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5.4 The nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6.1 Global code specific observables . . . . . . . . . . . . . . . . . . . . 55

3.7 Sources and sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.8 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Multiscale simulations 59

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1.1 Historical context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Simulation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.1 Linear results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.2 Numerical parameters for nonlinear multiscale runs using a realis-

tic mass ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.3 Reduced ion/electron mass ratio . . . . . . . . . . . . . . . . . . . 68
4.2.4 Final parameter choice . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Nonlinear simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.1 Heat and particle transport . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Density spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.5 Frequency spectra and phase velocities . . . . . . . . . . . . . . . . . . . . 99
4.6 Beyond the prototypical parameter sets . . . . . . . . . . . . . . . . . . . 102
4.7 Chapter summary and conclusions . . . . . . . . . . . . . . . . . . . . . . 106

5 Benchmarks and first results including nonlocal effects 109

5.1 The local limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.1.1 ρ∗ scan with fixed box size with respect to the ion gyroradius . . . 110
5.1.2 ρ∗ scan with fixed box size with respect to the minor radius . . . . 112
5.1.3 Kinetic electrons and electromagnetic effects . . . . . . . . . . . . 114

5.2 Rosenbluth-Hinton test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.3 Linear benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.4 Nonlinear benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.5 Sources and Sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.5.1 Application of the Krook damping term . . . . . . . . . . . . . . . 122
5.5.2 Effects of the heat source . . . . . . . . . . . . . . . . . . . . . . . 124

viii



Contents

5.6 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6 Conclusions 127

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A Implementation details of the gyrokinetic Vlasov-Maxwell system in GENE 131

B Geometry related issues 135

B.1 Volume and flux surface averages . . . . . . . . . . . . . . . . . . . . . . . 135
B.2 Diffusivities in arbitrary geometries . . . . . . . . . . . . . . . . . . . . . . 136

Bibliography 147

List of publications 149

Acknowledgment 151

ix



Contents

x



Chapter 1

Introduction

This chapter aims at providing the main motivations for studying multiscale effects in
plasma turbulence. For this purpose, an understanding of fusion energy research, plasma
physics, and turbulence effects is developed first.

1.1 Fusion energy

A growing world population and industrialization led to dramatically increased energy
demands during the 20th century. For instance, the worldwide primary energy con-
sumption rose by almost 70% over the last twenty years, cf. Fig. 1.1. Although some
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Figure 1.1: Worldwide primary energy consumption in 1018 J. Source: Energy Information Ad-
ministration (Dec 2008).

studies expect a saturation of the global population in the 21st century, and political
programs aim at saving energy, a further increase is expected [1]. In this context, it
can be seen as an unfortunate coincidence that most of the current energy production is
based on the burning of fossil fuels like coal, oil, or gas. During recent decades, a close
relation between this kind of energy production and global warming became more and
more evident. Furthermore, fossil fuels are finite and therefore become expensive once
easily accessible sources are exhausted.
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Chapter 1 Introduction

Triggered by these developments, scientists are attempting to improve present or de-
velop new alternative energy producing technologies. Currently, fission plants and regen-
erative energy sources are possible choices for the near-to-intermediate future. However,
the former suffer from potentially uncontrollable chain reactions and the unsolved prob-
lem of nuclear waste disposal while the latter depend on local conditions as, for instance,
sufficient water, wind, or sunshine duration, and require significantly optimized energy
storage systems than currently at hand. Another possibility is to imitate the most obvi-
ous energy supplier—the sun. Until 1929, when Atkinson and Houtermans [2] suggested
fusion of light atoms to be the energy generating mechanism in sun-like stars, no satis-
factory explanation was available on how the sun provided its energy. Five years later,
particle accelerator experiments by Oliphant, Harteck, and Rutherford [3] proved the
general possibility of such reactions. Complementarily, a model for heavier stars has
been developed in the late 1930s by Weizsäcker [4] and Bethe [5].

Since then, people were electrified by the idea of employing a similar reaction in power
plants on Earth. However, the nuclear cross sections of the proton-proton-chain or the
Bethe-Weizsäcker-cycle reactions are too small to be used in terrestrial devices. Hence,
the most probable fusion reaction for technically achievable temperatures, namely the
deuterium-tritium-fusion,

2
1H + 3

1H→ 4
2He + 1

0n + 17.59 MeV, (1.1)

is favored instead. The heavy hydrogen isotope deuterium accounts for approximately
0.015% of all naturally occurring hydrogen in the oceans on earth and can be extracted
by enrichment and distillation processes. And while the radioactive isotope tritium does
not accumulate over geological timescales due to its relatively short half-life of about 12.3
years, it can be produced by neutron activation of lithium which constitutes 0.006% of
the lithosphere. Current estimates based on the present-day energy consumption predict
at least several 10,000 years until those deposits are exhausted [6]. This perspective, to-
gether with the enormous energy generation per process – compared to typical chemical
reactions, an increase of more than a factor of a million is achieved in nuclear fusion
reactions – constitutes the main argument for fusion research, even if both the funda-
mental scientific and the technological barriers are much higher than in conventional
power plants.

One obvious complication in this context is given by the Coulomb repulsion. Only if
the deuterium and tritium nuclei are able to overcome the corresponding potential bar-
rier, they come close enough to let the attractive nuclear force induce a fusion reaction.
Although quantum mechanics, in particular the tunneling effect, corrects the classically
required kinetic energies by a significant factor, on the order of 100 keV are necessary
(on average) to facilitate sufficiently high D-T-fusion rates.
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1.2 Magnetic confinement fusion

1.2 Magnetic confinement fusion

One promising candidate for the realization of fusion based power plants is magnetic
confinement fusion. Here, both fusion fuels are heated to high temperatures of about
100 million K, i.e. average kinetic energies of around 10 keV. A large fraction of the high
energy tail of the Maxwellian distribution is then clearly exceeding the potential barrier,
and fusion reactions are sufficiently frequent. However, any contact with surrounding re-
action chamber walls should be minimized in order to avoid surface erosion and impurity
generation.

For this purpose, a basic property of extremely hot matter proves helpful. At such
high temperatures, a large fraction of the deuterium-tritium mixture is found to be in
plasma state which is a partially or fully ionized gas obeying the quasi-neutrality con-
dition, |∑σ qσnσ| � ene. Here, qσ is the charge and nσ the density of the σth particle
species with σ running over all present species, e the elementary charge and ne the elec-
tron density. Maxwell’s equations then describe a possible influence of electromagnetic
fields on the particle motion. Given, for instance, a strong and homogeneous magnetic
field, motions perpendicular to the magnetic field line are restricted to gyrations due to
the Lorentz force. Along the field lines, however, particles can still move without any
constraint. Early linear, e.g. cylindrical, fusion devices thus employed magnetic field
inhomogeneities to create a mirror force which reflects a significant particle fraction at
both ends. Unfortunately, this kind of trapping appears to be most inefficient for highly
energetic particles with large velocities along the magnetic field so that the particle and
energy confinement remains unsatisfactory. An alternative approach is to connect both
ends, therefore creating a toroidal device and avoiding the corresponding losses. How-
ever, the magnetic field lines themselves must not be purely toroidal but need a poloidal
component, as well, in order to balance outwardly directed drifts which would emerge
otherwise [6]. In case of an irrational number of toroidal turns per poloidal turn, a sin-
gle helically-wound field line spans an entire toroidal surface which is often called flux
surface.

Based on the technical realization, two different concepts, the tokamak and the stel-
larator, are distinguished. The latter employs a complex coil geometry, see Fig. 1.2(b),
to generate the desired helically twisted field lines. In tokamaks, however, field coils are
only used to provide the toroidal magnetic field. The poloidal component is created by
a toroidal plasma current which is induced by applying the transformer principle, with
the plasma itself as a secondary winding. This design is thus much easier to realize
and, moreover, possesses an intrinsic plasma heating through the plasma current. How-
ever, in the absence of elaborate additional current driving mechanisms, it can only be
operated in a pulsed regime due to the transformer principle, a problem which is not
present in stellarators. Therefore, both concepts are still under investigation and further

3



Chapter 1 Introduction

(a) (b)

Figure 1.2: Schematic illustration of the two main concepts for magnetic confinement fusion
devices: the tokamak (a) and the stellarator (b). Source: IPP

developed.
The next step on the way towards a fusion power plant is expected to be taken by

the ITER tokamak [7] which is designed to reach breakeven, i.e. produce more power
than is required to compensate for power losses. The underlying theoretical framework
for such predictions is based on the Lawson criterion [8] which relates power losses
due to convection and radiation to the power input. For self-sustaining plasmas, a
corresponding power balance yields

nTτE > 3× 1021 keV s
m3

, (1.2)

see e.g. Ref. [6], for deuterium-tritium mixtures with density n. Here and in the fol-
lowing, a popular definition in plasma physics, kBT → T , is applied, thus measuring
temperatures in units of energy. The third quantity, τE , denotes the energy confinement
time, specifying the time scale on which energy can be retained in a plasma. For typical
parameters of T ≈ 10 − 20 keV and n ≈ 1020 m−3, it needs to be of the order of sev-
eral seconds to allow for a self-sustaining plasma burning. Present-day experiments like
ASDEX Upgrade typically exhibit τE . 0.2 s [9].

These findings clearly disagree with early theoretical predictions based on collision-
induced cross-field transport. Classically, the only remaining transport mechanism per-
pendicular to flux surfaces is induced by particle collisions. The characteristic perpen-
dicular length scale of gyrating particles with mass m in a magnetic field B0 would then
be on the order of a thermal gyroradius ρth = vT /Ω. Here, vT = (2T/m)1/2 denotes the
thermal velocity and Ω = |q|B0/(mc) the Larmor frequency in cgs units with the speed
of light c. A random walk model, considering in addition a frequency ν for collisions
among particles of the same species, would predict a thermal diffusivity χ ∼ ρ2

thν. For
tokamaks with minor radius a, an associated confinement time τE ∼ a2/χ can be esti-

4



1.3 Plasma modeling

mated which would amount to several hours, thus clearly exceeding the experimental
findings. However, such an argument does not include magnetic field inhomogeneities.
Taking this feature into account leads to the more sophisticated, neoclassical transport
theory. Here, magnetic drift effects introduce new and larger length scales, leading to
higher transport levels. Although examples exist where the ion heat transport appears
to be neoclassical, it is usually underestimated. With respect to particle and electron
heat transport, neoclassical theory fails to predict the correct levels by at least one order
of magnitude.

At present, it is widely accepted that small scale instabilities, i.e. instabilities on scales
of the order of the Larmor radius, are responsible for so-called anomalous transport.
They are driven by the unavoidable density and temperature gradients occurring in
fusion devices. Over the distance of about one meter, for instance, the temperature
drops from the required central value of about 100 million K to several hundred K at
the vessel walls. The theoretical understanding of the microinstabilities and associated
turbulent fluctuations is therefore a crucial point on the way to optimized fusion devices.
In the context of this work, contributions to this effort are the development of a new
tool for the numerical simulation of plasma microturbulence and the investigation of
turbulent features on separated space and time scales. However, before entering into a
corresponding discussion, some details on plasma modeling shall be given.

1.3 Plasma modeling

Theories of plasmas are based on several mathematical models which can be subdivided
into the following classes:

• Single particle description
This type of model describes the motion of individual particles. Therefore it cannot
handle self-consistent fields and is only valid if strong external fields are imposed.
Furthermore, it is only applicable in the case of very dilute plasmas. However, a
single particle description is probably the best choice to explain the aforementioned
gyration in strong and homogeneous magnetic fields. In the non-relativistic limit,
which can be assumed for fusion plasmas, the force balance equation reads, in the
absence of electric fields,

mv̇ =
q

c
v ×B0. (1.3)

By considering an orthogonal coordinate system (êx, êy, êz) with êz = B0/B0, it
can easily be shown that

v̈x,y = −Ω2 vx,y (1.4)

5



Chapter 1 Introduction

which describes an oscillatory motion or gyration with Larmor frequency Ω. Here
and in the following, dots indicate time derivatives.

• Kinetic description
Instead of treating each particle individually, it often proves advantageous to de-
scribe the evolution of a phase space distribution fσ(x,v) for each particle species σ
in the presence of self-consistently derived electromagnetic fields. For this purpose,
the so-called Vlasov equation [10],

df
dt

=
∂f

∂t
+ ẋ · ∂f

∂x
+ v̇ · ∂f

∂v
= 0 (1.5)

has to be solved which is coupled to Maxwell’s equations. Although being one of
the most fundamental plasma descriptions, it is typically only used in simplified
versions due to its high dimensionality and complexity. In the presence of highly
separable scales, for instance, perturbative techniques may be applied to reduce
the number of dimensions.

• Plasma fluid models
The velocity space distribution can be replaced by its moments if time scales are
considered where collisional effects induced a thermalization of the plasma and
kinetic effects as, for instance, Landau damping become negligible. However, in
order to keep the complexity low, the system of equations for the macroscopic
quantities like temperature, density, fluid velocity, etc. is truncated by applying
appropriate approximations to the highest desired velocity space moment. The
remaining continuum description in real space then bears an obvious resemblance
to usual fluid models, with the inclusion of electromagnetic fields being the strik-
ing difference. If local charge neutrality is assumed, the plasma is treated as a
one-component fluid. This model, usually referred to as magnetohydrodynamics
(MHD), has been successfully applied e.g. to determine the magnetic field config-
uration in the presence of a specific set of field coils. For this purpose, stationary
solutions are typically required which further simplify the set of equations. In the
ideal, i.e. non-resistive, limit, they contain the following constraint

∇p0 =
1
c
j0 ×B0 (1.6)

which relates the thermal plasma pressure p0 to the plasma current density j0 and
the magnetic field B0. Here and in the following, the index 0 indicates equilibrium
quantities if not stated otherwise. Based on Eq. (1.6), it is obvious that the
equilibrium pressure is constant on flux surfaces, a feature which will be utilized
in a later chapter.
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1.4 Multiple scales in plasma microturbulence

Of course, no claim of completeness is made for this list, and the main ideas have been
presented only briefly. For a more detailed and comprehensive description, the reader
may consult, for instance, Refs. [11, 12].

Turbulence studies being applied to magnetically confined fusion plasmas are usually
based on kinetic descriptions since collisions only play a subdominant role in these hot
and dilute plasmas.

1.4 Multiple scales in plasma microturbulence

Apparently, various space and time scales are involved in the description of magnetically
confined plasmas. The characteristic length scales, for instance, include the electron gy-
roradius on the submillimeter range as well as correlation lengths on the order of several
meters along a magnetic field line. With respect to the time scales, fast dynamics – like
the high-frequency Larmor gyration – have to be considered, as well as the comparably
large energy confinement time scale.

However, multiscale techniques allow for the definition of subsets of scales which can
approximatively be investigated separately. For instance, the aforementioned turbulent
fluctuations are much faster than the energy confinement time but slow compared to
the gyrofrequencies. In addition, they typically exhibit small relative amplitudes. For
the prediction of anomalous transport, it is therefore quite common to consider constant
mean values on the one hand, and special models reducing the description of the gyromo-
tion on the other. The kinetic theory – chosen due to the weak collisionality emerging in
hot and dilute fusion plasmas – is therefore replaced by the so-called gyrokinetic theory
which will be discussed in more detail in the next chapter.

But even in the reduced model, several scales can occur. On the macroscopic side,
these are the temperature and density gradients which can be modified even by small
amplitude fluctuations, as can now be observed with a newly developed tool presented in
this thesis. On the other hand, various turbulence types exist which may be distinguished
by means of their characteristic wave numbers and frequencies. Three prominent exam-
ples which will be addressed in this work are the ion temperature gradient (ITG) driven
mode, the trapped electron mode (TEM), and the electron temperature gradient (ETG)
mode. While the first two types are typically found on space-time scales attributed to
the ion dynamics, the ETG mode resides on electron scales. Obviously, the question
arises whether both turbulence scales can be treated independently. Furthermore, the
significance of ETG modes for heat transport fluxes is currently a controversial issue.
Namely, mixing length estimates predicting negligible contributions have recently been
challenged by new theoretical and experimental findings. A clarification along these line
is desparately needed since future fusion devices will exhibit a strong electron heating
caused by the α particles which are generated in a fusion reaction, see Eq. (1.1).
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Chapter 1 Introduction

A corresponding discussion of these two topics constitutes another main part of this
thesis. Due to the complexity of the underlying equations, it will be based on nu-
merical simulations. Although a highly parallelized and optimized code is at hand, a
self-consistent coverage of the involved ion and electron space and time scales requires
an enormous computational effort. The simulations which will be presented in this work
are therefore amongst the first few which have been performed in this context worldwide.

1.5 Thesis Outline

As previously mentioned, a kinetic description will be employed for microturbulence
investigations throughout this work since most of the present day tokamak plasmas
operate in the long mean free path regime where wave-particle interactions become
important.

First, this so-called gyrokinetic theory will be discussed in Chapter 2 in more detail.
During the derivation of the basic equations, special attention will be paid to retain
the full radial dependencies, thus extending previous treatments where locality, i.e. the
consideration of just a small radial domain, has been assumed.

In Chapter 3, information will be provided on how the gyrokinetic Vlasov-Maxwell
system of equations is numerically solved by means of the nonlinear, gyrokinetic Vlasov
code Gene. Besides a presentation of the well-established local code version, special
focus will be put on the recent implementation of radial variations allowing for the
investigation of nonlocal effects. In particular, new boundary conditions and numerical
schemes will be discussed since spectral methods which could be employed in the local
code had to be replaced. Furthermore, source and sink terms will be introduced and the
observables used in subsequent chapter will be defined.

Afterwards, results of several microturbulence investigations will be presented. In
Chapter 4, the role of small-scale turbulence occurring on scales of the order of the elec-
tron gyroradius within much larger turbulence on ion gyroradius scales will be addressed.
By studying several prototypical parameter sets describing experimentally relevant sce-
narios, a first evaluation of the significance of small-scale driven transport will be given.
Further implications on experimentally accessible observables, as for instance, density
spectra, will be discussed as well.

Another length scale comes into play if full radial temperature and density profiles are
considered as is done in the newly developed global Gene version. Before first results
regarding the influence of nonlocal effects are discussed, extensive benchmarking and
testing efforts will be presented in Chapter 5 in order to verify the implementation.
Hereafter, simulations including a recently added heat source model will be shown and
discussed.

Chapter 6 finally contains the conclusions and an outlook on subsequent projects.
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Chapter 2

An introduction to and an application of

gyrokinetic theory

The aim of this chapter is to derive and describe the equations underlying the nonlinear
gyrokinetic Vlasov code Gene which has been used to produce most of the results
presented in the following chapters. Thus, an introduction to gyrokinetic theory is the
first step to be taken.

The dedicated subsequent sections follow in parts the fundamental works by Brizard
and Hahm, in particular their review [13]. Furthermore, the second part of this chapter
presenting the derivation of the Gene specific equations is partially based on Ref. [14].
However, the latter is here substantially extended by considering additional radial vari-
ations of temperature, density and geometry which have formerly been treated only in
a very narrow radial domain. With these modifications it will be possible to investigate
nonlocal effects with the Gene code for the first time.

2.1 Basic ideas of gyrokinetic theory

As mentioned earlier, a kinetic description involving a 6-dimensional distribution func-
tion f(x,v, t) per species using a Vlasov operator coupled to the Maxwell equations is
the most fundamental way of modeling plasma dynamics. However, the resulting system
of nonlinear integro-differential equations can in general not be solved analytically, so
that a numerical approach has to be taken. Here, the variety of different space and
time scales present in a typical fusion plasma demands for grid and time step resolutions
which can exceed even the computing power of present-day supercomputers. Therefore,
extensive analytical effort has been spent to optimize the underlying equations using
simplifications or sophisticated perturbation theories [15]. One of the most popular re-
sults of the efforts, modern gyrokinetic theory [16, 17, 18, 19], will be discussed in this
section.
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Chapter 2 An introduction to and an application of gyrokinetic theory

2.1.1 The gyrokinetic ordering

Before a description of gyrokinetic theory can be given, some important experimental ob-
servations of magnetically confined high-temperature plasmas shall be reviewed briefly.
In general, they are characterized as strongly turbulent systems with the following fea-
tures [13]:

(i) The relative fluctuation levels of the turbulent quantities, e.g. the density δn/n ∼
εδ � 1, are typically very small. Only at the plasma edge they might reach values
of up to several ten percent.

(ii) The fluctuations are highly anisotropic. Due to the Lorentz force, typical correla-
tion lengths or wavelengths perpendicular to the magnetic field are on the order of
10− 100 gyroradii, while up to several meters can be reached in the parallel direc-
tion. In terms of wave numbers, these findings can be written as k‖/k⊥ ∼ ε‖ � 1.
The equilibrium or background part of e.g. the density hardly varies on the gyro-
radius scale.

(iii) The spectrum of frequencies ω is typically broadband with a characteristic mean
frequency on the order of the diamagnetic drift frequency ωD = k · vD for a given
wave vector k and drift velocity vD = cT/(eB)b̂×∇ ln p. Here, b̂ = B/B denotes
the unit vector along the magnetic field line with amplitude B = |B|, and p is the
thermal plasma pressure. For typical plasma parameters, the diamagnetic frequency
is much smaller than the gyrofrequency Ω. Furthermore, another typical frequency,
the bounce frequency ωb which is determined by the magnetic moment µ and the
topology of the field line, can be considered small compared to Ω. Hence, ω/Ω ∼
εω � 1. Again, the background quantities, typically evolving on the confinement
time scale, can be assumed to be constant.

The third property provides the basis for a simplification of the full kinetic description
by reducing the description of the fast gyromotion of the charged particle to the dynamics
of a charged ring as illustrated in Fig. 2.1. However, features (i) and (ii) will be employed
as well.

2.1.2 Elimination of the gyroangle dependence

Approximating the full gyromotion by the dynamics of charged rings basically implies
the elimination of information on the exact gyroorbit position which can be parametrized
by a gyroangle. However, if certain conservation laws and adiabatic invariants shall be
conserved, a very sophisticated approach has to be chosen. To facilitate the orientation
along the corresponding line of arguments, an overview illustrating the most important
steps of the derivation of the gyrokinetic Vlasov equation is shown in Fig. 2.2.
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2.1 Basic ideas of gyrokinetic theory

Figure 2.1: In gyrokinetic theory, the full description of the gyromotion, shown on the left side,
is approximated by the dynamics of charged rings which are schematically drawn on the right
side.

Based on the Hamiltonian of particles in electromagnetic fields, a corresponding one-
form formulation is established to simplify a subsequent transformation to guiding-center
coordinates where the gyroangle enters explicitly. The latter is then removed as desired
by employing a perturbative approach. While the elimination is simply an averaging
procedure for unperturbed equilibrium quantities, it turns out to be much more delicate
for the perturbed part where a Lie transformation has to be utilized. The resulting
gyrocenter one-form is afterwards used to establish the new Lagrangian which yields
to the equations of motion when being substituted in the Euler-Lagrange equations.
The thus obtained time derivatives of the gyrocenter coordinates are finally employed
to determine the gyrokinetic Vlasov equation.

Particle Hamiltonian dynamics

The starting point is to determine the Hamiltonian particle dynamics. For a non-
relativistic particle with mass m, charge q, and velocity v at position x in a magnetic
potential A(x) and an electrostatic potential φ(x), it is given by the Hamiltonian

H(x,v) =
1
2
mv2 + qφ(x), (2.1)

or the Lagrangian

L(x,v) = p(v) · ẋ−H(x,v) (2.2)

=
(
mv +

q

c
A(x)

)
· ẋ−

(
1
2
mv2 + qφ(x)

)
, (2.3)

respectively.
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Chapter 2 An introduction to and an application of gyrokinetic theory

Particle Hamiltonian dynamics

One-form formulation

Guiding-center coordinates

Equilibrium/background part Perturbed part

Gyro-average
eliminate gyroangle

dependence
Lie (near identity)

transformation

Gyrocenter one-form

Lagrangian

Equations of motion

Gyrokinetic Vlasov-equation

Figure 2.2: Overview of the most important steps of the derivation of the gyrokinetic Vlasov
equation as used in the following.

One-form formulation

Now, in order to facilitate approximations based on the mentioned orderings, it proves
advantageous to change to a different set of coordinates. For this purpose, it is favorable
to continue with a one-form γ(x,v), implicitly defined by∫

L(x,v)dt =
∫
γ(x,v) (2.4)

instead of using the Lagrangian itself. A coordinate transformation can then simply be
expressed by

Γµ = γν
dzν

dZµ
. (2.5)

where Γ and γ are the one-forms in terms of the coordinates Z and z and ν and µ are
indices running through all entries therein. In the present case, the particle coordinates
shall be replaced by a set of coordinates which utilizes the properties of the magnetic
field. As mentioned before the latter is usually dominated by an equilibrium part B0(x)
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2.1 Basic ideas of gyrokinetic theory

which is almost constant along a thermal gyroradius ρth therefore fulfilling

ρth
LB
∼ εB � 1. (2.6)

Here, LB denotes the typical scale length of the magnetic equilibrium field. These
premises allow for approximating the perpendicular motion to be purely circular.

Transformation to guiding-center coordinates

Hence it is possible to introduce so-called guiding-center coordinates Z = (X, v‖, µ, θ, t)
which include the center of the gyration X, the velocity along the magnetic field line
v‖ = v·b̂, the gyroangle θ and the magnetic moment µ = mv2

⊥/(2B) with v⊥ = |v − v‖b̂|.
They are linked to the particle coordinates by the following transformation equations

x = X + r(X, µ, θ), (2.7)

v = v‖b̂0(X) + v⊥(X, µ)c(θ), (2.8)

where r(X, µ, θ) = ρ(X, µ)a(θ) denotes the gyroradius vector with the norm ρ(X, µ) =
v⊥(X)/Ω(X), and

a(θ) = cos θ ê1 + sin θ ê2 and c(θ) =
∂a(θ)
∂θ

= − sin θ ê1 + cos θ ê2 (2.9)

are the unit vectors in radial and in tangential direction of a circle in the local Cartesian
coordinate system spanned by (ê1, ê2, b̂0). The direction of rotation which depends on
the particle charge defines the range of the gyroangle being either [0, 2π) or (−2π, 0].
However, as it will become more obvious in the following, it does not enter the equation
which perfectly agrees with the intention of replacing the gyromotion by a gyroring
description.

Perturbed guiding-center one-form

Based on the gyrokinetic ordering introduced before, in particular constraint (i), it is
advantageous to split the potentials in an equilibrium and a small perturbation part as
well before transforming the one-form. Neglecting electrostatic equilibrium potentials
since they will not appear in the physical situations under consideration yields

φ(x) = φ1(x) and A(x) = A0(x) + A1(x) (2.10)

and thus γ = γ0 + γ1 with

γ0 =
(
mv +

q

c
A0(x)

)
· dx− 1

2
mv2dt, (2.11)

γ1 =
q

c
A1(x) · dx− qφ1(x)dt. (2.12)
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Chapter 2 An introduction to and an application of gyrokinetic theory

The unperturbed part can be transformed in a straightforward way using the one-form
transformation instruction of Eq. (2.5). Taking furthermore advantage of the slow spa-
tial variation of the unperturbed quantities (see condition (ii)) allows for replacing the
particle position x approximately by the gyrocenter position X. Finally, remaining gy-
roangle dependencies, for instance in terms A0(X) · a(θ), are removed by gyroaveraging
the intermediate result with a gyroaverage operator G = 1

2π

∫
dθ. In summary, the

unperturbed, gyroaveraged gyrocenter one-form then reads

Γ̄0 =
(
mv‖b̂0(X) +

q

c
A0(X)

)
· dX +

µmc

q
dθ −

(
1
2
mv2
‖ + µB0(X)

)
dt (2.13)

The perturbed part can be evaluated in a similar way up to the intermediate result

Γ1 =
q

c
A1(X + r) · dX +

A1(X + r) · a(θ)
v⊥(X)

dµ

+
mv⊥(X)
B0(X)

A1(X + r) · c(θ)dθ − qφ1(X + r)dt. (2.14)

However, the strongly spatio-temporally varying fluctuating field parts prevent the for-
merly used simplification of replacing the particle by the gyrocenter position and hence
no simple gyroaveraging procedure is applicable. Instead, another coordinate transfor-
mation is required in order to erase the gyrophase dependence.

Lie perturbation theory

A very convenient mathematical tool fitting to this kind of purpose is the Lie transform
[15, 20], a particular type of near-identity coordinate transformations in extended phase
space.
Here, the new set of coordinates Z̄, being a function of a continuous smallness parameter
ε and the old coordinates Z, is implicitly defined by the differential equation

∂Z̄ν(Z, ε)
∂ε

= Gν(Z̄(Z, ε)) (2.15)

with the generating functions G(Z̄(Z, ε)) and the index ν running over all coordinates
within Z̄ and Z. Considering the initial condition Z̄ν(Z, 0) = Zν , Eq. (2.15) can be
rewritten as

Z̄ν(Z, ε) = T (ε)Zν , (2.16)

where an operator T (ε) = exp (εGν) has been introduced. To lowest order in ε, it becomes
Z̄ν(Z, ε) = Zν +O(ε) which is the basic property of a near-identity transformation.

Now, going from coordinates to the previously discussed one-forms, the transformation
reads [15]

Γ̄ = T ∗−1Γ + dS, (2.17)
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2.1 Basic ideas of gyrokinetic theory

where S denotes a gauge function which shall later be chosen such that the resulting
equations become as simple as possible. The operator T ∗−1 consists of as many individual
Lie transforms using the Lie derivative for one-forms,

[LGΓ] (Z) = Gλ(Z)
(
∂Γν(Z)
∂Zλ

− ∂Γλ(Z)
∂Zν

)
, (2.18)

as orders in ε are desired. For instance, up to second order T ∗−1 becomes

T ∗−1 = exp (−εL1) exp (−ε2L2) = 1− εL1 + ε2
(

1
2
L2

1 − L2

)
+O(ε3) (2.19)

Similar expansions in ε of the one-forms Γ̄ and Γ as well as the gauge function S facilitate
setting up the following equations

Γ̄0 =Γ0 + dS0 (2.20)

Γ̄1 =Γ1 − L1Γ0 + dS1 (2.21)

Γ̄2 =Γ2 − L1Γ1 +
(

1
2
L2

1 − L2

)
Γ0 + dS2 (2.22)

Application to the guiding-center one-form

The zeroth order equation has already been solved before, so that solely Eq. (2.21) has
to be considered in the following if just terms up to the order of ε are kept. As discussed
in more detail, e.g., in Ref. [14], the generating functions are chosen such that

GX
1 =−

(
b̂0

B∗0‖
× Ã1 +

B∗0
B∗0‖

1
m

∂S1

∂v‖
+
c

q

b̂0

B∗0‖
×∇S1

)

Gµ1 =
q

c

v⊥
B0

A1 · c +
q

mc

∂S1

∂θ

G
v‖
1 =

Ω
B0

B∗0
B∗0‖
·
(

Ã1 +
c

q
∇S1

)
Gθ1 =− Ω

B0

(
1
v⊥

A1 · a +
∂S1

∂µ

)
. (2.23)

If, in addition, the gauge function S1 is set to

S1 = S1(θ) =
1
Ω

∫ θ
(
qφ̃1(X + r(θ′)) +

1
B∗0‖

(b̂0 × Ã1(X + r(θ′)) · µ∇B0

− q

c
v‖

B∗0
B∗0‖
· Ã1(X + r(θ′))− q

c
v⊥A1(X + r(θ′)) · c(θ′)

+
q

c
v⊥〈A1(X + r(θ′)) · c(θ′)〉

)
dθ′, (2.24)
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Chapter 2 An introduction to and an application of gyrokinetic theory

all gyroangle dependencies in the one-form in first perturbation order can be removed.
Here, a tilde indicates gyroangle dependent parts whereas overbars or the following
brackets 〈. . .〉 denote gyroaveraged quantities so that, e.g., the vector potential A1

can be divided into A1 = Ã1 + 〈A1〉. Furthermore, the abbreviation B∗0 = ∇ ×A∗0 =
∇× (A0 + B0v‖/Ω) has been used.

Summarizing, the gyrocenter one-form up to first order in perturbation theory becomes

Γ̄ =Γ̄0 + Γ̄1

=
(
mv‖b̂0 +

q

c
A0 +

q

c
Ā1‖b̂0

)
· dX +

µmc

q
dθ −

(
1
2
mv2
‖ + qφ̄1 + µ

(
B0 + B̄1‖

))
dt

(2.25)

where as before equilibrium quantities have to be evaluated at gyrocenter X and per-
turbed potentials or fields at particle position x = X + r. Furthermore, q

cv⊥〈A1 · c〉 has
been identified as −µB̄1‖.

Finally, the pull-back operator to first order in the perturbative expansion acting on
a scalar function s shall be mentioned, too, since it will become of interest e.g. in the
gyrokinetic field equations. Using the Lie derivative acting on scalars

[LGs](Z) = Gν
∂s

∂Zν
(2.26)

it turns out to be

T ∗s = exp(εLG)s+O(ε2)

≈1 + ε
∑
ν

Gν
∂s

∂Zν
. (2.27)

or, if the scalar function can be split into an equilibrium and a perturbed part, s = s0+s1,

T ∗s0 =s0,

T ∗s1 =s1 +
1
B0

[
Ω

B∗0
B∗0‖
· Ã1

∂s0

∂v‖
+

(
qφ̃1 − q

c
v‖

B∗0
B∗0‖
· Ã1 − µB̄1‖

)
∂s0

∂µ

]
. (2.28)

2.2 The gyrokinetic Vlasov equation

Having realized the basic idea of gyrokinetics, i.e. replacing the full gyromotion by a
gyroring description using elaborate perturbation methods, it is now possible to perform
the next steps on the way to the gyrokinetic Vlasov equation. The first one is to construct
the corresponding Lagrangian from the one-form as indicated in Eq. (2.4). Afterwards,
the Euler-Lagrange equations

d
dt

(
∂L

∂Żν

)
− ∂L

∂Zν
= 0 (2.29)
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2.2 The gyrokinetic Vlasov equation

are used to solve for the equations of motion for each gyrocenter coordinate. With these
results and the approximation ∇× (b̂0Ā1‖) = (∇Ā1‖)× b̂0 +O(εB) ≈ (∇Ā1‖)× b̂0 it is
possible to transform the so-called full-F Vlasov equation for the σth species

∂Fσ
∂t

+ Ẋ · ∇Fσ + µ̇
∂Fσ
∂µ

+ v̇‖
∂Fσ
∂v‖

= 0 (2.30)

into

∂Fσ
∂t

+

[
v‖b̂0 +

B0

B∗0‖

(
vξ̄ + v∇B + vc

)] ·{
∇Fσ −

(
qσ∇φ̄1 +

qσ
c

b̂0
˙̄A1‖ + µ∇ (B0 + B̄1‖

)) 1
mσv‖

∂Fσ
∂v‖

}
= 0 (2.31)

with the gyroaveraged modified potential

ξ̄1 = φ̄1 −
v‖

c
Ā1‖ +

µ

qσ
B̄1‖, (2.32)

the generalized E×B velocity

vξ̄ =
c

B2
0

B0 ×∇ξ̄1, (2.33)

the gradient-B velocity

v∇B0 =
µc

qσB2
0

B0 ×∇B0 (2.34)

and the curvature drift velocity

vc =
v2
‖

Ωσ

(
∇× b̂0

)
⊥
. (2.35)

The latter can be further evaluated with the help of Ampère’s law and the equilibrium
condition in magnetohydrodynamics ∇p0 = 1

c j0×B0 which has already been introduced
in Sec. 1.3. The final result is

vc =
v2
‖

Ωσ

(
b̂0 ×

[∇B0

B0
+
βp
2
∇p0

p0

])
(2.36)

where βp ≡ 8πp0/B
2
0 , the well known thermal to magnetic pressure ratio [21], has been

used.
Basically, the only task left in terms of gyrokinetic theory is to derive the field equa-

tions. However, before approaching this point, some further simplifications will be in-
troduced to the gyrokinetic Vlasov equation. For instance, it makes sense to utilize the
flute like character of plasma microturbulence and employ some corresponding approx-
imations. For this purpose, a coordinate system has to be established which is aligned
with respect to the magnetic field. Furthermore, splitting the distribution function in
an equilibrium and a fluctuating part proves advantageous in terms of computational ef-
fort. Finally, a proper normalization has to be found in order to establish dimensionless
equations which are required for a numerical treatment.
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Chapter 2 An introduction to and an application of gyrokinetic theory

2.2.1 The field aligned coordinate system

The strong anisotropy of plasma turbulence with respect to the directions along and
perpendicular to the magnetic field, see constraint (ii), motivates a choice of accordingly
defined space coordinates. Therefore, transformation metrics have to be constructed and
and e.g. included in the gradients in Eq. (2.31). This can either be done analytically
by solving the Grad-Shafranov [22, 23] equation for idealized cases (see for instance [24,
25]) or numerically by e.g. tracing magnetic field lines calculated by MHD equilibrium
codes (e.g. [26, 27]). However, a detailed description is postponed to Chapter 3. Here,
only properties of a field aligned coordinate system with coordinates u(1,2,3) = (x, y, z),
namely the representation of the magnetic field

B0 = C ∇x×∇y (2.37)

and the definition of the Jacobian

J−1 = (∇x×∇y) · ∇z =
B0 · ∇z
C , (2.38)

as well as a general metric tensor

g = (gij) = (∇ui · ∇uj) =

 gxx gxy gxz

gxy gyy gyz

gxz gyz gzz

 (2.39)

are used to study the modifications which arise in the Vlasov equation, Eq. (2.31). Here,
z denotes the coordinate along the field line, while x and y point along perpendicularly
oriented directions as indicated by Eq. (2.37). Furthermore, from now on, x shall be the
radial coordinate whereas the y axis is aligned on the flux surface spanned by B0. Now,
with Eqs. (2.37) and (2.39) one can easily derive

B2
0 = B0 ·B0

= C 2
(
gxxgyy − (gxy)2

) ≡ C 2γ1 (2.40)

where the abbreviation

γ1 = g11g22 − g21g12 (2.41)

has been implicitly introduced. As it will become clear later on, γ1 is often accompanied
by the closely related terms

γ2 = g11g23 − g21g13 and γ3 = g12g23 − g22g13 (2.42)

so that they already shall be defined at this point for the sake of completeness.
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2.2 The gyrokinetic Vlasov equation

The relation above derived for B2
0 , Eq. (2.40), allows for the evaluation of the outer

vector product in the drift velocities in the following way

1
B2

0

(B0 ×∇ζ) · ∇ =
C
B2

0

(
[∇x×∇y]× ∂iζ∇ui

) · ∇uj∂j
=

1
C
g1ig2j − g2ig1j

γ1
∂iζ∂j (2.43)

where ζ denotes a placeholder for any scalar function or field component and ∂i ≡ ∂
∂ui

.
On the other hand, Eqs. (2.37) and (2.38) can be used to find an expression for the
parallel derivatives

B0 · ∇ = C [∇x×∇y] · ∇ui∂i
=
C
J
∂z (2.44)

so that the gyrokinetic Vlasov equation, Eq. (2.31), can be transformed to

∂Fσ
∂t
− qσ
mσc

˙̄A1‖
∂Fσ
∂v‖

+
C
JB0

{
v‖∂zFσ −

(
qσ∂zφ̄1 + µ∂z

(
B0 + B̄1‖

)) 1
mσ

∂Fσ
∂v‖

}
+

B0

B∗0‖

c

C
g1ig2j − g2ig1j

γ1

(
∂iξ̄1 +

µ

qσ
∂iB0 +

mσv
2
‖

qσ

[
∂iB0

B0
+
βp
2
∂ip0

p0

])
·{

∂jFσ −
(
qσ∂jφ̄1 + µ∂j

(
B0 + B̄1‖

)) 1
mσv‖

∂Fσ
∂v‖

}
= 0. (2.45)

2.2.2 Splitting of the distribution function

In order to simplify the gyrokinetic Vlasov equation for computational purposes, it is a
well established technique to split the distribution function into two parts, Fσ=F0σ+F1σ.
The first one, F0σ, is usually chosen to be close to the expected equilibrium or back-
ground distribution function and hence the second, F1σ, contains the fluctuating part.
Often, this kind of separation is accompanied by a corresponding ordering. Like for
background and perturbed fractions of measurable moments of the distribution func-
tion, e.g. densities and temperatures, it is then assumed that F1σ/F0σ ∼ εδ � 1.

In this thesis, the background distribution function is considered to be a so-called
local, i.e. x-dependent, Maxwellian in velocity space so that

Fσ(x, v‖, µ) = F0σ(x, v‖, µ) + F1σ(x, v‖, µ)

=
n0σ(x)

π3/2v3
Tσ(x)

e−
mσv

2
‖/2+µB0(x)

T0σ(x) +F1σ(x, v‖, µ). (2.46)

The derivatives are thus given by

∂F0σ

∂t
= 0,

∂F0σ

∂v‖
= −mσv‖

T0σ
F0σ,

∂F0σ

∂µ
= − B0

T0σ
F0σ, (2.47)
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and

∇F0σ =

[
∇n0σ

n0σ
+
∇T0σ

T0σ

(
mσv

2
‖/2 + µB0

T0σ
− 3

2

)
− ∇B0

B0

µB0

T0σ

]
F0σ. (2.48)

The last equation can be further evaluated since background pressure and hence back-
ground temperature and density are constant on flux surfaces so that they depend solely
on the radial coordinate x, which yields

∂xF0σ =

[
∂xn0σ

n0σ
+
∂xT0σ

T0σ

(
mσv

2
‖/2 + µB0

T0σ
− 3

2

)
− ∂xB0

B0

µB0

T0σ

]
F0σ,

∂νF0σ = −∂νB0

B0

µB0

T0σ
F0σ (2.49)

with the index ν = (y, z). According to Eqs. (2.31) and (2.47) one is left with two
partial derivatives in time, namely in front of F1σ and Ā1‖. For a further treatment of
the Vlasov equation, it proves therefore advantageous to combine both in a new variable

g1σ = F1σ − qσ
mσc

Ā1‖
∂F0σ

∂v‖
= F1σ +

qσ
c
Ā1‖

v‖

T0σ
F0σ. (2.50)

Using furthermore the abbreviation Γσ,ν = ∂νF1σ + F0σ
T0σ

∂ν
(
qσφ̄1 + µB̄1‖

)
where here ν is

a placeholder for the spatial coordinates (x, y, z), the full-F gyrokinetic Vlasov equation
turns into

∂g1σ

∂t
=
c

C
B0

B∗0‖

[
∂xn0σ

n0σ
+
∂xT0σ

T0σ

(
mσv

2
‖/2 + µB0

T0σ
− 3

2

)]
F0σ ∂y ξ̄1

+
c

C
B0

B∗0‖

µB0 +mσv
2
‖

qσB0

(
∂yB0 +

γ2

γ1
∂zB0

)
Γσ,x

− c

C
B0

B∗0‖

[
µB0 +mσv

2
‖

qσB0

(
∂xB0 − γ3

γ1
∂zB0

)
+
mσ

qσ
v2
‖
βp
2
∂xp0

p0

]
Γσ,y

− c

C
B0

B∗0‖

(
∂xξ̄1Γσ,y − ∂y ξ̄1Γσ,x

)
− C
JB0

v‖Γσ,z +
C
JB0

µ

mσ
∂zB0

∂F1σ

∂v‖

+
c

C
B0

B∗0‖

µB0 +mσv
2
‖

qσB0

(
∂yB0 +

γ2

γ1
∂zB0

)
·[

∂xn0σ

n0σ
+
∂xT0σ

T0σ

(
mσv

2
‖/2 + µB0

T0σ
− 3

2

)]
F0σ (2.51)

Here, all parallel derivatives of perturbed quantities which could directly be compared
with perpendicular counterparts are neglected due to the flute like character of plasma
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2.2 The gyrokinetic Vlasov equation

microturbulence, see constraint (ii). For instance, ∂xξ̄1 − γ3
γ1
∂z ξ̄1 ∼ εδ(1 + ε‖) ≈ ∂xξ̄1

where factors like γ2/γ1 or γ3/γ1 are considered to be always comparable or smaller
than one. Furthermore, the only nonlinearity kept in Eq. (2.51) is stemming from the
∇ξ ×B0 term. Another one, the so-called v‖ nonlinearity or parallel nonlinearity, given
here to all orders by

−
{
v‖b̂0 ·

(
qσ∇φ̄1 +

qσ
c

˙̄A1‖b̂0 + µ∇B̄1‖

)
+
B0

B∗0‖

(
vξ̄ + v∇B + vc

) · (qσ∇φ̄1 + µ∇ (B0 + B̄1‖
))} 1

mσv‖

∂F1σ

∂v‖
(2.52)

is neglected throughout this work since it is smaller by one order in the gyrokinetic
ordering. Although arguments for keeping this term in order to formally derive and
monitor an energy conservation law do exist in literature [28, 29, 30], it has been shown
in [31, 32, 33] that no significant contribution is expected if the ion gyroradius to system
size ratio (here: the minor tokamak radius) ρ∗ = ρs/a < 0.012. This condition is usually
fulfilled in core turbulence investigations in large present-day and future devices as they
are considered in this work.

2.2.3 Normalization

Analytical solutions of the full gyrokinetic Vlasov-Maxwell system of equations can only
be given for highly idealized cases. Hence, numerical schemes are usually applied instead
where the latter naturally work with dimensionless quantities. In the following, an
appropriate normalization will therefore be introduced where all physical quantities will
be split into a dimensionful reference part usually identifiable by an index ’ref’ and the
remaining dimensionless value, earmarked with a hat. In contrast to former publications
which were restricted to a very narrow radial domain, special attention is paid to include
full radial profiles.

The basic reference values are the elementary charge e, a reference mass mref , a ref-
erence temperature Tref , a (macroscopic) reference length Lref and a reference magnetic
field Bref , so that e.g. the charge of the σth species can be written as qσ = eq̂σ. Moreover,
some composed quantities are used, which are the reference velocity cref =

√
Tref/mref ,

the reference gyrofrequency Ωref = eBref/(mrefc), the reference gyroradius ρref = cref/Ωref

and the reference thermal to magnetic pressure ratio βref = 8πnrefTref/B
2
ref .

Based on these definitions, the space and time coordinates can be expressed like

x = ρref x̂, y = ρref ŷ, z = ẑ, t =
Lref

cref
t̂ (2.53)

where the parallel coordinate is already dimensionless since it is directly parametrized
by means of the poloidal or straight field line angle in the following. This choice affects
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geometry related quantities as well, so that

γ1 = γ̂1, γ2 =
1
Lref

γ̂2, γ3 =
1
Lref

γ̂3, (2.54)

J = Lref Ĵ and C = Bref Ĉ . (2.55)

The velocity space coordinates are normalized as

v‖ = v̂Tσ(x0) cref v̂‖, µ = T̂0σ(x0)
Tref

Bref
µ̂, (2.56)

where vTσ(x) =
√

2T0σ(x)/mσ = cref v̂Tσ(x) denotes the thermal velocity of the σth
species at radial position x. While on the one hand, a separation of scales due to
different masses has been taken into account, it is not desirable to normalize the velocity
space coordinates to in general radially dependent temperature profiles since such an
approach would require additional interpolation schemes in corresponding derivatives or
integrations. Thus, temperatures in velocity space normalization factors are just taken at
a reference position x0 which may for instance correspond to the center of the simulation
domain or the position at which the profiles reach half of their maximum. However, their
species dependence is still taken into account which allows for a velocity space adaption
to highly separated temperature profiles which might for instance happen during strong
electron heating.

The potentials and fields are chosen to be expressed as

φ1 =
Tref

e

ρref

Lref
φ̂1, A1‖ = ρrefBref

ρref

Lref
Â1‖, B1‖ = Bref

ρref

Lref
B̂1‖, (2.57)

and distribution functions are normalized according to

F0σ =
nref

c3
ref

n̂0σ(x0)
v̂3
Tσ(x0)

F̂0σ and F1σ =
nref

c3
ref

ρref

Lref

n̂0σ(x0)
v̂3
Tσ(x0)

F̂1σ, (2.58)

where again radial dependencies are only present in the normalized distribution functions
itself. For further clarification, the normalized equilibrium part shall be given explicitly
considering the previously introduced local Maxwellian

F̂0σ(x) =
n̂pσ(x)

[πT̂pσ(x)]3/2
e
−
v̂2‖+µ̂B̂0(x)

T̂pσ(x) , (2.59)

where additional abbreviations have been introduced for density and temperature profiles
which are normalized to their value at the reference position x0, n̂pσ = n0σ(x)/n0σ(x0)
and T̂pσ = T0σ(x)/T0σ(x0).
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2.2 The gyrokinetic Vlasov equation

With these definitions, a first normalized version of the gyrokinetic Vlasov-equation,
Eq. (2.51), can be derived

∂ĝ1σ

∂t̂
=− 1

Ĉ
B̂0

B̂∗0‖

[
ω̂nσ + ω̂Tσ

(
v̂2
‖ + µ̂B̂0

T̂pσ
− 3

2

)]
F̂0σ ∂ŷ

ˆ̄ξ1

− B̂0

B̂∗0‖

T̂0σ(x0)
q̂σ

µ̂B̂0 + 2v̂2
‖

B̂0

K̂xΓ̂σ,x

− B̂0

B̂∗0‖

[
T̂0σ(x0)
q̂σ

µ̂B̂0 + 2v̂2
‖

B̂0

K̂y − T̂0σ(x0)
q̂σB̂0

v̂2
‖

Ĉ βref
p̂0

B̂0

ω̂pσ

]
Γ̂σ,y

− B̂0

B̂∗0‖

1
Ĉ
(
∂x̂

ˆ̄ξ1Γ̂σ,y − ∂ŷ ˆ̄ξ1Γ̂σ,x
)

− v̂Tσ(x0)
Ĉ
ĴB̂0

v̂‖Γ̂σ,z +
v̂Tσ(x0)

2
Ĉ
ĴB̂0

µ̂∂ẑB̂0
∂F̂1σ

∂v̂‖

+
B̂0

B̂∗0‖

T̂0σ(x0)
q̂σ

µ̂B̂0 + 2v̂2
‖

B̂0

K̂x

[
ω̂nσ + ω̂Tσ

(
v̂2
‖ + µ̂B̂0

T̂pσ
− 3

2

)]
F̂0σ (2.60)

where the following abbreviations

ω̂nσ = − Lref

n0σ(x)
∂n0σ(x)
∂x

, ω̂Tσ = − Lref

T0σ(x)
∂T0σ(x)
∂x

, ω̂p = − Lref

p0(x)
∂p0(x)
∂x

,

(2.61)

have been used for radial density, temperature and pressure background gradients and

K̂x = − 1
Ĉ
Lref

Bref

(
∂B0

∂y
+
γ2

γ1

∂B0

∂z

)
and K̂y =

1
Ĉ
Lref

Bref

(
∂B0

∂x
− γ3

γ1

∂B0

∂z

)
for gradients of the equilibrium magnetic field. Moreover, the dimensionless form of the
magnetic field prefactor is

B̂0

B̂∗0‖
=

1 + βref

√
m̂σT̂0σ(x0)

2
ĵ0‖

q̂σB̂2
0

v̂‖

−1

. (2.62)

For a numerical evaluation it is desirable to have as few memory consuming variables
as possible. Therefore, the abbreviation Γσ is again replaced by the modified distribution
function and potential in the present implementation used for this work. Further details
can be found in the Appendix A.
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2.3 Velocity space moments of the particle distribution

function

Maxwell’s equations which are later employed to determine the perturbed fields self-
consistently and further quantities of interest, e.g. particle and heat fluxes, are usually
formulated in particle coordinates and repeatedly involve velocity space moments of
different orders. Hence, it proves useful to first investigate these terms. Starting with
the definition of the ath scalar moment in v‖ and bth in v⊥,

Mab,σ(x) =
∫
fσ(x,v)va‖v

b
⊥d3v, (2.63)

one arrives at the guiding-center formulation by applying the previously introduced
transformation

Mab,σ(x) =
∫
δ(X + r− x)Fσ,gc(X, v‖, µ, θ)v

a
‖v
b
⊥J d3Xdv‖dµdθ. (2.64)

The therein used phase space Jacobian can be derived by considering the following
transformation from (x,v) to canonical (x,p = mv + q

cA0) coordinates

d3xd3v =
1
m3

d3xd3p (2.65)

and the square root of the determinant of the Lagrange tensor

ωλν =
∂Γ̄0,ν

∂Zλ
− ∂Γ̄0,λ

∂Zν
(2.66)

which gives the Jacobian associated with the canonical to guiding center coordinates
Z = (X, µ, v‖, θ) transform, see e.g. Ref. [34]. Here, Γ̄0 is already known from Eq. (2.13)
and ν, λ = 1, 2, 3, 4, 5, 6. Concatenating Eq. (2.65) and Eq. (2.66) yields the final result

d3x d3v =
1
m3

d3x d3p =
1
m3

√
|(ωλν)| d3Xdv‖dµdθ =

m2B∗0‖

m3
d3Xdv‖dµdθ. (2.67)

By substituting the Jacobian in Eq. (2.64) and employing the pull-back operator in
order to use the gyrocenter instead of the guiding-center distribution function Fσ,gc, the
moments become

Mab,σ(x) =
∫
δ(X + r− x)T ∗F1

B∗0‖(X, v‖)

m
va‖v

b
⊥d3Xdv‖dµdθ. (2.68)

Here, only the first perturbation order is considered because it is solely required for the
gyrokinetic field equations.
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2.3 Velocity space moments of the particle distribution function

The pull-back operator T ∗ defined in Eq. (2.28) has been presented for the full dis-
tribution function so far. Hence, the F splitting has to be performed. Assuming the
ordering F1/F0 ∼ εδ � 1 and keeping only terms to first order, T ∗F1σ becomes

T ∗F1σ =F1σ +
1
B0

[
B∗0
B∗0‖

(
Ωσ

∂F0σ

∂v‖
− qσ

c
v‖
∂F0σ

∂µ

)
· Ã1 +

(
qσφ̃1 − µB̄1‖

) ∂F0σ

∂µ

]
(2.69)

By replacing quantities marked by tilde by the gyroaveraged and the full potentials and
fields, the moments can then be rewritten as

Mab,σ(x) =
1
mσ

∫
δ(X + r− x)B∗0‖(X, v‖)

{
F1σ(X) +

1
B0(X)

·
[

B∗0(X, v‖)
B∗0‖(X, v‖)

(
Ωσ(X)

∂F0σ(X)
∂v‖

− qσ
c
v‖
∂F0σ(X)
∂µ

)
·(A1‖(X + r)− Ā1‖(X)

)
+
(
qσ(φ1(X + r)− φ̄1(X))− µB̄1‖(X)

) ∂F0σ(X)
∂µ

]}
va‖v

b
⊥d3Xdv‖dµdθ

=
2π
mσ

∫
B∗0‖(x, v‖)

{
〈F1σ(x− r)〉+

1
B0(x)

·
[

B∗0(x, v‖)
B∗0‖(x, v‖)

(
Ωσ(x)

∂F0σ(x)
∂v‖

− qσ
c
v‖
∂F0σ(x)
∂µ

)
· (A1‖(x)− 〈Ā1‖(x− r)〉)

+
(
qσ(φ1(x)− 〈φ̄1(x− r)〉)− µ〈B̄1‖(x− r)〉) ∂F0σ(x)

∂µ

]}
va‖v

b
⊥dv‖dµ

(2.70)

where again the freedom of evaluating equilibrium quantities either at particle or gy-
rocenter position has been utilized and the θ integration has been performed. In the
following, the particle position (x) dependence of fields, distribution functions, gyrofre-
quencies and temperatures will be skipped for reasons of readability.

If F0 is consistently chosen to be a local Maxwellian as before, the integral containing
A1‖ vanishes. Furthermore, the v‖-integration can be performed analytically because
the fields do not depend on that coordinate. In summary, Eq. (2.70) becomes

Mab,σ(x) =π
(

2B0

mσ

)b/2+1 ∫∫ B∗0‖

B0
〈F1σ(x− r)〉va‖µb/2dv‖dµ−

n0σB0

T 2
0σ

vaTσ

(
2B0

mσ

)b/2
·
[
Υ(a) +

8πT0σ

B2
0

j0‖

qσvTσ
Υ(a+ 1)

]{(
T0σ

B0

)b/2+1

(b/2)! qσφ1(x)

−
∫ (

qσ〈φ̄1(x− r)〉+ µ〈B̄1‖(x− r)〉) e−
µB0
T0σ µb/2dµ

}
(2.71)
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with the abbreviation

Υ(a) =
1√
π

∫ ∞
−∞

xae−x
2
dx =


0, a odd

1, a = 0
1·3···(a−1)√

2
a a even

(2.72)

for the v‖ integral. The normalized version is

Mab,σ(x) =nref n̂0σ(x0)ca+b
ref v̂

a+b
Tσ (x0)

ρref

Lref

{
πB̂

b/2
0

∫∫
B̂∗0‖〈F̂1σ(x− r)〉v̂a‖ µ̂b/2dv̂‖dµ̂

− n̂pσ

T̂0σ

T̂ (a+b)/2
pσ

[
Υ(a) + βref

T̂0σ

B̂2
0

ĵ0‖

q̂σv̂Tσ
Υ(a+ 1)

](
(b/2)! q̂σφ̂1(x)

−
(
B̂0

T̂pσ

) b
2

+1∫ (
q̂σ〈 ˆ̄φ1(x− r)〉+ T̂0σ(x0)µ̂〈 ˆ̄B1‖(x− r)〉

)
e
− µ̂B̂0
T̂pσ µ̂b/2dµ̂

)}
.

(2.73)

2.4 The gyrokinetic field equations

As pointed out earlier, the fluctuating fractions of the potentials and fields φ1, A1‖, and
B‖1 appearing in the Vlasov equation are calculated self-consistently using the corre-
sponding Maxwell equations.

2.4.1 The Poisson equation

The perturbed electrostatic potential is linked to the perturbed charge density by means
of the Poisson equation

−∇2φ1(x) = 4π
∑
σ

n1σ(x)qσ (2.74)

where σ is running over all species and n1σ denotes the density perturbation of the σth
species which is the (0, 0)-velocity space moment of the distribution function f1σ(x,v)
in particle coordinates

n1σ(x) =
∫
f1σ(x,v)d3v (2.75)

= M00,σ(x). (2.76)

Using the expression for M00(x) which has been derived in Eq. (2.71) and neglecting
parallel derivatives of the potential ∇2 ≈ ∇2

⊥ = gxx ∂2

∂x2 + 2gxy ∂
∂x

∂
∂y + gyy ∂2

∂y2
as given by
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the gyrokinetic ordering yields

−∇2
⊥φ1(x) = 4π

∑
σ

(
qσn̄1σ + n0σ

q2
σ

T0σ

[
B0

T0σ

∫
〈φ̄1(x− r)〉 e−

µB0
T0σ dµ− φ1(x)

]
+
n0σqσB0

T 2
0σ

∫
µ〈B̄1‖(x− r)〉 e−

µB0
T0σ dµ

)
(2.77)

where the gyrocenter density,

n̄1σ =
2π
m

∫∫
B∗0‖〈F1σ(x− r)〉dv‖dµ, (2.78)

has been introduced. Moving furthermore all φ1 dependent terms to the left side results
in

− 1
4π
∇2
⊥φ1(x)−

∑
σ

n0σ
q2
σ

T0σ

[
B0

T0σ

∫
〈φ̄1(x− r)〉 e−

µB0
T0σ dµ− φ1(x)

]
=

∑
σ

(
qσn̄1σ +

n0σqσB0

T 2
0σ

∫
µ〈B̄1‖(x− r)〉 e−

µB0
T0σ dµ

)
. (2.79)

Now, based on the left hand side of Eq. (2.79), a Poisson-Operator can be defined

P[φ1] =

{
− 1

4π
∇2
⊥φ1 +

∑
σ

n0σ
q2
σ

T0σ

[
φ1(x)− B0

T0σ

∫
G [G [φ1(x− r)]] e−

µB0
T0σ dµ

]}
(2.80)

which has to be formally inverted in order to solve Poisson’s equation for the electrostatic
potential. Here, G denotes the previously introduced gyroaveraging operator.

Normalized Poisson equation

As for the gyrokinetic Vlasov equation, a dimensionless form can be derived for Poisson’s
equation using the normalization introduced in Sec. 2.2.3{
−∇̂2

⊥λ̂
2
Dφ̂1(x) +

∑
σ

n̂0σ
q̂2
σ

T̂0σ

[
φ̂1(x)− B̂0

T̂pσ

∫
G
[
G
[
φ̂1(x− r)

]]
e
− µ̂B̂0
T̂pσ dµ̂

]}

=
∑
σ

n̂0σ(x0)B̂0q̂σ

(
π

∫∫ B̂∗0‖

B̂0

〈F̂1σ(x− r)〉dv̂‖dµ̂+
n̂pσ

T̂ 2
pσ

∫
µ̂〈 ˆ̄B1‖(x− r)〉 e−

µ̂B̂0
T̂pσ dµ̂

)
(2.81)

where remaining reference quantities in the ∇̂2
⊥ prefactor have been combined to

λ̂D = λD/ρref =

√
Tref

4πρ2
refnrefe2

=

√
B2

ref

4πnrefmrefc2
(2.82)

which can be identified as the normalized Debye length.
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Adiabatic electrons

In the limit of weightless electrons, me/mi → 0, the thermal velocity of the electrons is
much larger than the ion counterpart, vTe/vT i ∝

√
mi/me → ∞, so that fluctuations

of the electrostatic potential along the magnetic field lines are almost instantaneously
balanced by the electrons. This implies the short-circuiting of a whole flux surface if the
latter can be spanned by a single field line. Thus, a modified adiabaticity relation

n1e

n0e
=

e

T0e
(φ1 − 〈φ1〉FS) (2.83)

is established to link the perturbed electron density and the electrostatic potential.
Here, 〈· · ·〉FS denotes flux surface averaging [35] which must not be confused with a
simple surface average but is defined for an arbitrary function f(x) as

〈f〉FS(x) =
∂

∂V

∫
V
f(x)dV ′

=
∫∫

f(x)J(x)dydz
/∫∫

J(x)dydz. (2.84)

Furthermore, advantage is taken of the approximately vanishing electron gyroradius,
ρe/ρi ∝

√
me/mi → 0 to replace corresponding gyroaverages by the gyrocenter values

and therefore identifying the perturbed electron density with the (0, 0) velocity space
moment of F1e

n1e = n̄1e =
2π
me

∫∫
B∗0‖F1e(x)dv‖dµ =

n0ee

T0e
(φ1 − 〈φ1〉FS). (2.85)

This relation motivates to not explicitly advance the electron distribution function thus
saving a significant amount of computational effort and is moreover used to simplify the
Poisson equation, Eq. (2.77), to

0 =
∑
σ 6=e

(
qσn̄1σ + n0σ

q2
σ

T0σ

[
B0

T0σ

∫
〈φ̄1(x− r)〉 e−

µB0
T0σ dµ− φ1(x)

])

+
n0ee

2

T0e
(〈φ1〉FS − φ1(x)) . (2.86)

Here, the left hand side has been neglected in agreement with the long wavelength
approximation which has been introduced by assuming a negligible electron gyroradius.
In addition, magnetic fields have not been considered. Switching to an operator notation,
the Poisson equation in case of adiabatic electrons becomes

P̂ae[φ̂1] = π
∑
σ 6=e

n̂0σ(x0)q̂σ
∫∫

B̂∗0‖〈F̂1σ(x− r)〉dv̂‖dµ̂+
n̂0e

T̂0e

〈φ̂1〉FS
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2.4 The gyrokinetic field equations

with the normalized Poisson-operator for adiabatic electrons

P̂ae[φ̂1] ≡
 n̂0e

T̂0e

φ̂1(x) +
∑
σ 6=e

n̂0σ
q̂2
σ

T̂0σ

[
φ̂1(x)− B̂0

T̂pσ

∫
G
[
G
[
φ̂1(x− r)

]]
e
− µ̂B̂0
T̂pσ dµ̂

]
(2.87)

The flux surface averaged potential is obtained by flux surface averaging the whole quasi-
neutrality equation, Eq. (2.86), thus erasing the electron contribution. In addition, a
separate and independent treatment of operators and potentials is assumed. The final
result is

〈φ̂1〉FS = π
∑
σ 6=e

n̂0σ q̂σ〈P̂ae〉−1
FS

〈∫∫
B̂∗0‖〈F̂1σ(x− r)〉dv̂‖dµ̂

〉
FS

(2.88)

with

〈P̂ae〉FS =
∑
σ 6=e

n̂0σ
q̂2
σ

T̂0σ

[
1− B̂0

T̂pσ

〈∫
GG e

− µ̂B̂0
T̂pσ dµ̂

〉
FS

]
(2.89)

Adiabatic ions

If on the other hand a short-wavelength approximation is applied, all terms containing
averages over the ion gyromotion vanish so that Eq. (2.76) becomes

n1i

n0i
= − qi

T0i
φ1 (2.90)

for ions and consequently the following normalized Poisson equation{
−∇̂2

⊥λ̂
2
Dφ̂1(x) + n̂0i

q̂2
σ

T̂0i

φ̂1(x) +
n̂0e

T̂0e

[
φ̂1(x)− B̂0

T̂pe

∫
G
[
G
[
φ̂1(x− r)

]]
e
− µ̂B̂0
T̂pe dµ̂

]}

= −πn̂0e(x0)e
∫∫

B̂∗0‖〈F̂1e(x− r)〉dv̂‖dµ̂
(2.91)

can be set up for the present limiting case.

2.4.2 Ampère’s law

Using the Coulomb gauge ∇ · A = 0, Ampère’s law can be expressed by terms of the
magnetic potential as

∇×B = ∇× (∇×A) = −∇2A =
4π
c

j +
1
c

∂E
∂t
. (2.92)
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Chapter 2 An introduction to and an application of gyrokinetic theory

In the absence of equilibrium electric fields it turns into

−∇2
⊥A1‖ =

4π
c
j1‖. (2.93)

for the perturbed parallel component using the same approximations provided by the gy-
rokinetic ordering as, for instance, in the derivation of Poisson’s equation. The emerging
perturbed parallel current density can be expressed by the (1, 0) velocity space moment
of the distribution function. With the help of Eq. (2.73) one arrives at

−∇2
⊥A1‖ =

4π
c

∑
σ

qσM10,σ(x)

=
4π
c

∑
σ

qσnref n̂0σ(x0)cref v̂Tσ(x0)
ρref

Lref

{
π

∫∫
B̂∗0‖〈F̂1σ(x− r)〉v̂‖dv̂‖dµ̂

− βref

2
n̂pσ ĵ0‖

q̂σB̂2
0 v̂Tσ(x0)

[
q̂σφ̂1(x)− B̂0

T̂pσ

∫ (
q̂σ〈 ˆ̄φ1(x− r)〉

+T̂0σ(x0)µ̂〈 ˆ̄B1‖(x− r)〉
)

e
− µ̂B̂0
T̂pσ dµ̂

]}
(2.94)

which turns into

−∇̂2
⊥Â1‖ =

∑
σ

{
βref

2
q̂σn̂0σ(x0)v̂Tσ(x0)π

∫∫
B̂∗0‖〈F̂1σ(x− r)〉v̂‖dv̂‖dµ̂

− β2
ref

4
n̂0σ ĵ0‖

B̂2
0

[
q̂σφ̂1(x)− B̂0

T̂pσ

∫ (
q̂σ〈 ˆ̄φ1(x− r)〉

+T̂0σ(x0)µ̂〈 ˆ̄B1‖(x− r)〉
)

e
− µ̂B̂0
T̂pσ dµ̂

]}
(2.95)

when normalizing the remaining terms.
If F1σ is furthermore replaced by the dimensionless version of Eq. (2.50)

F̂1σ = ĝ1σ +
q̂σ√

2m̂σT̂0σ(x0)

∂F̂0σ

∂v̂‖

ˆ̄A1‖ (2.96)

one arrives at the following normalized equation{
−∇̂2

⊥Â1‖ +
βref

2

∑
σ

n̂0σ q̂
2
σ

m̂σT̂pσ
B̂0

∫
〈 ˆ̄A1‖(x− r)〉 e−

µ̂B̂0
T̂pσ dµ̂

}

=
∑
σ

{
βref

2
q̂σn̂0σ(x0)v̂Tσ(x0)π

∫∫
B̂∗0‖〈ĝ1σ(x− r)〉v̂‖dv̂‖dµ̂

− β2
ref

4
n̂0σ ĵ0‖

B̂2
0

[
q̂σφ̂1(x)− B̂0

T̂pσ

∫ (
q̂σ〈 ˆ̄φ1(x− r)〉

+T̂0σ(x0)µ̂〈 ˆ̄B1‖(x− r)〉
)

e
− µ̂B̂0
T̂pσ dµ̂

]}
. (2.97)
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However, depending on the chosen numerical scheme, solving Eq. (2.97) for Â1‖ in the
presented form might be affected by the so-called Ampère cancellation problem which
stems from different treatments of the v‖ integration. While an analytical integration
in this direction can and has been performed on the left hand side, one is forced to
evaluate the right hand side numerically. Therefore, it has been proven advantageous
to even use a numerical v‖ integration in the computation of M̂10 in order to avoid
numerical inconsistencies.

Finally, the gyrokinetic field equations shall now be completed by considering the
perpendicular component of Ampère’s law,

(∇×B1)⊥ =
4π
c

j1⊥, (2.98)

in order to obtain an equation for the parallel magnetic field B1‖. Neglecting once again
the parallel derivatives and replacing j1⊥ by the corresponding vector moment yields

∂ȳB1‖ê1 − ∂x̄B1‖ê2 =
4π
c

∑
σ

qσ

∫
δ(X + r− x)v⊥c(θ)T ∗F1σd3Xd3v (2.99)

in the local Cartesian coordinate system (ê1, ê2, b̂0) with the coordinates (x̄, ȳ, z̄). By
considering c(θ) = (− sin θê1 + cos θê2), one obtains(

∂ȳB1‖
−∂x̄B1‖

)
=

4π2

c

∑
σ

qσ

(
2B0

mσ

)3
2

{∫ B∗0‖

B0
〈(− sin θê1 + cos θê2)F1σ(x−r)〉√µdv‖dµ

+
qσ
T0σ

∫
〈(− sin θê1 + cos θê2) φ̄1(x−r)〉F0σ

√
µdv‖dµ

+
1
T0σ

∫
〈(− sin θê1 + cos θê2) B̄1‖(x− r)〉F0σµ

3/2dv‖dµ
}
.

(2.100)

Obviously, the field equation for B1‖ involves some more complicated operations com-
pared to the Poisson equation and the parallel component of Ampère’s law. Two vector
components appear in Eq. (2.100), and all θ integrations include additional sin θ or cos θ
terms so that they cannot be expressed by G. In order to avoid the corresponding def-
inition of several new operators at this point, a further discussion is postponed to the
next chapter.

2.5 Collisions

Up to now, the basic features of fusion plasmas, in particular their high temperatures
but low densities, have been used to establish a kinetic description by means of the
Vlasov equation which evolves a distribution function considering just indirect particle
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Chapter 2 An introduction to and an application of gyrokinetic theory

interactions through collectively generated fields. For the application to some plasma
discharges, however, direct particle interactions, to lowest order binary collisions, may
constitute a weak but still important ingredient. In these cases, an additional collision
operator, here C(Fσ, Fσ′), is constructed and attached to the right hand side of the
Vlasov equation,

∂Fσ
∂t

+ Ẋ · ∇Fσ + µ̇
∂Fσ
∂µ

+ v̇‖
∂Fσ
∂v‖

=
∑
σ′

C(Fσ, Fσ′). (2.101)

However, in this work, collisions are rarely addressed and are not yet considered in the
extensive code modification which will be discussed in the next chapter. Hence, the
reader is invited to consult a recent publication [36] where one possible model, namely
a Landau-Boltzmann collision operator,

C(Fσ, Fσ′) =
∂

∂v
·
(←→
D · ∂

∂v
−R

)
Fσ (2.102)

is linearized and treated in a consistent way with the approximations used above. Here,←→
D denotes a diffusion tensor

←→
D =

2πq2
σ q

2
σ′

m2
σ

ln Λc
∂2

∂v∂v

∫
Fσ′
∣∣v − v′

∣∣d3v′ (2.103)

with the Coulomb logarithm ln Λc, see e.g. Ref. [21], and

R =
4πq2

σ q
2
σ′

mσ mσ′
ln Λc

∂

∂v

∫
Fσ′

|v − v′|d
3v′ (2.104)

is the dynamical friction.

2.6 Chapter summary

In this chapter, the reader has been introduced to the gyrokinetic theory which forms the
underlying theoretical framework for the remainder of this thesis. While the first part
has been a review of the general derivation, specific assumptions which are employed
for the implementation of the plasma microturbulence code Gene have been presented
in the second. In contrast to previous works describing earlier versions of this code,
special attention has been paid on keeping the possibility of radially varying temperature
and density profiles. Furthermore, a slightly enhanced phase space Jacobian has been
considered. In the next chapter, a detailed description of the implementation of these
equations into the Gene code will be given.
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Chapter 3

Upgrading GENE to a nonlocal code

On the basis of the gyrokinetic equations derived in the previous chapter, the reader will
now be introduced to the main tool used in this work - the Gene (Gyrokinetic Electro-
magnetic Numerical Experiment) code. Initially developed by F. Jenko [37], the program
has been maintained and extended at the Max-Planck-Institut für Plasmaphysik and the
Garching Computing Centre for about a decade. Some of the most important mile stones
along this way are reported in [38, 14, 39, 40, 36, 41]. Since 2007, regular public releases
have been distributed [42], and since 2008, several cooperations with other institutes
have been launched for future software development and application. The full software
suite comes along with a powerful post-processing tool which has been substantially ex-
tended in the course of this work.

This chapter is organized as follows. First, two different concepts, i.e. the local and
global approaches, are discussed. While the former has been employed within Gene

from the very beginning, the implementation of the latter constitutes an essential part
of this thesis. Due to its profound and complex nature, this task been performed in a
joint effort with collaborators from CRPP, Lausanne. Contributions being implemented
without any involvement of the author of this thesis will be indicated.

The second section details the employed geometries. On the basis of the thereby
defined transformation to curvilinear coordinates, an introduction to the basic concept
of a flux tube and the associated boundary conditions can be given in local and global
fashion. In a next step, a discussion of the implementation of operators mentioned in
the previous chapter, e.g. the gyroaverage operator, follows. Before concluding with the
definitions of observables and sources and sinks terms employed in subsequent chapters,
further numerical schemes relevant for Gene are presented.

Naturally, the sections of this chapter dealing with the local code version are partially
based on previous publications, e.g. on Refs. [14, 36, 41]. However, Gene modifications
to include global effects are published within this work for the first time.
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Chapter 3 Upgrading GENE to a nonlocal code

3.1 Local vs. global simulations

Traditionally, two alternative concepts are used when implementing the gyrokinetic equa-
tions with appropriate boundary conditions.

If the perpendicular turbulence scale (on the order of the ion gyroradius) is much
smaller than the characteristical system sizes, as can be approximately assumed for the
larger present day devices JET, DIII-D, ASDEX-Upgrade, etc. and definitely for fu-
ture devices like ITER, a so-called local approach can be taken. Here, all profiles are
evaluated just at a single position so that e.g. temperatures and densities are constant
throughout the whole simulation domain. However, as can be justified in a multiscale
approach, first order derivatives explicitly appearing in Eq. (2.60) are kept as well in
order to establish e.g. the linear gradient driving terms. Furthermore, periodic bound-
ary conditions are then used for both perpendicular directions, x and y. This approach
is justified if the corresponding simulation box lengths are chosen to be larger than the
correlation lengths and thus a negligible artificial influence originating from the bound-
ary conditions on the turbulent system can be safely assumed. In addition, periodic
boundary conditions automatically keep the (average) background gradients fixed and
facilitate the application of spectral techniques in the x and y directions. The latter, in
turn, allow for a simple and very accurate computation of corresponding derivatives and
operators in the gyrokinetic Vlasov-Maxwell system of equations as will be shown later.

The alternative nonlocal or global approach has to be chosen if equilibrium quantities
significantly vary within the simulation domain. Naturally, periodic boundary conditions
cannot be applied - at least in the radial direction. The y direction is not affected since
temperature and density, for instance, are constant on flux surfaces. Hence, a spectral
method can still be taken for the latter but the former has to be discretized on a real
space grid.

Concluding, the global approach is physically more comprehensive but numerically
more demanding and potentially less accurate when treating e.g. radial derivatives.
Hence, the local one is often the first choice for investigations of turbulent systems with
ρref/Lref � 1 where the normalization length Lref is of the order of R, a, LT , or Ln.

3.2 Geometry

Before a more detailed description e.g. of the boundary conditions can be given for both
approaches, some light shall be shed on which geometries and coordinates are actually
considered. As mentioned in Chapter 2, a field aligned coordinate system should be
employed in order to reduce the computational effort. Furthermore, the magnetic field
has been represented as B0 = C ∇x×∇y. In the following, examples will be given how
the coordinates x and y are constructed based on an equilibrium magnetic field B0 either
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3.2 Geometry

given by analytical solutions of the Grad-Shafranov equation or by numerical results of
MHD codes.

3.2.1 Axisymmetric systems

For magnetic tokamak core equilibria where ripples arising from non-ideal coil geometries
are negligible, an axisymmetric geometry can be considered. Here, the magnetic field can
be written in terms of a “flux surface label” %, defined by B0 ·∇% = 0 and two angle-like
coordinates ϑ and ϕ as illustrated in Fig. 3.1. Hence, the helical winding of a magnetic

xc

yc

zc

ϑ

̺

ϕ

Figure 3.1: Definition of the flux surface label % and the two angles ϑ and ϕ in general toroidal
geometry. The grid lines do not represent field lines, but lines of constant ϑ and ϕ.

field on a flux surface around a torus can be expressed by B0 = Bϑ
0 êϑ+Bϕ

0 êϕ. However,
a more suitable set of coordinates is chosen such that the magnetic field lines are straight.
As shown in [35] a transformation of one of the angle coordinates is sufficient to achieve
this property. In tokamaks, it is often the symmetry angle ϕ (measuring rotation about
the major axis) which is retained and hence ϑ is replaced by a new angle ζ. The latter
is then required to fulfill the relation

dϕ
dζ

=
Bϕ

0

Bζ
0

=
B0 · ∇ϕ
B0 · ∇ζ = q(%) (3.1)
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where q denotes the safety factor defined by

q =
dΨt

dΨp
=

Ψ′t
Ψ′p

(3.2)

∼number of toroidal magnetic field line turns
poloidal turn

with the toroidal and poloidal magnetic fluxes, Ψt = 1/(2π)
∫∫∫

V B0 · ∇ϕdV and
Ψp = 1/(2π)

∫∫∫
V B0 · ∇ϑ dV , and their derivatives Ψ′t and Ψ′p with respect to the flux

surface label %. Employing a field line label

ν(%, ζ, ϕ) =
Ψ′p
2π

(q(%)ζ − ϕ) ≡ Ψ′p
2π

ν̂ (3.3)

allows to represent the magnetic field as

B0 =∇%×∇ν (3.4)

which can be further transformed into

B0 =∇%×
(

1
2π

[
Ψ
′′
p ν̂∇%+ Ψ′p∇ν̂

])
=

Ψ′p
2π
∇%×∇ν̂ (3.5)

if ν̂ is used instead of ν, or into

B0 =∇Ψ×∇ν̂ (3.6)

if % = Ψp/2π ≡ Ψ is chosen as is often done for tokamaks.
Finally, a mapping to flux tube coordinates (x, y, z) has to be considered. Since both

perpendicular directions, x and y, shall be given in units of lengths to be consistent with
Chapter 2 whereas the parallel direction z is kept dimensionless, a general transformation
appears to be

x = Cx(%) y = Cy(%) ν̂ z = ζ (3.7)

with the flux function Cx(%) converting the flux surface label % to the radial flux tube
coordinate x and similarly Cy(%) for the ν̂ to y transformation. Hence, the corresponding
gradients are

∇x =C ′x∇%, (3.8)

∇y =C ′y ν̂∇%+ Cy∇ν̂, (3.9)

∇z =∇ζ, (3.10)
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and thus Eq. (3.5) can be rewritten as

B0 =
Ψ′p
2π
∇%×

(
1
Cy

[∇y − C ′y ν̂∇%])
=

Ψ′p
2πC ′xCy

∇x×∇y (3.11)

By comparing with Eq. (2.37) it becomes evident that

C ≡ Ψ′p
2πC ′xCy

. (3.12)

Circular and ŝ− α model

Besides a very simple slab geometry, two models, namely an ad-hoc circular, concentric
model and a shifted circle (ŝ − α) model, are available within Gene and used in most
of the simulations shown later. Triggered by several benchmarking efforts [43, 44], the
latter has become a standard scheme being employed in many local codes although being
slightly inconsistent. The former, on the other hand, is self-consistently derived but does
not consider Shafranov shifts in its current version. It has recently been implemented
by X. Lapillonne et al. [27] and is of special relevance for the global code since it allows
for the desired consideration of radial dependencies.

Thus, the main steps of the derivation shall briefly be mentioned. Assuming a known
safety factor profile q(r) and a magnetic field

B0 = Bref

[
R0

R
êϕ +

r

R

1
q(r)
√

1− ε2
êϑ

]
(3.13)

with circular, concentric flux surfaces so that the flux label % can be identified with their
radii r, the straight field line angle becomes

ζ = ζ(r, ϑ) = 2 arctan

[√
1− ε
1 + ε

tan
(
ϑ

2

)]
. (3.14)

As illustrated in Fig. 3.2, R0 denotes the major radius (radius of magnetic axis), r
the radius of a flux surface, ε = r/R0 the corresponding inverse aspect ratio and
R = R0 + r cosϑ.

The flux coordinates are u1 = x = r, u3 = z = ζ, and u2 = y = r0/q0(qζ−ϕ) where r0

is the radius of a reference flux surface and q0 = q(r0). With these choices, the desired
metric coefficients can be constructed by means of

gij =
∂ui

∂vk
gklTorus

∂uj

∂vl
(3.15)
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xc

yc

zc

a

R

R0

ϑ
r

ϕ

Figure 3.2: Illustration of a circular, concentric toroidal geometry. Here, R0 denotes the major
radius (radius of magnetic axis), r the radius of a flux surface (blue), R = R0 + r cosϑ, and a

the radius of the last closed flux surface (red).

where

(
gijTorus

)
=

 1 0 0
0 r−2 0
0 0 R−2

 (3.16)

is the metric transforming a Cartesian coordinate system (xc, yc, zc) to torus coordinates
v(1,2,3) = (r, ϑ, ϕ). The final result is

g =


1 r0

q0

∂(qζ)
∂r

∂ζ
∂r

r0
q0
ζ ∂(qζ)

∂r
r20
q20

[(
∂(qζ)
∂r

)2
+ 1

R2 + q2
(

1
r
∂ζ
∂ϑ

)2
]

r0
q0

[
∂(qζ)
∂r

∂ζ
∂r + q

(
1
r
∂ζ
∂ϑ

)2
]

∂ζ
∂r

r0
q0

[
∂(qζ)
∂r

∂ζ
∂r + q

(
1
r
∂ζ
∂ϑ

)2
] (

∂ζ
∂r

)2
+
(

1
r
∂ζ
∂ϑ

)2

 (3.17)

with

∂ζ

∂ϑ
=
√

1− ε2
R0

R
=
q̄

q

R0

R
, (3.18)

∂(qζ)
∂r

=ζ
∂q

∂r
+ q

∂ζ

∂r
= ζ

∂q

∂r
− q q

2

q̄2

sin ζ
R0

, (3.19)

and the abbreviation q̄ = q
√

1− ε2. In case of large aspect ratios, a/R � 1, an ap-
proximation to first order in ε = r/R ≤ a/R, as derived in Ref. [27], can be employed.
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Slightly generalizing the expressions presented in this reference by retaining the full
radial dependence yields

gxx =1,

gxy =gyx = ŝz − q

q0
ε0 sin z,

gxz =gzx = −εsin z
r
,

gyy = (ŝz)2 − 2
q

q0
ε0ŝz sin z +

q2

q2
0

r2
0

r2
(1− 2ε cosϑ) ,

gyz =gzy =
1
r0

[
−ŝzε0 sin z +

q

q0

r2
0

r2
(1− 2ε cosϑ)

]
,

gzz =
1
r2

(1− 2ε cosϑ) , (3.20)

where ε0 = r0/R0 denotes the inverse aspect ratio of the reference flux surface and
cosϑ = (cos z − ε)/(1 − ε cos z). Employing furthermore the limit ε → 0, and hence
ε0 → 0, finally gives the ŝ−α model without Shafranov shift. Including the latter yields
in local approximation and normalized fashion

ĝŝ−α =

 1 ŝẑ − α sin ẑ 0
ŝẑ − α sin ẑ 1 + (ŝẑ − α sin ẑ)2 Lref/r0

0 Lref/r0 L2
ref/r

2
0

 (3.21)

with α = q20R0

Lref
βref

∑
σ n̂0σT̂0σ (ω̂Tσ + ω̂nσ). Although Eq. (3.21) represents one of the

simplest descriptions of a toroidal geometry and is thus quite often used, it suffers from
a severe defect. In order to take into account trapped electron effects, ε0 terms have to
be kept in the representation of the magnetic field, B̂0 = 1/(1 + ε0 cos ẑ). Hence, the
normalized Jacobian Ĵ = 1/B̂0 becomes inconsistent with the determinant |gŝ−α| which
is equal to zero.

3.2.2 Arbitrary geometries

Apart from simple (semi-)analytic model geometries, arbitrarily shaped MHD equilibria
can be considered by employing either the Chease [45, 27] or the Tracer [26] inter-
faces. The latter, for instance, uses a field line tracing algorithm applied to numerically
determined magnetic configurations to compute the desired coordinate system. An ex-
ample which has been dealing successfully with the complicated geometry of the future
stellarator experiment W7-X, and where the author of this thesis has been involved, is
shown in Ref. [46].
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3.3 Flux tube approach and boundary conditions

The flute like character of plasma microturbulence, already considered in the gyrokinetic
ordering, furthermore allows for an optimization of the simulation volume with respect
to computational costs and coverage of the main physical effects. In particular, it is quite
common to choose a simulation box which covers only a fraction of the flux surface in
the y direction rather than the whole flux surface. In addition, only an integer number
of poloidal turns is taken into account in order to capture variations on a flux surface.
For example, in tokamaks with negligible toroidal ripples, it is sufficient to consider just
one poloidal turn due to the axisymmetry. The boundary conditions which are directly
connected with this kind of concept, known as flux tube approach [47, 48, 49, 50], will
be discussed in the following.

3.3.1 Radial boundary condition

As mentioned earlier, periodic boundary conditions,

F (x, y, z) = F (x+ Lx, y, z), (3.22)

are employed in the local code which allow for using the Fourier back and forth trans-
formations

F (kx, y, z) =
1
Lx

∫ Lx

0
dx e−ikxx F (x, y, z) and F (x, y, z) =

∑
kx

eikxx F (kx, y, z) (3.23)

with the discrete Fourier mode numbers kx = i · 2π/Lx, i being an integer. This choice,
however, is only justifiable if the simulation domain can be restricted in the radial
direction without influencing the turbulent system as well. The resulting simulation box
is then a very thin but long tube which gets distorted and tilted when following the
center field line.

Of course, such assumptions are not applicable in global computations since radial and
in general non-periodic variations of equilibrium quantities shall be kept. Here, it is, e.g.,
reasonable to implement Dirichlet or von-Neumann boundary conditions if turbulent
fluctuations are expected to decrease towards the radial boundaries. In this thesis, the
first option has been used in gyroaveraging procedures and in radial derivatives.

3.3.2 Boundary condition in y direction

In the y direction, often called binormal (referring to the orthogonal vectors (êx, êy, êz)
at outboard midplane) or toroidal (with respect to the alignment of the corresponding
covariant basis vector êy) direction, periodic boundary conditions are taken in the local

40



3.3 Flux tube approach and boundary conditions

as well as the global code. However, a full flux surface, i.e. ν̂ = [0, 2π), is only covered
in special cases. Instead, an integer fraction

∆ν̂ =
2π
n0

(3.24)

is chosen as suggested by the flux tube concept. As pointed out in Ref. [51], such an
approach leads to a thinning out of mode numbers in y direction as becomes obvious if
a Fourier transformation

F (x, ky, z) =
1
Ly

∫ Ly

0
dy e−ikyy F (x, y, z) (3.25)

is applied. Here, Ly = Cy∆ν̂ and hence the discrete mode number spectrum is given by
ky = kmin

y · j with kmin
y = 2π/Ly = n0/Cy and j being integer-valued. Thus, increasing

the toroidal mode number n0 similarly increases kmin
y or - if kmin

y shall be kept constant
- the possible j values are restricted to j = n0 · l with l = 0, 1, 2, . . ..

3.3.3 Parallel boundary condition

The parallel (z) boundary condition is the most delicate one. Following a magnetic field
line in an axisymmetric equilibrium for an integer number of poloidal turns yields similar
physical situations at both ends. However, for irrational q they do not match due to the
interplay of straight field line angle ζ ≈ ϑ and field line label ν. For radially varying
safety factors the situation becomes even worse due to a tilting of the simulation box.

Hence, the ν variation has to be included to compensate for these effects. In angle-like
coordinates in the relevant directions the parallel boundary condition then reads

F (x, ν̂, ζ + 2π) = F (x, ν̂ − 2πq, ζ) (3.26)

Now, transforming to flux tube coordinates yields

F (x, y, z + Lz) = F (x, y − 2πqCy, z) (3.27)

or, alternatively using a Fourier representation in y,

F (x, ky, z + Lz) = F (x, ky, z) exp (−2πiqkyCy). (3.28)

Further replacing ky as before by ky = j · kmin
y = j · n0/Cy eliminates the Cy function so

that the parallel boundary condition becomes

F (x, ky, z + Lz) = F (x, ky, z) exp (−2πin0q(x)j). (3.29)
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Chapter 3 Upgrading GENE to a nonlocal code

The local limit

In the local code, q(x) is Taylor-expanded up to first order in x about the central flux
surface here denoted by r0

q(x) ≈ q0 +
dq
dx

∣∣∣∣
r0

(x− r0).

If furthermore a dimensionless magnetic shear parameter

ŝ =
r0

q0

dq
dx

∣∣∣∣
r0

(3.30)

is introduced, one arrives at

q(x) ≈ q0

(
1 + ŝ

x− r0

r0

)
. (3.31)

Hence, the parallel boundary condition as derived in Eq. (3.29) becomes

F (x, ky, z + Lz) =F (x, ky, z) exp [−2πin0q0j] exp [−2πikyCyq0ŝ(x− r0)/r0], (3.32)

where n0 has again been replaced by kyCy in the last factor. Usually, advantage is now
taken of the freedom of choice for ρref/a in the local code (arbitrarily small flux tube in
perpendicular direction) to assume n0q0 to be integer-valued and Cy = r0/q0. Hence, the
first exponential function in Eq. (3.32) evaluates to one. Finally, a Fourier representation
in x reads as follows

F (kx, ky, z + Lz) =F (k′x, ky, z) exp [2πiky ŝr0]. (3.33)

with k′x = kx + 2πŝky so that kx and ky become coupled. This interference impresses a
constraint on the box sizes since the discreteness of wave numbers demands

k′x = kmin
x · l = kmin

x · i+ 2πŝkmin
y · j, l, i, j ∈ Z (3.34)

which can only be fulfilled if

N =
2πŝkmin

y

kmin
x

= ŝkmin
y Lx, N ∈ Z. (3.35)

Eq. (3.33) may hence be written as

F (kx, ky, z + Lz) =F (k′x, ky, z) exp [2πijN (Lx/2)/Lx]

=F (k′x, ky, z)(−1)N j (3.36)

with k′x = kmin
x · (i+N j) and r0 = Lx/2.
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3.4 The gyroaverage operator

3.4 The gyroaverage operator

Several basic equations contain gyroaveraged quantities, e.g.

〈F1(x− r)〉 = G [F1(x− r)] (3.37)

where r = r(θ) is the radial vector orthogonally aligned to the magnetic field and
G = 1

2π

∫ 2π
0 dθ denotes the previously defined gyroaverage operator. In this section, the

global as well as local representation shall be derived.

3.4.1 Global representation

The following derivation of the gyroaverage operator and a first implementation trace
back to T. Dannert. However, significant extensions as, for instance, the crucial imple-
mentation of radially varying metrics have been done in the course of this work.

As mentioned in Sec. 3.3.2, both local as well as global representations use periodic
boundary conditions in the y direction which allows for switching to a Fourier represen-
tation. Hence, Eq. (3.37) can be written as

〈F1(x− r)〉 =
1

2π

∑
ky

∫ 2π

0
F1(x− r1, ky, z) eiky(y−r2) dθ. (3.38)

Although x and y are coordinates perpendicular to the magnetic field, they are in general
non-orthogonal which has to be considered when describing the circular gyro motion.
Hence, the obvious choice of r(θ) = ρ (cos θ êx̄ + sin θ êȳ) in a local, Cartesian coordinate
system (x̄, ȳ, z̄) with êz̄ = b̂ has to be transformed to flux tube coordinates. Choosing
without loss of generality the local radial axis to point along the radial flux coordinate
êx̄ = ∇x/ |∇x| = ∇x/

√
g11 and thus

êȳ =êz̄ × êx̄ = b̂× ∇x√
g11

=
∇x×∇y√

γ1
× ∇x√

g11

=
1√
γ1

(
∇y
√
g11 −∇x g12√

g11

)
(3.39)

yields as flux tube components

r1 =r · ∇x =
√
g11(x, z)ρσ(x, z, µ) cos θ (3.40)

and

r2 =r · ∇y = (g12(x, z)ρσ(x, z, µ) cos θ +
√
γ1(x, z)ρσ(x, z, µ) sin θ)/

√
g11(x, z). (3.41)
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Here, all equilibrium quantities, in particular metric coefficients but also the magnetic

field hidden in ρσ(x, z, µ) =
√

2µB0/mσ/Ωσ =
√

2µ̂m̂σT̂0σ(x0)/(q̂2
σB̂0(x, z))ρref are ex-

panded to zeroth order, i.e. evaluated just at the center position x since variations on
the gyroradius scale are assumed to be negligible. However, this approximation might
be problematic close to the magnetic axis or edge where geometry related quantities
strongly vary. An alternative gyroaveraging scheme avoiding any approximation in the
metric is therefore currently under investigation and will be implemented soon [52].

Besides this issue, another problem arises due to the numerical representation of the
radial direction which will be addressed now. Since a continuous representation is natu-
rally not available, a discretization on a grid, e.g. x(i) with the index i = 0, .., Nx − 1 is
used instead. Here, the index should not be confused with a covariant vector element,
and Nx represents the number of radial grid points. Depending on the actual size of the
gyroradius and the number of grid points along a gyrocircle, a resolution being much
higher than the one required to capture the physical effects under investigation would
be necessary just for this operation. A possible remedy is to perform an interpolation
before the calculation of gyroaverages. Here, finite elements have been proven to be a
reasonable choice [53]. Thus, the function to be gyroaveraged is now rewritten in terms
of finite-element base functions Λn(x)

F1(x) =
∑
n

Λn(x)F1(x(n)) (3.42)

where F1(x(n)), the value of F1 on the coarse-grained grid at position x(n), is used as the
weight of the nth base function. Alternatively, the vectors Λ = (Λ0, . . . ,ΛNx−1)T and
F1 = (F1(x(0)), . . . , F1(x(Nx−1)))T can be defined to transform Eq. (3.42) into

F1(x) = F1 ·Λ(x). (3.43)

Applying this modification to Eq. (3.38) yields

〈F1(x(i) − r)〉 =
1

2π

∑
ky ,n

F1(x(n), ky, z) eikyy

∫ 2π

0
Λn(x(i) − r1) e−ikyr2 dθ (3.44)

or, in terms of a matrix-vector multiplication,

〈F1(x− r)〉 =
∑
ky

eikyy G(x, ky, z, µ) · F1(x, ky, z). (3.45)

where the gyroaverage operator is understood as a matrix with elements

Gin(x, ky, z, µ) =
1

2π

∫ 2π

0
Λn(x(i) − r1) e−ikyr2 dθ

=
1
π

∫ π

0
Λn(x(i) −

√
g11ρ cos θ) e

−i g21√
g11

kyρ cos θ ·

cos
(√

γ1

g11
kyρ sin θ

)
dθ. (3.46)
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Here, the metric terms are of course still functions of x and z and the gyroradius is
ρ = ρσ(x, z, µ). However, those additional dependencies have been dropped here for
reasons of readability.

As will be shown in the course of the next paragraph, gyroaverages of quantities
evaluated at x = X + r, for instance

〈φ1(X + r)〉 =
∑
ky

eikyY G(X, ky, z, µ) · φ1(X, ky, z), (3.47)

can be expressed similarly employing an identical gyroaveraging matrix. Here, φ1 is
analogously meant to be a vector containing the values on the coarse grid.

Consecutive gyroaverages

The gyrokinetic field equations, Eqs. (2.81) and (2.97) contain terms with consecutive
gyroaverages which shall be investigated separately here:

〈φ̄1(x− r)〉 =G [G [φ1(x− r)]]

=
1

4π2

2π∫
0

dθ
∫

d3Xδ(X + r(θ)− x)

2π∫
0

dθ′φ1(X + r(θ′)). (3.48)

The consideration of the discretization in the radial direction and of a Fourier represen-
tation in the y direction together with the evaluation of the δ function yields

〈φ̄1(x− r)〉 =
∑
ky

1
4π2

2π∫
0

dθ

2π∫
0

dθ′φ1(x(i) − r1(θ) + r1(θ′), ky) eiky(y−r2(θ)+r2(θ′)) . (3.49)

Now, the previously mentioned interpolation using the base functions Λ(x) is applied to
φ(x) in order to allow for high accuracy (θ,θ′) integrations

〈φ̄1(x− r)〉 =
∑
ky ,n

eikyy

4π2

2π∫
0

dθ e−ikyr2(θ)

2π∫
0

dθ′ eikyr2(θ′) Λn(x(i) − r1(θ) + r1(θ′))φ1(x(n), ky).

(3.50)

By inserting r1(θ′) and r2(θ′) from Eqs. (3.40) and (3.41) and treating the θ′ integration
as in Eq. (3.46) one arrives at

〈φ̄1(x− r)〉 =
∑
ky ,n

eikyy

2π2

2π∫
0

dθ e−ikyr2(θ)

π∫
0

dθ′ e
i g21√

g11
kyρ cos θ′

cos
(√

γ1

g11
kyρ sin θ′

)
Λn(x(i) − r1(θ) +

√
g11ρ cos θ′)φ1(x(n), ky). (3.51)
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Substituting θ′ by −θ′′ + π yields

〈φ̄1(x− r)〉 =
∑
ky ,n

eikyy

2π2

2π∫
0

dθ e−ikyr2(θ)

π∫
0

dθ
′′

e
−i g21√

g11
kyρ cos θ

′′

cos
(√

γ1

g11
kyρ sin θ

′′
)

Λn(x(i) − r1(θ)−
√
g11ρ cos θ

′′
)φ1(x(n), ky) (3.52)

where θ
′′

dependent parts can be replaced by the gyromatrix, Eq. (3.46), so that

〈φ̄1(x− r)〉 =
∑
ky ,n

eikyy

2π

2π∫
0

dθ e−ikyr2(θ) Gin(x(i) − r1(θ))φ1(x(n), ky) (3.53)

which confirms Eq. (3.47) in retrospect. Identifying Gin(x(i)− r1(θ)) as a function which
is again interpolated, it is straightforward to show

〈φ̄1(x− r)〉 =
∑
ky

eikyy
∑
m,n

GimGmnφ1(x(n), ky) (3.54)

which can be cast into a matrix multiplication

〈φ̄1(x− r)〉 =
∑
ky

eikyy G2φ1(x, ky) (3.55)

if φ1(x, ky) is again understood as a vector containing the function values on the radial
coarse grid.

Choice of the base functions

In order to avoid further computational effort, the base functions Λn(x) are chosen such
that the coarse grid values can easily be extracted again, which happens if the inter-
polated function coincides with the original values. Furthermore, Λn(x) is considered
to be finite just in the vicinity of the coarse grid points x(n), thus becoming zero when
approaching the next neighboring grid point. Possible alternatives taking into account
several grid points, for instance splines, would require a solution of a linear system of
equations.

The simplest choice in this context are polynomials. Here, additional constraints, in
particular derivative values on the coarse grid, are required if boundary conditions are
only provided for two coarse grid points. Thus, a function f(x) may be described by
polynomials Pn,m of odd degree p,

f(x) =
Nx∑
n=0

(p−1)/2∑
m=0

∂m

∂xm
f(x)

∣∣∣∣
x=x(n)

Pn,m(x), (3.56)
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e.g. using the constraints

∂u

∂xu
Pn,m(x)

∣∣∣∣
x=x(j)

= δjnδum (3.57)

with the indices j = n, (n + 1) and u = 0, . . . , (p − 1)/2. Changing again to a matrix-
vector notation where f contains all function values on the coarse grid, derivatives of mth
order can be formally represented by the mth power of a matrix D. The construction of
the latter then depends on the finite difference scheme actually chosen for the numerical
evaluation of derivatives. In summary, Eq. (3.56) becomes

f(x) =
p∑

m=0

Pm(x)Dmf (3.58)

where Pm = (P0,m, . . . , PNx−1,m)T . By comparison with Fig. 3.43 it is finally possible
to determine the full finite element base function to

Λ(x) =
p∑

m=0

Pm(x)Dm. (3.59)

The first three solutions to lowest degree, p = 1, 3, 5, are plotted in Fig. 3.3 together
with a test function. For most applications, polynomials of degree p = 5 seem to be
sufficient in terms of accuracy and computational effort.

Application to the field equations

Having derived a gyroaverage calculation instruction for a discrete and not necessarily
periodic representation of the radial direction in Sec. 3.4, one can now apply those
findings to the field equations. The matrix representation of the gyroaverage operator
allows for casting the left hand sides of the field equations into matrices, as well. In
order to solve for the desired field they are afterwards inverted. For instance, the Poisson
equation, Eq. (2.81), becomes

φ̂1(x) =P̂−1 · π
∑
σ

n̂0σ(x0)q̂σ
∫∫

B̂∗0‖GF̂1σdv̂‖dµ̂ (3.60)

where the Poisson-matrix is given by

P̂ =

{
−∇̂2

⊥λ̂
2
D +

∑
σ

n̂0σ
q̂2
σ

T̂0σ

[
1− B̂0

T̂pσ

∫
G2 e

− µ̂B̂0
T̂pσ dµ̂

]}
(3.61)

with

∇̂2
⊥ = ĝxxD̂2 + 2iĝxyD̂ k̂y − ĝyy1k̂2

y. (3.62)
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Figure 3.3: Illustration and comparison of the finite element interpolation implemented in Gene

for different polynomial degrees p. On the left side, black dots (a) represent the values of a test
function sin(2πx) (c) on a coarse grid whereas the blue line (b) indicates interpolation results
using the base functions drawn as dotted lines. Since differences between (b) and (c) are hardly
visible, they are explicitly shown on the right side.
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3.4 The gyroaverage operator

Here, D̂ denotes a matrix containing the finite difference stencil for radial derivatives.
The ∇̂2

⊥ matrix is also used in Ampère’s law which can now be written as

Â1‖ =

{
−∇̂2

⊥ +
βref

2

∑
σ

n̂0σ q̂
2
σ

m̂σT̂pσ
B̂0

∫
G2 e

− µ̂B̂0
T̂pσ dµ̂

}−1

·
∑
σ

βref

2
q̂σn̂0σ(x0)v̂Tσ(x0)π

∫∫
B̂∗0‖Gĝ1σv̂‖dv̂‖dµ̂. (3.63)

Note that B1‖ fluctuations are not considered here. This approximation is employed in
most global codes due to the significant additional effort and well justified in the low β

limit, see Ref. [14, 36]. Consistently, all contributions attributed to the second term of
B̂∗0‖, see Eq. (2.62), can be neglected, as well. In fact, most present-day tokamaks can
be treated in this limit. Only spherical tokamaks and some stellarators exhibit β values
where an extended electromagnetic description is required.

3.4.2 The local limit

Using periodic boundary conditions in both perpendicular directions allows for repre-
senting gyroaverages in the following way

〈F1(x− r)〉 =
1

2π

∑
k⊥

∫ 2π

0
F1(k⊥, z) eik⊥(x−r) dθ

=
∑
k⊥

F1(k⊥, z) eik⊥x 1
2π

∫ 2π

0
e−ik⊥r dθ. (3.64)

With |r| = ρ and an appropriately chosen coordinate system, the θ-integration

1
2π

∫ 2π

0
e−ik⊥r dθ =

1
2π

∫ π

0
e−ik⊥ρ cos(θ) dθ +

1
2π

∫ 2π

π
e−ik⊥ρ cos(θ) dθ

=
1

2π

∫ π

0
e−ik⊥ρ cos(θ) dθ +

1
2π

∫ π

0
eik⊥ρ cos(θ′) dθ′

=
1
2
J0(−k⊥ρ) +

1
2
J0(k⊥ρ) = J0(k⊥ρ) (3.65)

can be expressed by the Bessel function Jn(x) = i−n

π

∫ π
0 eix cos θ cos (nθ)dθ in zeroth order.

Hence, the gyroaverage operator is given by the scalar function

G =J0(k⊥ρ) (3.66)

in the local limit. Here, k⊥ =
(
gxxk2

x + 2gxykxky + gyyk2
y

)1/2 in non-orthogonal coordi-
nates, and ρ = ρσ(µ, z).
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Application to the field equations

Again, the results derived above shall be applied to the field equations. Since the gy-
roaverage operator can be written in the local limit as a scalar function, consecutive
averages turn out to be corresponding powers. Hence, the normalized Poisson equation
simply becomes

φ̂1(x) =

∑
σ n̂0σ q̂σ

(
π
∫∫

B̂∗0‖J0(k⊥ρσ)F̂1σdv̂‖dµ̂+ B̂0

∫
J0(k⊥ρσ)µ̂ ˆ̄B1‖ e−µ̂B̂0 dµ̂

)
k̂2
⊥λ̂

2
D +

∑
σ n̂0σ

q̂2σ
T̂0σ

[
1− B̂0

∫
J2

0 (k⊥ρσ) e−µ̂B̂0 dµ̂
] .

(3.67)

Here, all temperature and density profiles have been evaluated at just one reference po-
sition x0 as suggested by the local approximation. Hence, T̂0σ = T̂0σ(x0), n̂0σ = n̂0σ(x0),
and T̂pσ = 1, n̂pσ = 1. In a last step, the modified Bessel functions can be used to
define Γn = e−x În(x) whose zeroth order, for instance, can be identified as Γ0(bσ) =
B̂0

∫∞
0 J2

0 (k⊥ρσ) e−µ̂B̂0 dµ̂ with bσ = k2
⊥v

2
Tσ/(2Ω2

σ). By further replacing the gyroaver-
aged magnetic field component ˆ̄B1‖ = I1(k⊥ρσ)B̂1‖ [14, 36], one obtains

φ̂1(x) =

∑
σ n̂0σ q̂σ

(
π
∫∫

B̂∗0‖J0(k⊥ρσ)F̂1σdv̂‖dµ̂+ (Γ0(bσ)− Γ1(bσ)) B̂1‖/B̂0

)
k̂2
⊥λ̂

2
D +

∑
σ n̂0σ

q̂2σ
T̂0σ

[1− Γ0(bσ)]
. (3.68)

Similarly, the parallel component of Ampère’s law, Eq. (2.97), can be rewritten as

Â1‖ =
βref

2

∑
σ

{
q̂σn̂0σv̂Tσπ

∫∫
B̂∗0‖J0(k⊥ρσ)ĝ1σv̂‖dv̂‖dµ̂

− βref

2
n̂0σ ĵ0‖

B̂2
0

[
(1− Γ0(bσ))q̂σφ̂1 − T̂0σ (Γ0(bσ)− Γ1(bσ)) B̂1‖

]}

·
(
k̂2
⊥ + βref

∑
σ

n̂0σ q̂
2
σ

m̂σ
πB̂0

∫∫
v̂2
‖J

2
0 (k⊥ρσ)F̂0σdv̂‖dµ̂

)−1

. (3.69)

The perpendicular component, see Eq. (2.100), allows for establishing the following
equation

B̂1‖ =
βref

2

∑
σ

{
πB̂

3/2
0

n̂0σ q̂σv̂Tσ

k̂⊥

∫ B̂∗0‖

B̂0

√
µ̂J1(k⊥ρσ)F̂1σdv̂‖dµ̂

+
n̂0σ q̂σ

B̂0

(Γ0(bσ)− Γ1(bσ)) φ̂1

}
·
(

1− βref

∑
σ

n̂0σT̂0σ

B̂2
0

(Γ0(bσ)− Γ1(bσ))

)−1

.

(3.70)

Here, intermediate steps have been skipped since all simulations presented in this thesis
have been performed in the low β limit. A full derivation can be found, e.g., in Ref. [36].
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3.5 Further numerical schemes

The gyrokinetic Vlasov-Maxwell system consists of integro-differential equations. Thus,
numerical methods have been implemented to address the discretization of derivatives
and integrations which shall briefly be described in the following.

3.5.1 Time stepping scheme

For the simulation of problems dealing just with the linear part of the Vlasov equation,
Eq. (2.60), two different approaches, namely implicit and explicit time stepping schemes,
can be used to determine the time evolution,

∂g

∂t
= V(t, g(t)). (3.71)

While implicit schemes do not impose any stability limit on the time step ∆t, they
are usually quite expensive in terms of computational effort due to obligatory matrix
inversions. Explicit schemes, on the other hand, are only stable for a certain range of
possible time steps. Therefore, an iterative sparse matrix solver based on the PETSc

[54, 55, 56] and SLEPc [57, 58] packages has been included into Gene [40, 59, 36, 60] to
allow amongst others for the determination of the most critical eigenvalue and thus the
largest possible linear time step. Details on the implementation as well as discussions of
the different approaches can be found in [36].

For nonlinear simulations three different implementations of the Runge-Kutta (RK)
scheme are available, in particular RK of third and fourth order and a modified version
of the latter. In this thesis, most of the simulations were performed using the fourth
order RK scheme which can be written as

gn+1 = gn +
∆t
6

(k1 + 2k2 + 2k3 + k4) (3.72)

with tn+1 = tn + ∆t, gn = g(tn) and

k1 =V(tn, gn),

k2 =V(tn + ∆t/2, gn + k1∆t/2),

k3 =V(tn + ∆t/2, gn + k2∆t/2),

k4 =V(tn + ∆t, gn + k3∆t).

Taking into account the nonlinearity, namely the ∇ξ × B advection term, might even-
tually further restrict the time step below the linear limit. This dynamical process is
treated by means of an automatic time step adaption using an approximation of the
Courant-Friedrichs limit [14]. In case of marginal adjustments due to the advection
terms, a modified RK of fourth order using six stencils proves more efficient. However,
in most of the simulations presented in this thesis, the time step is strongly decreased
below the linear limit which is why the usual RK 4th order is chosen.
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Chapter 3 Upgrading GENE to a nonlocal code

3.5.2 Spatial and velocity space derivatives

Provided that a Fourier representation can be chosen, as e.g. always in the y direction,
all derivatives can be replaced by

∂f

∂x
→ ikxf(kx) (3.73)

without any loss of accuracy. Else, several finite difference schemes are at hand. However,
the fourth order centered scheme has been proven to guarantee sufficient accuracy at a
reasonable computational effort. Hence,

∂f

∂x
→ f(x(i−2))− 8f(x(i−1)) + 8f(x(i+1))− f(x(i+2))

12∆x
. (3.74)

A drawback linked to centered schemes is a possible decoupling of neighboring grid
points if boundary conditions turn out to have finite influence throughout the simulation
domain. In order to compensate for such effects, additional numerical or hyper diffusion
terms H acting on the distribution function F1σ have been added to the Vlasov equation.
Typically, fourth order derivatives with stencils of second order,

H(F1σ) = η
−F1σ(x(i−2)) + 4F1σ(x(i−1))− 6F1σ(x(i)) + 4F1σ(x(i+1))− F1σ(x(i+2))

16
,

(3.75)

are employed where the input parameter η has been constructed to be independent
of resolution. Further details on the implementation and the influence of numerical
diffusion terms can be found in [41].

3.5.3 Numerical integration

While spatial integration operations are performed by simply replacing the integrals by
sums, ∫ Lx/2

−Lx/2
f(x) dx→

∑
i

f(x(i))∆x, (3.76)

more sophisticated methods are applied to numerically compute the velocity space in-
tegrals, e.g. required in Eq. (2.73). In the µ direction, a Gaussian quadrature scheme
is used so that Gauß-Legendre knots are used instead of equidistant grid points, and in
the v‖ direction, a modified trapezoidal scheme is implemented.

3.5.4 The nonlinearity

Nonlinear terms in the Vlasov equation, for instance, N(x, y) ∼ ∂y ξ̄1∂xg1σ, would be
represented as convolutions in a one- or two-dimensional Fourier space, e.g. in the global
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code as

N(x, ky) =
1
Ly

∫ Ly

0
dy e−ikyyN(x, y)

=
∑
k′y

∂xξ̄1(x, ky − k′y)ik′yg1σ(x, k′y). (3.77)

However, the complexity of the nonlinearity computation is then estimated as O(n2),
n being the number of operations. A back transform to real space, on the other hand,
requires just O(n log n), so that the nonlinearity is the only part of the code where
a full real space representation is chosen as originally described in Ch. 2. The fast
Fourier transformations (FFT) are computed using one of the state-of-the-art numerical
libraries, FFTW [61], ESSL [62], or MKL [63].

Anti-aliasing techniques

As can be seen in Eq. (3.77) and Eq. (3.36), various mechanisms exist which couple modes
having different wave numbers. Hence, aliasing may occur in discretized schemes if at
some point smaller scales than covered by the necessarily finite resolution are reached. In
order to avoid the manifestation of aliasing, namely artificial generation of larger scale
structures, different techniques have been implemented. In Fourier space, a so-called
3/2 rule can be applied which introduces, for instance, in the radial direction, Nx/2
additional modes with vanishing amplitude before back-transforming to real space in
order to solve the nonlinearity. Afterwards, they are disbanded again. In real space,
aliasing can be avoided either by hyper diffusion or by a real space emulation of the
Fourier space anti-aliasing based on interpolation schemes, e.g. Lagrange interpolation
[64].

3.6 Observables

Gene comes along with several flavors of output data. The reasons are, on the one hand,
the difference in quantities of interest, and, on the other hand, the storage requirements.
For instance, the full distribution function is only written out a few times per simulation
since it might take up to several 10 GB per entry. The most commonly used diagnostics
are thus computing velocity space and/or space moments of the distribution function
and hence write out just three-dimensional or one-dimensional data.

A single entry of the nrg output file for example includes for each species the following
volume averaged values of the normalized velocity space moments |n̂σ|2, |û‖,σ|2, |T̂‖,σ|2,
|T̂⊥,σ|2, Γ̂es,σ, Γ̂em,σ, Q̂es,σ, and Q̂em,σ. In more detail, the perturbed density is as before,
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cf. Eq. (2.76), given by

n̂σ =
nσ

n0σ(x0)ρref/Lref
= M̂00, (3.78)

and the mean parallel velocity by

û‖,σ =
u‖,σ

vTσ(x0)ρref/Lref
=
M̂10

n̂pσ
. (3.79)

The perturbed parallel temperature is defined through

n0,σT‖1,σ = p‖1,σ − T‖0,σn1,σ = mσ

∫∫∫ (
v‖ − u1‖,σ

)2
F1σd3v − T‖0,σn1,σ, (3.80)

see for instance [65]. Keeping only linear terms of perturbed quantities then yields

T̂‖1,σ =
T‖1,σ

T0σρref/Lref
=

2M̂20 − T̂pσM̂00

n̂pσ
(3.81)

and similarly (with p⊥1,σ = mσ
2

∫∫∫
v2
⊥F1σd3v)

T̂⊥1,σ =
T⊥1,σ

T0σρref/Lref
=
M̂02 − T̂pσM̂00

n̂pσ
. (3.82)

The remaining entries are the electrostatic (es) and electromagnetic (em) fractions of
the radial particle and heat fluxes. Both are, in principle, given by correlations with the
contravariant radial component of the drift velocity

vD = vξ + v∇B0 + vc,

compare with Sec. 2.2 except for the additional gyroaverage therein. However, in case
of up-down symmetric devices or geometries which possess only weak asymmetries as
are presented in this thesis, the ∇ξ ×B velocity turns out to be strongly dominant so
that additional magnetic field configuration terms can be safely neglected. The radial
particle flux Γ is then calculated by

Γσ(x) =
∫∫∫

vxξ (x)F1σ(x,v) d3v

(3.83)

and the heat flux Q by

Qσ(x) =
∫∫∫

1
2
mσv

2vxξ (x)F1σ(x,v) d3v (3.84)

where

vxξ (x) =vξ(x) · ∇x = − cC ∂yξ1(x) (3.85)
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denotes the contravariant component of the ∇ξ × B velocity. The corresponding nor-
malized versions are then

Γ̂σ(x) =
Γσ(x)
ΓgB

=− n̂0σ(x0)
Ĉ

[
∂φ̂1(x)
∂ŷ

M̂00(x)− v̂Tσ(x0)
∂Â1‖(x)
∂ŷ

M̂10(x)

+
T̂0σ(x0)
q̂σB̂0

∂B̂1‖(x)
∂ŷ

M̂02(x)

]
(3.86)

and

Q̂σ(x) =
Qσ(x)
QgB

=− n̂0σ(x0)T̂0σ(x0)
Ĉ

[
∂φ̂1(x)
∂ŷ

(
M̂20(x) + M̂02(x)

)
−v̂Tσ(x0)

∂Â1‖(x)
∂ŷ

(
M̂30(x) + M̂12(x)

)
+
T̂0σ(x0)
q̂σB̂0

∂B̂1‖(x)
∂ŷ

(
M̂22(x) + M̂04(x)

)]
(3.87)

with ΓgB = nrefcrefρ
2
ref/L

2
ref and QgB = prefcrefρ

2
ref/L

2
ref . For some investigations it is

helpful to separate the electrostatic and electromagnetic contributions to the total fluxes.
Hence, Γ and Q are in this context computed using just the φ1 dependent part of ξ1 for
the former and the remaining part of ξ1 for the latter.

An often found alternative transport description which shall be briefly mentioned here
uses the corresponding diffusivities Dσ and χσ which are linked to the fluxes by Fick’s
first law,

Γσ =−Dσ
∂n0σ

∂x
and Qσ = −n0σχσ

∂T0σ

∂x
. (3.88)

Inverting and normalizing yields

D̂σ =
Dσ

DgB
=

Γ̂σ
n̂0σω̂nσ

and χ̂σ =
χσ
χgB

=
Q̂σ

n̂0σT̂0σω̂Tσ
.

with DgB, χgB = crefρ
2
ref/Lref . However, these definitions are only applicable to circu-

lar and concentric geometries. The diffusivities in general geometries are discussed in
Appendix B.2.

3.6.1 Global code specific observables

This section is dedicated to a description of observables which are restricted to global
codes and which will be employed in a later chapter.

Given a fully developed nonlinear simulation, it is quite common that the fluctuations
exhibit fractions being constant on flux surfaces through mode couplings. Therefore,
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new temperature and density profiles can be constructed by adding those amplitudes to
the background profiles. Although only very small modifications being on the order of
ρref/Lref are implied by the gyrokinetic ordering, it is a worthwhile effort since temper-
ature and density gradients might nevertheless be substantially affected. However, only
global codes allow for a consistent investigation since ρref/Lref is not specified in the
local approximation. The according calculation using normalized quantities is given by

T̂σ(x) = T̂0σ(x) + 〈T̂1σ(x)〉FS
ρref

Lref
and ω̂Tσ(x) =

Lref

LTσ
= −Lref

∂

∂x
ln T̂σ(x),

(3.89)

and similarly for the density. For some applications where the modified linear driv-
ing terms, ω̂T (x) and ω̂n(x), are compared with the measured fluxes, additional radial
averages are employed which will be discussed on a case by cases basis.

3.7 Sources and sinks

Without any additional source or sink term, an upper limit for the turbulent fluctuations
is given by the flattening of the initial temperature and density profiles as described in
the previous section. If the corresponding gradients become comparable to the threshold
values, the turbulence drive itself is thus strongly reduced so that eventually a state close
to marginality is reached. As already mentioned above, local codes circumvent these
issues by employing periodic boundary conditions which keep the (average) gradients
fixed. Global codes, on the other hand, have to use Dirichlet or floating, von Neumann
boundary conditions. In this thesis, only the former is applied in Gene. With this choice,
temperature and density fluctuations are forced to vanish at the radial boundaries thus
fixing the profiles at these points. A full relaxation which would flatten the whole profile
is therefore impossible. However, this is not necessarily a disadvantage since such strong
relaxations would violate the gyrokinetic ordering anyway. On the other hand, small
profile variations close to the boundaries might generate large gradients and therefore
significant fluctuation levels being incompatible with the Dirichlet condition. In order
to avoid according numerical instabilities, an artificial damping can be activated. This
so-called Krook term is simply added to the right hand side of the normalized Vlasov
equation, V̂(t, g(t)), as follows,

∂ĝ1σ

∂t
= V̂(t, g(t))− ν̂Krook(x)ĝ1σ. (3.90)

Here, ν̂Krook(x) denotes a function being comparable to the maximum linear growth rate
at the boundaries but vanishing towards the center of the simulation domain. In this
work, a fourth order polynomial decaying to zero within less than 10% of the simulation
box width is typically chosen at each boundary.
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For some investigations, it is interesting to artificially keep the profile variations on
a very low level and study the resulting transport features. An according operator, for
instance a Krook operator acting over the whole radial domain but just affecting the
zonal components, is currently in development.

However, a physically more relevant application of global codes is to perform flux
driven simulations. Here, localized heat or particle sources are employed to model a
plasma discharge and predict the temperature and density profiles. This scenario is thus
antipodal to the gradient driven simulations where the fluxes are the final products.
Given the typically large uncertainties in the experimentally measured gradients which
constrain comparisons between simulations and experiments, flux driven simulations
provide an interesting alternative. The first steps along those lines have already been
taken in Gene. For instance, a rate νsrc measured in cref/ρref , at which heat is coupled
into the plasma or removed, is implemented as

∂ĝ1σ

∂t̂
= V̂(t, g(t)) + ν̂src(x)

(
v̂2
‖ + µ̂B̂0

T̂pσ
− 3

2

)
F̂0σ (3.91)

where ν̂src(x) is a profile function which is used to localize the heat source, e.g. by means
of a Gaussian. The particle number conservation is ensured by the property

ν̂src(x)
∫ ( v̂2

‖ + µ̂B̂0

T̂pσ
− 3

2

)
F̂0σdv̂‖dµ̂ = 0 (3.92)

which can easily be confirmed analytically.

3.8 Chapter summary

The aim of the present chapter was to familiarize the reader with the implementation
and concepts of the two main branches used for gyrokinetic simulations. While the
local approach, where just a very narrow radial region about a central magnetic field
line is considered, has originally been the only option in Gene, it is now substantially
supplemented by a global approach keeping full radial profile information. Due to the
enormous conceptual and structural changes, a joint effort including several people at
CRPP, Lausanne, and IPP, Garching, has been made to implement these nonlocal effects.
In the course of this work several main modifications, amongst others the implementation
of the density, temperature and metric profile terms throughout the whole code, the
transformation of the linear part of the Vlasov equation into direct (x) space as well as
the global version of the parallel boundary condition, have been contributed.

Tests and benchmarks demonstrating the full operability of the newly developed global
code will be shown separately in Chapter 5.
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Chapter 4

Multiscale simulations

4.1 Introduction

A large variety of modes involving a wide range of space and time scales may potentially
contribute to the heat and particle transport in magnetically confined fusion plasmas.
However, simulations covering all scales involved turn out to be beyond the scope of
today’s supercomputing resources. As a remedy, turbulence modes on different scales are
often assumed to be decoupled so that investigations of modes e.g. on the ion gyroradius
scale become feasible. In this chapter, though, one of the first efforts of self-consistently
simulating spatio-temporally separated turbulence modes, in part published in Refs. [66,
67], is presented. Core turbulence is investigated employing parameters at which trapped
electron modes (TEM) as well as ion and electron temperature gradient (ITG/ETG)
modes – the latter being separated in space and time by the square root of the ion-
to-electron mass ratio – are excited. Besides insights into the cross-scale couplings
and interactions, these simulations support former predictions about the significance
of electron temperature gradient driven modes even in the presence of turbulent, long
wavelength fluctuations.

This chapter is organized as follows. At the beginning, previous findings concerning
the role of electron scale microturbulence are reviewed. Afterwards, detailed descriptions
of the parameter sets employed in the multiscale simulations are given. First physical
insights and optimizations of the numerical parameters are discussed on the basis of linear
simulations and secondary instability analyses. Nonlinear results, in particular heat and
particle fluxes as well as density and frequency spectra, are presented hereafter. Finally,
possible extensions of these findings to other physical situations are discussed.

4.1.1 Historical context

Usually, turbulent transport in magnetic fusion devices is thought to be carried mainly by
long-wavelength modes, k⊥ρs < 1, where the main agents driving turbulent fluctuations
in the core region at moderate plasma β are considered to be the ion temperature gradient
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Figure 4.1: Binormal thermal diffusivity spectra for ITG modes with adiabatic electrons (left)
and TEM turbulence with kinetic ions. Here, both spectra are normalized to the corresponding
total values.

and the trapped electron mode, while in the edge region, other microinstabilities like
electron drift waves or resistive ballooning modes may also contribute [68, 69].

Typically, the involved mode numbers peak around k⊥ρs ≈ 0.2, as is exemplarily
illustrated in Fig. 4.1. Larger wave numbers, in particular kyρs � 1, have in the past
mostly been considered to be negligible. Besides experimental and numerical problems
which hampered the investigation and therefore any detailed judgment on the role of
such sub-ion scales, it was due to estimates like the mixing length argument which kept
this assumption alive. In the following, a brief introduction of the latter will be given.

Mixing length estimate

An intuitive but rather simplifying way of estimating the thermal transport produced by
plasma micro-turbulence is based on the mixing length argument. Here, the formation of
turbulent eddies with radial extent wx in collisionless plasmas is considered. Assuming
magnetic fluctuations to be negligible, particles are predominantly convected by the
(electrostatic) E×B velocity, thus following more or less the contour lines of the eddy
structures. Hence, their maximum radial excursion is limited by the radial eddy width.
However, propagating in time, the eddies start to dissolve again, e.g., by breaking up
into smaller eddies. An upper limit for the diffusivities can therefore be estimated if
the associated time scale is of the order of the plasma particle drift time taken from the
inward eddy side to the outboard side so that a radial distance wx is crossed during a
time τ . Applying a random walk argument to the homogeneous and isotropic limit of
the heat equation then yields χ ∼ w2

x/τ . If furthermore τ is assumed to be of the order
of the inverse drift frequency ωDσ, and wx ∼ ρσ where σ denotes the species index as
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before, the heat diffusivity is given by χσ ∼ ωDσρ2
σ or

χσ ∼
v2
th,σ

Ωσ

k⊥
L⊥

ρ2
σ

∼ ρσ
L⊥

vth,σ(k⊥ρσ)ρσ

∼ρ
2
σvth,σ
L⊥

(4.1)

if k⊥ρσ ∼ O(1), vth,σ =
√
T0σ/mσ, and the drift frequency can be replaced by the

modulus of the diamagnetic drift frequency which can be derived using fluid models, see
for instance Refs. [49, 14]. The latter includes the perpendicular gradient lengths which
are for the present consideration assumed to be of the same order (L⊥ ∼ LTσ ∼ Ln ∼
R0).

The final result χ(σ)
gB = ρ2

σvth,σ/L⊥ is often referred to as gyro-Bohm diffusivity, see
e.g. Ref. [48], since it differs from the result derived by D. Bohm, E.H.S. Burhop, and
H. Massey in 1946 (according to Ref. [11]) by an additional gyroradius-to-macroscopic-
length ratio, ρσ/L⊥. A direct comparison of independent ion and electron scale turbu-
lence by means of the gyro-Bohm diffusivity yields

χi/χe ∼χ(i)
gB/χ

(e)
gB

=
1
Z2
i

√(
T0i

T0e

)3 mi

me
(4.2)

which would imply χi � χe for typical plasma parameter regimes where the square root
of the cubic temperature ratio and the squared ion charge number Zi seldom compensate
the square root of the mass ratio. For example, the latter evaluates at least to

√
mi/me &√

mp/me ≈ 42.85 whereas Zi ∼ 1 and T0i ∼ T0e for plasma core parameters.
The mixing length argument is supported by the gyrokinetic theory in the primitive

case where only linear and electrostatic terms and either adiabatic electrons (ae) or
adiabatic ions (ai) are considered. In that limit, both field equations, Eq. (2.91) and
Eq. (2.87) in Sec. 2.4.1, become invariant under exchanges of the species index since
the additional flux surface average (ky = 0, k‖ = 0) in the adiabatic electron Poisson
equation is linearly irrelevant. A similar argument holds for the Vlasov equation which
differs just by the species index. Hence, a linear description of electrostatic ITG-ae and
ETG-ai mode driven turbulence is identical except for the reference species which can
be seen as a justification of Eq. (4.2).

However, there is strong experimental evidence, e.g. in Refs. [70, 71, 72, 73], that the
standard paradigm of insignificant transport drive at small (electron gyroradius) scales
cannot capture the behavior of heat transport in the electron channel in a number of
important situations. These include, in particular, plasmas with internal or edge trans-
port barriers. Here, the question arises which mechanism sets the residual anomalous
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electron thermal transport level inside a barrier, assuming that the turbulence at long
wavelengths is suppressed by equilibrium E×B shear flows and that the ions are basically
neoclassical [74, 75, 76]. Moreover, discharges with strong electron heating may also ex-
hibit a decoupling of ion and electron heat transport which is best explained in terms of
scale separation. For instance, it was found in recent DIII-D experiments that by adding
electron cyclotron resonance heating, the long-wavelength dynamics (density fluctuation
level) and the ion heat flux remain more or less unchanged while the short-wavelength
dynamics at k⊥ρs ∼ 4− 10 is strongly enhanced, accompanied by a substantial increase
in the electron thermal diffusivity [72]. Furthermore, a detailed investigation of electron
space and time scales has been carried out in NSTX which can be considered as first
experimental proof of ETG modes driving turbulent transport [77].

In view of future fusion reactors where the α particles will mainly heat the electrons,
theory and simulation are thus confronted with assessing the role of the spectral region
k⊥ρs � 0.2, in particular for electron thermal transport.

Early gyrokinetic simulations of electron temperature gradient driven turbulence [37,
78, 79] – mostly (although not exclusively) employing the adiabatic ion approximation
and neglecting magnetic trapping – indicated that despite their small spatio-temporal
scales, ETG modes can induce electron thermal diffusivities which clearly exceed the
previously mentioned, näıve expectations, χe � ρ2

evte/LTe.
The reason for this is, as mentioned before, the symmetry breaking term in the Poisson

equation, or, more specifically, the flux surface averaged potential. This subtle difference
greatly influences the turbulent structure formation as can be seen in Fig. 4.2. While
ITG and ETG mode structures agree qualitatively in the initial simulation phase where
nonlinear terms are subdominant, they become quite distinguishable as soon as those
terms gain importance. In particular, the ITG mode is strongly influenced by zonal
flows, i.e. shear flows with ky = 0 and k‖ = 0. ETG modes, on the other hand, still
form radially elongated structures, so-called streamers, which allow for higher transport
levels in the corresponding directions.

Thus, ETG turbulence has become a serious candidate for explaining experimental
findings like the ones described above. In follow-up gyrokinetic work [80, 81, 44, 82, 83]
that included magnetic trapping, this basic scenario was confirmed, but it also became
clear that it can be hard to achieve saturation in adiabatic ion models. Moreover, one is
even lead to question the validity of the resulting framework since in the long-wavelength
limit, ETG modes often transition smoothly into TEMs which, in turn, extend down
to the ion scales. However, these modes are not treated correctly in the adiabatic
ion approximation – and ITG modes are excluded altogether. Consequently, what is
really called for are nonlinear gyrokinetic simulations in which both electron and ion
spatio-temporal scales are covered self-consistently. Pioneering work along these lines
was reported in Ref. [84], where it was found that by employing edge-like parameters,
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ITG mode with adiabatic electrons

ETG mode with adiabatic ions

Figure 4.2: Contour plots of the electrostatic potential at the outboard midplane for ITG-ae
(upper half, with axes normalized to ρi) and ETG-ai (lower half, with axes normalized to ρe),
each at two different times. The first snapshots (left) are taken during the linear phase at the
beginning of the simulation, the second ones (right) in the quasi-stationary state where nonlinear
terms are involved, as well.

ETG-induced electron thermal transport is capable of setting a base level in the H-
mode pedestal region. On the other hand, there have been similar studies for core
parameters recently, exhibiting only small relative high-k contributions [85]. As shall
be demonstrated below, the low-k drive in these simulations has been unrealistically
strong, however. In contrast to that, the results presented in this thesis will show that
for realistic ion heat (and particle) flux levels and in the presence of unstable ETG
modes, there tends to be a scale separation between electron and ion thermal transport,
i.e., the former may exhibit substantial or even dominant high-k contributions.
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4.2 Simulation details

The physical and numerical parameters chosen in these investigations are detailed in
the present section. In order to avoid too many effects which have an impact on the
turbulent systems under investigation that would needlessly complicate a subsequent
interpretation and cause significantly more computational effort, magnetic field fluctu-
ations and collisions are neglected in the following study even though Gene is able to
include them. Furthermore, all simulations are performed in ŝ-α geometry with α = 0,
consistent with the electrostatic limit β � 1 which allows for employing a relatively
moderate number of grid points in the parallel direction. Most physical parameters
correspond to the so-called Cyclone Base Case (CBC) [43], i.e., q0 = 1.4, ŝ = 0.8,
ε = r/R0 = 0.18, n0i = n0e ≡ n0, and T0i = T0e ≡ T0 are employed. The density and
temperature gradients are varied, however, with the basic settings being

(A) R0/LTe = 6.9, R0/LT i = 6.9, R0/Ln = 2.2,

(B) R0/LTe = 6.9, R0/LT i = 5.5, R0/Ln = 0,

(C) R0/LTe = 6.9, R0/LTi = 0, R0/Ln = 0.

The first choice (A) represents an expansion of the CBC parameter set to two species.
It serves as a starting point and – as it turned out during this work – as an extended
benchmark case since Waltz et al. [85] picked the same case.

Choosing the numerical parameters is a much more delicate task than setting the
physical ones, since the former strongly depend on the latter. As will be shown later,
it is virtually impossible to perform numerical convergence tests – i.e., checking the
resolution by increasing the number of grid points – with today’s computer resources for
the multiscale simulations at hand. Therefore, careful investigations of the presumably
required grid sizes and resolutions are called for in advance.

For this purpose, two approaches prove to be helpful. On one hand, linear simulations
give first insights regarding the minimum settings and the physics to be expected for the
physical parameters. On the other hand, experience with single-scale simulations may
be utilized.

4.2.1 Linear results

Typically, linear investigations focus on the linear growth rate and real frequency of the
dominant eigenmode at each binormal mode number ky. For the smallest realistic ion
to electron mass ratio mi/me = mp/me ≈ 1836 these results are shown in Fig. 4.3.

Here, two (local) growth rate maxima can clearly be distinguished in case (A) where
equally steep electron and ion gradients are specified. The first one is close to kyρs = 0.35
and is linked to a positive frequency, whereas the second is larger by a factor of ≈ 23,
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Figure 4.3: Linear growth rates (left) and real frequencies (right) vs. binormal wave number using
a proton-electron mass ratio and (A) R0/LTi = R0/LTe = 6.9, R0/Ln = 2.2, (B) R0/LTi = 5.5,
R0/LTe = 6.9, R0/Ln = 0, and (C) R0/LTi = 0, R0/LTe = 6.9, R0/Ln = 0.

has a negative real frequency, and is found at kyρs ≈ 14 which translates to kyρe ≈ 0.325
on electron scales. Although all these findings strongly support an identification of the
respective modes as ITG and ETG modes, they do not reflect a perfect isomorphy as has
been previously predicted. However, the simulations presented in this section do consider
kinetic electrons throughout the whole wave number range. Thus, e.g. the presence of
trapped electrons will affect the ITG modes and also lead to trapped electron modes.
The existence of the latter can be confirmed either by running the eigenvalue solver
within Gene which will be done at a later point or simply by observing the jump in
frequency at kyρs ≈ 0.5. Since pure ETG modes are not driven at kyρe ∼ 0.01, the
most likely explanation of a mode propagating in electron diamagnetic drift direction
is a TEM becoming dominant. However, following the real frequency to higher wave
numbers into the ETG mode domain, no additional significant jump or change of slope
can be observed. On the other hand, it is evident that TEMs cannot drive the very
high-k turbulence since frequencies beyond the bounce frequency ωb ∼ vth,e

√
ε/(qR0)

are virtually impossible for these modes. Evaluating the intersection with linear fits of
the actually measured real frequency in Fig. 4.3 thus yields an upper wave number limit
of kyρs ≈ 6.5. Therefore, a TEM/ETG mode transition must take place for physical
reasons but seems to be unverifiable in terms of eigenvalues for the chosen parameters.
Such scenarios of smoothly transitioning and thus indistinguishable modes have recently
been found for several plasma microinstabilities [40] if the physical parameters are chosen
close to exceptional points on the eigenvalue surface. The latter do exist due to the non-
Hermiticity of the linear gyrokinetic operator [36].

Lowering the ion temperature gradient to 5.5 as done in parameter set (B) mainly
affects the ITG modes. Although still being dominant or marginally subdominant at
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large scales, the transition to TEM takes place earlier, and a corresponding maximum
in growth rate is barely visible. The modified behaviors of growth rate and frequency at
intermediate to high wave numbers is caused by the assumption of flat density profiles
which has been introduced for simplicity.

Setting (C) R0/LT i = 0 in a last step completely removes any ITG mode so that the
TEM-ETG hybrid mode governs ion as well as electron scales.

4.2.2 Numerical parameters for nonlinear multiscale runs using a realistic

mass ratio

Based on these results, some requirements for nonlinear box and grid parameters can
be derived. A rough estimate for one of the most important quantities, the heat
transport Q, can e.g. be given using a simple quasi-linear transport model [38] where
Q ∝ Q(ql) = γ/〈k2

⊥〉. Considering just kx = 0, which is typically the dominant ra-
dial wave number, and furthermore the s-α metric derived in Eq. (3.21), allows for
replacing 〈k2

⊥〉 by 〈k2
⊥〉 ≈ (1 + ŝ2〈z2〉)k2

y. Here, 〈. . .〉 denotes an average defined by
〈z2〉 =

∫
z2φ(ky, z)dz/

∫
φ(ky, z)dz, which takes into account the parallel mode struc-

ture [38, 14, 36]. The resulting heat flux estimates are presented in Fig. 4.4. Since a
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Figure 4.4: Estimated heat transport contributions obtained with a simple quasi-linear model for
the parameter sets (A) R0/LTi = R0/LTe = 6.9, R0/Ln = 2.2, (B) R0/LTi = 5.5, R0/LTe = 6.9,
R0/Ln = 0, and (C) R0/LTi = 0, R0/LTe = 6.9, R0/Ln = 0.

logarithmic abscissa is used to facilitate a better overview of ion and electron scale con-
tributions, a somewhat unconventional but helpful way to display the data is introduced.
While the usual log-log plots can be misleading since the area underneath a curve has
no direct physical meaning, plotting kyQ

(ql)(ky) vs. ky on a log-lin scale circumvents
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this problem. In more detail, contributions of certain mode ranges, usually given by
Q ∼ ∑ky

Q(ky)∆ky, can also be expressed in terms of Q ∼ ∑ky
Q(ky)ky∆(log ky), if a

logarithmic scaling is used.

The results shown in Fig. 4.4 would imply that the binormal box size and resolution
should be chosen at least such that kmin

y ρs ≈ 0.05 and kmax
y ρs ≈ 20. However, nonlinear

single-scale ETG simulations performed in the context of this work, see Fig. 4.5, and
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Figure 4.5: Electron heat flux resulting from single-scale simulations restricted to
0.05 ≤ kyρe ≤ kmax

y ρe using parameter set (A) and a reduced mass ratio ofmi/me = 400. Clearly,
a resolution of kmax

y ρe = 0.35 underestimates the ETG driven electron heat transport.

an ETG benchmarking effort [44] both revealed a significant underestimation of ETG
driven transport in that case. Instead, an appropriate binormal resolution is given by
kmax
y ρe ∼ 1 which translates to kmax

y ρs ∼ 42 for the proton-to-electron mass ratio.

The required radial resolution can be determined by looking at the ballooning repre-
sentation of the linear modes which takes into account the connections of radial wave
numbers as described by Eq. (3.36). Only if the modes are sufficiently small when reach-
ing the highest wave numbers, they can be considered to be physical. While linear Gene

simulations can be performed using N = 1 – i.e., connecting each kx mode for each ky

independently – a nonlinear simulation will unavoidably have a fixed box size and thus
N (ky) = N (kmin

y ) · ky/kmin
y , cf. Sec. 3.3.3. Hence, if ballooning structures would keep

their shape over wide binormal mode ranges, an enormous radial resolution would be
necessary. However, toroidal ITG and ETG modes evolve mainly at the tokamak out-
board mid-plane where curvature and gradients point in the same direction, which is
typically accompanied by narrow ballooning. Trapped particle modes, however, usu-
ally develop wider structures and/or several peaks since motion along the field line is
strongly hampered. In summary, one would expect broad ballooning at low-k where
TEM is dominantly or sub-dominantly present and narrow structures at high-k where
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ETG modes are exclusively driving the turbulence. These predictions are supported by
Fig. 4.6 where the linear mode structures of the parameter sets under investigation are
plotted. Here, the most demanding modes require up to 16 connections and are located
at kyρs ≈ 0.8, a region where TEMs are typically excited. At high-k, two or less con-
nections seem to be sufficient, being in line with TEMs vanishing at kyρs & 6.5 as has
been shown earlier.

Ion temperature gradient driven turbulence is known to exhibit strong zonal flow com-
ponents which might completely dominate the turbulent structure formation if electrons
are assumed to be adiabatic, cf. Fig. 4.2. In the presence of kinetic electrons, zonal
flows might still break up linear streamers but may also develop more isotropic vortices.
Hence, a quadratic box size of (Lx, Ly) = (128ρs, 128ρs) may be considered a standard
choice. However, taking (Lx, Ly) = (64ρs, 64ρs) is still a reasonable choice if deviations
of about 10 percent in the low-k transport channels are acceptable.

Based on the arguments presented above, the following numerical parameters should
be chosen: kmin

y = 0.1, kmax
y = 42, Lx should be close to 64ρs but also has to fulfill the

quantization constraint Lx = N/(ŝkmin
y ), Eq. (3.36). Hence, with N = 5, Lx becomes

62.5ρs. In order to allow for 16 parallel connections at kyρs = 1, at least nkx = N·16·10 =
800 radial mode numbers are necessary. If one was to request at least one connection at
kmax
y , nkx = N · 2 · 420 = 4200 modes would be required which is far more demanding.

A more careful analysis of the growth rates close to the ETG peak on the other hand
reveals modifications of just 10% if no connections are considered, thus justifying the
above choices.

Adding the remaining dimensions as used in the aforementioned linear simulations
yields a minimum grid of (x, y, z, v‖, µ) ≈ (800, 400, 16, 32− 64, 8− 16) for each species.
Considering in addition the fast (parallel) electron dynamics which strongly reduce the
time step and on the other hand the relatively slow ion dynamic which has to be resolved
as well, a computational resource requirement of 3, 000, 000 standardized CPUh can
be estimated per simulation which clearly exceeds present-day project budgets. Thus,
alternative and cheaper numerical parameters have to be found which leave the main
physical effects untouched.

4.2.3 Reduced ion/electron mass ratio

A very important parameter which would immediately allow to significantly reduce the
computational effort is the ion-to-electron mass ratio which governs the separation of ion
and electron scales. Considering the temporal and the perpendicular spatial dimensions
whose resolutions scale with the square root of the mass ratio, a total scaling of the
computational time T ∼ (mi/me)

3/2 can be estimated.
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(A)

(B)

(C)

Figure 4.6: Ballooning mode structures gained from linear simulations using the parameter sets
(A),(B), and (C). Here, the radial box size has been adapted in order to establish N = 1 in
Eq. (3.36) for each ky mode. Obviously, the mode structure tends to be very narrow at high
wave numbers so that less connections are required in this regime.
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Figure 4.7: Mass ratio dependence of linear growth rates (black) and real frequencies (red) at
kyρs = 0.3 (left) and kyρe = 0.3 (right) for parameter set (A).

Mass ratio effects on linear behavior

Again, linear simulation results shall serve as an indication for the determination of
a still reasonable mass ratio. The intermediate wave number region between ion and
electron scales is certainly affected since time and perpendicular scales are squeezed
together with decreasing mass ratio. Therefore, TEM, for instance, become stable at
kyρs & 2.5 already. However, it is of special interest whether the fully developed ETG
and TEM/ITG modes, e.g. the growth rate maxima for parameter set (A), itself are
affected. A corresponding plot is therefore presented in Fig. 4.7 which proves ITG/TE
modes on ion scales and ETG modes on electron scales to be quite robust against scale
compressions. Only at mass ratios smaller than 400, differences of more than 10% can
be observed.

Nonlinear saturation mechanisms

Investigating the influence of mass ratio changes on the linear behavior is only a first
step. A more detailed prediction can be given if nonlinear saturation mechanisms are
taken into account.

In various publications, e.g. in [78, 37, 86] and references therein, the nonlinear sat-
uration of ITG and ETG modes is discussed in the framework of secondary instability
theory. The main idea, originally proposed by Cowley et al. [48], is described below.

Driven by radial density and temperature gradients, a linear mode grows exponen-
tially, developing radially elongated structures, cf. Fig. 4.2. Now, if a sufficiently large
amplitude is reached, those streamers may in turn generate steep gradients in the binor-
mal (y) direction, thus being a source of free energy for new instabilities. Another way to
understand possible actions of the nonlinear terms is to liken them to Kelvin-Helmholtz
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ky

kx

Figure 4.8: Illustration of selected modes (encircled) for secondary instability analysis. Effec-
tively, only four modes are considered since real valued physical quantities fulfill φ(k) = φ∗(−k)
in Fourier space.

[87, 88] instabilities. Advected by the E×B velocity, particles drift around streamers of
the electrostatic potential and thus form oppositely directed flows above and below an
eddy. As it is well known from fluid turbulence or atmospheric physics, such neighboring
flow layers with different velocities turn out to be susceptible to small perturbations and
are therefore eventually weakened.

In general, saturation is thought to be achieved if the growth rates of primary and
secondary instabilities are balanced quasi-stationarily. However, the nonlinear dynamics
are far from being fully understood. For example, it may even be possible that sec-
ondary instabilities are subject to tertiary instabilities [89]. Nevertheless, several simple
models have been proposed to capture the most important effects and thus estimate the
transport levels for specific parameter sets [79].

One of these reduced descriptions is derived in the framework of a simple Hasegawa-
Mima type fluid model [90, 91, 92]. Here, it has indeed been shown that the saturation
amplitude is determined by a balance between the streamer’s linear growth rate γl and
the secondary mode’s nonlinear growth rate γnl. For this purpose, only few modes need
to be considered: a streamer mode φb with (kx, ky) = (0, b), two sidebands φ± with
(a,±b), and a zonal flow φ0 with (kx, ky) = (a, 0), as plotted in Fig. 4.8. As shown in
Ref. [86], adding more side bands to the fluid model description does not alter the basic
findings.

In order to apply the Hasegawa-Mima type model to nonlinear gyrokinetics, the fol-
lowing steps have been performed. As in Ref. [46], where as spin-off of this work a
gyrokinetic secondary instability analysis was applied to stellarators for the first time,
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Figure 4.9: Nonlinear (secondary) growth rate γnl averaged and weighed by amplitude in the
parallel direction and divided by the streamer amplitude |φb| = |〈φ1(kyρs,e = 0.3)〉x,z|. Here,
the same parameters as in multiscale simulation (A) have been employed — except for the
magnetic shear which has been set to zero. The left plot displays the result on ion scales where
b = kyρs = 0.3 has been used. On the opposite site b = kyρe = 0.3 thus showing the response
on electron scales. The numbers in the legend indicate the ion to electron mass ratio and the
dotted lines are fits as further explained in the text.

the initial condition is chosen to be the result of a preceding linear simulation where only
the streamer mode was (strongly) excited. To avoid a mixing of linear and nonlinear
effects, the former are suppressed in the nonlinear continuation. Furthermore, nonlinear
back couplings to the streamer mode are switched off so that this mode stays constant
in time to emulate the large amplitude behavior throughout the whole simulation. The
normalized binormal mode number b is chosen close to the fastest growing linear modes,
in particular b = kyρs = 0.3 for an ion scale investigation and b = kyρe = 0.3 for a corre-
sponding electron scale simulation. The resulting nonlinear growth rates at ky = 0 are
shown in Fig. 4.9 as functions of the radial wave number kx. Here, the same parameters
as for multiscale simulation (A) have been employed —except for the magnetic shear
which has been set to zero and the mass ratio which is varied. The former choice is
due to a greater flexibility for kx values and in order to facilitate comparisons with two-
dimensional fluid model predictions. For instance, F. Jenko [92] proposes a nonlinear
growth rate of

γ2
nl,ITG =

2a2b2(1 + b2 − a2)
1 + a2 + b2

|φb|2 −∆Ω2 (4.3)

for ITG modes and

γ2
nl,ETG =

2a4b2(b2 − a2)
(1 + a2)(1 + a2 + b2)

|φb|2 −∆Ω2 (4.4)

for ETG modes where ∆Ω is a frequency mismatch that is small compared to |φb|2.
Fits to γ2

nl,ITG(a) ∼ c1a
2 + c2a

4 and γ2
nl,ETG(a) ∼ d1a

4 + d2a
6, assuming p2, q2 � 1 and
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Figure 4.10: Converged linear growth rates (left) and real frequencies (right) vs. binormal wave
number using a mass ratio of mi/me = 400 and (A) R0/LTi = R0/LTe = 6.9, R0/Ln = 2.2, (B)
R0/LTi = 5.5, R0/LTe = 6.9, R0/Ln = 0, and (C) R0/LTi = 0, R0/LTe = 6.9, R0/Ln = 0.

c1, c2, d1, d2 ∈ R, are included as thin, dotted lines for one specific mass ratio in Fig. 4.9
and show good agreement.

Summarizing, the mass ratio seems to have no major influence on secondary insta-
bilities on ion scales. This finding slightly changes on electron scales. If the maximum
nonlinear growth rate is supposed not to deviate than ∼ 10% from the proton-to-electron
mass ratio value, mi/me ∼ 400 defines an approximate lower limit. Considering a finite
magnetic shear of ŝ = 0.8 does not alter these findings significantly. In fact, the mass
ratio dependence on electron scales becomes even a little weaker.

Finally, it shall be noted that mass ratio effects on TEM which might exhibit a different
saturation mechanism [14, 36] seem to have only minor influence —at least if ETG modes
are linearly stable. According to nonlinear simulation results presented in Ref. [14], there
is no qualitative change in the underlying physics if mi/me = 400 is taken instead of
mi/me = 1836.

4.2.4 Final parameter choice

As shown above, a reduced mass ratio of mi/me = 400 seems to be a reasonable choice to
explore the main physics in an ion-electron-scale simulation. Linear simulation results
with up to 64 × 16 velocity space (µ, v‖) grid points are shown in Fig. 4.10. Indeed,
growth rates and real frequencies seem to agree qualitatively with those gained with
realistic mass ratio, see Fig. 4.3. However, in order to further decrease the computa-
tional effort, several tests have been undertaken to relax some of the resolution and box
constraints. Finally, the perpendicular box size is chosen to be (Lx, Ly) = (64ρs, 64ρs),
and 768 × 384 × 16 real space grid points are used in the radial, binormal, and par-
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allel direction, respectively, as well as 32 × 8 grid points in (v‖, µ) space. Again, the
resulting growth rates and frequencies are presented, see Fig. 4.11. Although some mod-
ifications at intermediate wave numbers are observed, they are not expected to change
the general behavior of the physical system. Hence, all following multiscale simulations
are performed using the reduced parameter set; nonetheless, each simulation requires of
∼ 100, 000 CPUh.

A last remark is dedicated to hyperdiffusion. As explained in more detail in Ref. [93],
the parallel hyperdiffusion coefficient should roughly be set with respect to the linear
growth rates. In single-scale simulations it is thus typically taken to be comparable
to the highest linear growth rate. Although slowly growing modes then have a much
higher hyperdiffusion amplitude, it is usually a reasonable choice since the effect of
the hyperdiffusivity is more or less constant above a critical value for a wide range of
amplitudes. In multiscale simulations, however, it might happen that an upper limit
being comparable to the Courant limit in the time stepping schemes is exceeded which
drives the simulations instable. Therefore, a hyperdiffusion coefficient roughly following
the linear growth rate is mimicked by using a parabolic function at low and intermediate
ky and being constant at kyρe > 0.2.
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Figure 4.11: Linear growth rates (left) and real frequencies (right) vs. binormal wave number
using a mass ratio of mi/me = 400, a total of 76 connections at ky = kmin

y , 16 grid points in
the parallel direction, 32 × 8 in the parallel and perpendicular velocity space direction and (A)
R0/LTi = R0/LTe = 6.9, R0/Ln = 2.2, (B) R0/LTi = 5.5, R0/LTe = 6.9, R0/Ln = 0, and (C)
R0/LTi = 0, R0/LTe = 6.9, R0/Ln = 0.
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4.3 Nonlinear simulation results

4.3.1 Heat and particle transport

The main aim of gyrokinetic simulations is to understand and predict the radial anoma-
lous heat and particle transport levels which determine plasma confinement. There-
fore, corresponding fluxes and diffusivities are presented first. Throughout this chapter,
they are normalized to ΓgB = n0χgB/R0, QgB = p0χgB/R0, and χgB = csρ

2
s/R0 if

mref = mi or, if electron scales are considered, to Γ(e)
gB = n0χ

(e)
gB/R0, Q(e)

gB = p0χ
(e)
gB/R0,

and χ
(e)
gB = vth,eρ

2
e/R0.

A first impression of the nonlinear results using parameter set (A) can be obtained by
regarding Fig. 4.12, where the time traces of the volume averaged fluxes are plotted in
(the simulation’s natural) electron scale normalization. Here, a clear sign for multiscale
features being present in the simulation can already be found in the transition from the
linear to the nonlinear phase. The latter is typically characterized by some overshoot or
peak where the nonlinear terms just become comparable to the linear ones and eventually
reduce the transport again until a quasi-stationary state is reached. While the ion heat
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Figure 4.12: Time trace of the volume averaged heat and particle fluxes for (A) R0/LTi =
R0/LTe = 6.92, R0/Ln = 2.2.

channel only exhibits a single pronounced overshoot at t ≈ 340R0/vth,e, the electron
heat channel possesses two, one at t ≈ 90R0/vth,e and one coinciding with the ion heat
channel peak. This second peak in the electron heat flux, however, is most likely just
an electron response to the large ion heat channel overshoot caused by the ITG mode
driven turbulence. The first peak, on the other hand, appears on a much shorter time
scale which is quite plausible when comparing with the linear findings, cf. Fig. 4.11.
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Figure 4.13: Time-averaged ion (left) and electron (right) thermal heat diffusivities multiplied
by the binormal wave number vs. binormal wave number for (A) R0/LTi = R0/LTe = 6.92,
R0/Ln = 2.2.

Here, growth rates assigned to electron temperature gradient driven turbulence have
been separated in time by about one order of magnitude, thus giving evidence that
ETG modes are responsible for the first peak. Furthermore, the overshoot amplitude is
separated by one order of magnitude as well. This is in line with previously described
mixing length estimates which hold true as long as the linearly stable ky = 0 mode is not
excited. As soon as the nonlinear mode couplings become important, those estimates
potentially fail to predict the correct transport levels.

Apart from these first insights obtained from the linear physics and the initial over-
shoots, it is usually more important to consider the quasi-stationary state where the
turbulence is fully established. For this purpose, time averages covering at least several
eddy turn-over times up to the whole quasi-stationary state domain should be per-
formed in order to allow for sufficient statistics. The corresponding results are given
by Qi ≈ 164QgB, Qe ≈ 56QgB, and Γ ≈ −4 ΓgB in ion scale normalization which is
more convenient for comparison with other publications. Thus, the ion heat transport
is almost three times as large as the electron counterpart, and a relatively small particle
pinch is observed.

However, the most interesting question in the context of this work is the transport
fraction that is driven by different scales, which now motivates to turn towards spectral
representations of the fluxes. Binormal spectra are of particular importance since back-
ground density and temperature profiles vary only radially, and thus, even small-scale
(k⊥ρs > 1) turbulence can exhibit large mode amplitudes near kx = 0, cf. Fig. 4.2.

In Fig. 4.13 the time-averaged binormal (ky) spectra of the thermal diffusivities mul-
tiplied by ky are presented. In contrast to pure ITG or TEM simulations (with ETG
modes linearly stable), where both thermal diffusivity spectra tend to peak at kyρs ∼ 0.2
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Figure 4.14: Growth rates and real frequencies of the dominant and first subdominant modes
in units of cs/R0 at kyρs = 0.2 as functions of the ion temperature gradient R0/LTi. The
remaining gradients, R0/LTe = 6.9 and R0/Ln = 0, are kept constant. Clearly, a mode transition
can be identified around R0/LTi = 5.3 where the dominant mode exhibits a change of sign in
real frequency changes. Furthermore, modes with positive real frequency become stable below
R0/LTi ∼ 4.5

and fall off quickly with ky, a relatively small but finite fraction of 10.5% of the total
χe [≈ 8χgB] originates from wave numbers kyρs > 1. This is in good agreement with
simulation results presented in [83] where a high-k contribution of 13.8% has been found
using the same physical parameters.

In order to interpret the found fluxes correctly, it is necessary to compare them with
the experimental ones, using the plasma parameters underlying the CBC values employed
here. This way, one finds that the ion thermal diffusivity obtained from the simulation,
χsim
i ≈ 23.7χgB, exceeds the experimentally determined value of χexp

i ≈ 0.36χgB [43] by
almost two orders of magnitude. A likely key reason for this dramatic difference is that
the normalized ion temperature gradient R0/LT i – on which ITG turbulence depends
very strongly but whose extraction from experimental temperature profile data is usually
difficult – has been chosen somewhat too large.

In fact, these findings gave motivation to define parameter set (B). The idea was to
lower the ion temperature gradient to a value where TEMs become comparable and
eventually the main agent driving the transport. For this purpose, a linear scan over
several R0/LT i values was performed at the position of the nonlinear transport peak,
kyρs ∼ 0.2. Originally, this was done using the better resolved parameter set, and a
simple fluid model was then employed to estimate the linear threshold of the ITG mode.
With the recent implementation of the eigenvalue solver it became possible to revise the
results. Furthermore using the reduced parameters, the resulting ITG-TEM threshold
is now slightly corrected to R0/LT i = 5.3 instead of 5.5 where a clear change of sign

77



Chapter 4 Multiscale simulations

-2⋅103

 0⋅100

 2⋅103

 4⋅103

 6⋅103

 8⋅103

 1⋅104

 0  200  400  600  800  1000  1200  1400

t/[R0/vth,e]

Qi/Q
(e)
gB

Γ/Γ
(e)
gB

Qe/Q
(e)
gB

Figure 4.15: Time trace of heat and particle fluxes for (B) R0/LTi = 5.5, R0/LTe = 6.92,
R0/Ln = 0.

takes place in real frequency, cf. Fig. 4.14. In addition, ITG modes become stable below
R0/LT i ≈ 4.5 which is about 10% lower than estimated with a fluid model.

As previously seen in the linear results presented in Sec. 4.2.4, a combined TE and
ETG mode now dominates over (almost) the entire ky range, but the ITG mode co-
exists in the low-ky region (up to kyρs ∼ 0.5), exhibiting a growth rate which is roughly
comparable to that of the TEM.

This is partially reflected in the corresponding nonlinear simulation, presented in
Fig. 4.15, where the ion and electron fluxes are now less clearly separated. However, the
former is still almost three times larger than the latter, Qi ≈ 16QgB and Qe ≈ 5.3QgB,
and the electron heat flux decreases with reduced ion temperature gradient which is
surprising at first sight. But the apparent contradiction to the linear results can be
resolved in parts by the following argument. The electron heat transport in parameter
set (A) has large low-k contributions originating from ITG modes which may appear due
to the different saturation mechanisms and possible nonlinear interaction, e.g. between
TEM and ITG mode driven turbulence. A decreased ITG drive may therefore well be
responsible for a reduction of the electron heat flux level. The particle flux is again
small, Γ ≈ −2 ΓgB, and directed inward.

Compared to the previous time trace of parameter set (A), the very beginning of the
simulation looks somewhat atypical which can easily be explained. Due to the nonlinear
time step adaption which essentially decreases the time step when reaching higher am-
plitudes, overshoots become very costly in terms of computational time. Theoretically,
the latter can be reduced if the initial condition is chosen close to the expected saturated
state which actually motivated the implementation of an initial state using prescribed
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Figure 4.16: Binormal (ky) spectra of the time-averaged ion (left) and electron (right) thermal
fluxes for case (B) with R0/Ln = 0, R0/LTi = 5.5, and R0/LTe = 6.9. For these parameters, a
scale separation between both channels is observed.

power laws in the perpendicular and a ballooning like structure in the parallel direction
in Gene. Although being successful for some single-scale simulations, see for instance
Ref. [41], guessing a useful initial state for multiscale purposes turned out to be practi-
cally impossible. Another idea was to use the saturated state of a preceding simulation
with reduced resolution instead. Unfortunately, even such a preparation which has been
used in Fig. 4.15 did not show the desired result.

Coming back to the simulation results, a closer look at the heat transport spectra
is now due. While the ion heat channel strongly resembles the previously observed
spectra with just a slight shift of the transport peak to the next higher mode number, a
completely different behavior is observed for the thermal electron diffusivity, cf. Fig. 4.16.
Besides the usual peak at low-k, another significant contribution arises from the very
small wavelengths being of the order of the electron gyroradius. In absolute numbers,
42% of the electron heat transport is now driven by high-ky (kyρs > 1.0) modes. As
previously discussed, ETG modes are most likely the only turbulence types active in
that range. At larger wavelengths, however, it is unclear whether it is an ITG mode
or a TEM that is nonlinearly dominant so that further analysis is required. According
investigations, e.g. of nonlinear frequency spectra, will be presented later in this chapter.

Since the simulation results obviously depend very strongly on R0/LT i, a simulation
in which just TEMs and ETG modes are driving the turbulence is considered, as well.
This may happen, e.g., in plasmas with dominant electron heating, relatively high β

values, substantial equilibrium E×B shear, or internal transport barriers. As previously
stated, the profile gradients for this simulation are chosen to be (C) R0/LTe = 6.9 and
R0/LT i = R0/Ln = 0. In this context, it might be useful to note that the choice of
R0/LT i should not matter too much as long as ITG modes are clearly subdominant
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Figure 4.17: Time trace of heat and particle fluxes for (C) R0/LTi = 0, R0/LTe = 6.92,
R0/Ln = 0.

(both, linearly and nonlinearly). In addition, R0/Ln should be chosen small enough,
such that the TEM is ∇Te-driven and not ∇n-driven (in the latter case, one would
obtain large outward particle fluxes which are usually hard to reconcile with experimental
conditions).

The time trace shown in Fig. 4.17 reveals a completely different behavior compared
to the ones presented previously. As expected by the absence of ITG modes, only a
very small time averaged ion heat flux of Qi ≈ 1QgB can be observed. Additionally,
a very small outward particle flux of Γ ≈ 0.6 ΓgB is measured. The time averaged
electron heat flux Qe ≈ 60QgB, however, is now almost one order of magnitude higher
compared to parameter set (B), although no additional driving has been applied. Before
discussing this issue in more detail, another comment shall be made concerning this time
trace. While electron time scales are well-resolved at t ∼ 450R0/vth,e, one might wonder
whether large-scale turbulence is already well-described at that point. Hence, another
simulation has been performed for parameter set (C) which has been restricted to the
ion scales by choosing a different cut-off in the binormal direction, (kyρs)max = 1.5, and
a radial resolution of ∆x ∼ 0.5 ρs. The corresponding time trace, see Fig. 4.18, indeed
shows a burst at t ≈ 1000R0/vth,e. However, the transport levels before and after are
very similar. In addition, the corresponding spectra have been evaluated and presented
in Fig. 4.19. Again, no major modifications are observed, which supports stopping the
multiscale simulation (C) at the time chosen in Fig. 4.17.

Comparing the single-scale spectra with the full multiscale simulation result displayed
in Fig. 4.20 reveals two surprising effects. Firstly, an unphysical pile-up at high wave
numbers is observed if linearly driven smaller scales are cut away. Thus, only in the
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Figure 4.18: Logarithmic time trace of heat and particle fluxes for a single-scale simulation using
an identical gradient setting as in parameter set (C), R0/LTi = 0, R0/LTe = 6.92, R0/Ln = 0.
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Figure 4.19: Binormal (ky) spectra of electron thermal diffusivities of the single-scale simulation
multiplied by the binormal wave number and averaged over (a) t = 200 − 500R0/vth,e and (b)
t = 20000− 20560R0/vth,e.

absence of high-k excitations it is possible to perform simulations covering, e.g., just
the ion scales, cf. Fig. 4.20, where in the right plot ETG modes have been stabilized by
employing a different temperature ratio.

Secondly, the additional high-k modes seem not only to increase the overall transport
but also the transport at large scales. However, since the single-scale simulation is clearly
unphysical and only presented to check for convergence with respect to time, it is difficult
if not impossible to judge whether cross-scale coupling like noise excitation is actually
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Figure 4.20: Binormal (ky) spectra of the electron thermal diffusivity for the TEM-ETG mul-
tiscale turbulence simulation (C) (left) and, for comparison, a pure TEM turbulence simulation
where ETG modes are linearly stable (right).

responsible for this increase.

Inspecting Fig. 4.20 in more detail, one finds that here – in contrast to pure TEM or
ETG turbulence simulations where the transport spectra are usually localized in fairly
narrow regions of ky space (see, e.g., right plot of Fig. 4.20 and Ref. [79]) – a wide
range of modes contributes significantly to the overall thermal diffusivity of χ ≈ 8.8χgB.
About 30% of the transport is driven in the “classical” TEM range, kyρs . 0.5. The
remaining high-k contribution can be divided into a TEM-ETG turbulence region up to
kyρs . 2 (at this point, the trapped electron bounce frequency matches approximately
the mode frequency for parameter set (C)) and an ETG region at kyρs & 2. The thermal
transport fraction produced in the latter region is almost equal to that of the low-k
region, namely about 30%. However, the electron thermal diffusivity of the present TEM-
ETG turbulence simulation is higher than the heat diffusivity obtained with R0/LT i =
5.5, thus again diverging from experimental values [44].

In order to complete the presentation of transport features gained from the multi-
scale simulations, the analysis is now extended to the particle transport spectra and
by decomposing the wave number contributions according to both kx and ky. For this
purpose, contour plots using logarithmically distributed colors are shown in Figs. 4.21
and 4.22. As previously observed in the binormal spectra, which have been averaged
over time and the remaining dimensions, it becomes again obvious that the ion heat flux
spectra are always found to be dominated by binormal wavelengths of the order of many
(& 10) ion gyroradii, in good qualitative agreement with pure large-scale turbulence
simulations (see, e.g., Ref. [94]). On the other hand, the electron heat flux behaves dif-
ferently, showing increasing high-k contributions with decreasing low-k (R0/LT i-caused)
drive. However, this tendency is not found to be isotropic in (kx, ky)-space. As men-
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(A) ions (A) electrons

(B) ions (B) electrons

(C) electrons

Figure 4.21: Time-averaged heat fluxes (normalized to QgB) vs. radial and binormal wave num-
bers for the multiscale simulations (A) to (C). In case (C), the ion heat flux is negligible and
therefore not shown.

83



Chapter 4 Multiscale simulations

(A)

(B) (C)

Figure 4.22: Particle fluxes (normalized to ΓgB) averaged over time and parallel direction vs. ra-
dial and binormal wave numbers for the multiscale simulations (A) to (C).

tioned before, the high-ky (kyρs > 1.0) fraction of the electron heat transport rises from
∼ 10% in case (A) to ∼ 40% in case (B) and finally reaches more than 50% in case
(C). In the radial direction, the kxρs > 1.0 fraction in case (A) is about 11% which is
almost identical to the respective ky fraction. However, in cases (B) and (C), the high-kx
contributions amount to values around 30%, therefore implying an anisotropic heat flux
spectrum. The physical origin of these high-k anisotropies is most likely the existence of
small-scale streamers [37, 78, 66], as will be discussed in more detail in the next section.

The particle fluxes, presented in Fig. 4.22, are directed inwards (describing a particle
pinch) in cases (A) and (B), but change sign in case (C) where ITG modes are not excited
anymore. These findings are consistent with ITG/TEM simulation results as reported
in Ref. [14] where dominant particle pinches have only been observed for R0/LT i > 0.

For all three parameter sets, there are no significant high-k (kρs > 1) contributions to
the particle transport. This is in line with general expectations based on the fact that
the ions become adiabatic at these scales.
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Discussion

The heat fluxes presented above are summarized in Fig. 4.23, together with two addi-
tional simulation results which shall help to resolve the domain where ITG modes become
subdominant. Here, the values at R0/LT i = 5.5 seem to slightly differ from the general
trend. One possible reason is the bursty behavior of the heat fluxes at R0/LT i = 5.2
which complicates the determination of a sufficiently converged value and thus increases
the uncertainty for this data point. But although restricting the window for time av-
eraging to a region between two consecutive bursts, the data points at R0/LT i = 5.2
and R0/LT i = 5.5 seem not to fit perfectly. Hence, the slight misalignment might be
a physical effect or an artifact linked to space-time resolution issues, which could be
investigated in more detail once more computational resources are available.
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Figure 4.23: Ion and electron heat flux as functions of the ion temperature gradient normalized to
the maximum total heat transport which is reached for parameter set (A). In addition, the high-k
fraction of the electron heat flux is displayed. Note that parameter set (A) includes a different
density gradient of R0/Ln = 2.2. Furthermore, the simulation performed at R0/LTi = 5.2
exhibits bursts which are not included in the presented time averaged value by choosing the time
window accordingly.

Nevertheless, the general trend is expected to be already well-reflected in Fig. 4.23,
and it is now time to address the following problems:

(I) Why is the high-k fraction so small in the dominant ITG and quite large in the
TEM-ETG case?

(II) Why is the electron heat flux reduced when the ion temperature gradient is de-
creased to a value where ITG modes become subdominant?
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(III) Do linear features survive within the nonlinear simulations?

The first question is in part motivated by the linear simulation results. When com-
paring the growth rates in Fig. 4.11 with the actually measured heat fluxes, it might
be astonishing that high-k mode numbers do not contribute a larger fraction for pa-
rameter set (A). With ITG and ETG modes being driven by similar gradient settings
and a weaker saturation mechanism of ETG modes, much higher transport levels should
be observed in that range. But such a notion would neglect any TEM influence and
cross-coupling effect. However, the TEMs turn out to be subdominant even in the non-
linear simulation as will be shown later. The cross-coupling effects, on the other hand,
are then thought to be the most likely reason for a partial transport suppression. This
statement is supported by snapshots of the electrostatic potential, see Fig. 4.24, taken at
outboard mid-plane where due to the ballooning character most turbulent transport is
driven. A first glimpse at Fig. 4.24 suggests that the large-scale ITG dynamics dominate,

Figure 4.24: Snapshot of the electrostatic potential at the outboard mid-plane for case (A) with
R0/LTi = R0/LTe = 6.9, and R0/Ln = 2.2, showing a dominance of large-scale, ITG vortices,
and the same data with all kyρs < 2 modes filtered out, demonstrating the existence of small-scale
ETG streamers which are subject to vortex stretching.

since structures elongated in the y direction strongly resemble the shape of weak zonal
flows. Applying a high-pass filter reveals the co-existence of short-wavelength structures
within or between the large-scale vortices. However, these very thin ETG streamers
seem to be strongly distorted, which may reduce the corresponding transport. Another
conceivable effect of large vortices on small eddies is a local modification of the tem-
perature and density gradients, which would alter the linear physics and possibly cause
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Figure 4.25: Illustration of possible cross-scale couplings adapted from Ref. [95]

streamers to appear in binormal direction, the latter only contributing marginally to the
radial transport. Unfortunately, a local code provides only limited possibilities for an
according investigation because turbulent temperature and density fluctuations should
be seen in relation to the corresponding equilibrium quantities. As already mentioned in
Sec. 3.6.1, it is thus hard to calculate consistent gradients in the ρ∗ → 0 limit. Further
potential cross-scale coupling effects which are discussed in detail by Itoh and coworkers
[95, 96, 97] are illustrated in Fig. 4.25. Besides the already mentioned effects of large
scale turbulence on the small scale one, they additionally consider noise excitation and
eddy damping which may act in the inverse direction. However, at this point, the reader
shall be reminded that direct investigations of such effects are not feasible. For example,
they would require comparisons with singe-scale simulations in order to identify cross-
couplings. However, simply cutting away parts of the spectrum may exhibit artificial
structures as seen, e.g., in Fig. 4.19. A possible alternative would be to investigate
ITG/TEM turbulence by stabilizing ETG modes – for instance via choosing a temper-
ature ratio of Te/Ti = 3 – and pure ETG modes by reducing the influence of trapped
particles by assuming a very small inverse aspect ratio. Of course, both approaches are
questionable since they change the underlying physics.

Therefore, one has to rely, e.g., on the contour plots which are not affected by the
above mentioned complications. In the following, an examination on how a reduction in
R0/LT i influences the short wavelength turbulence shall be based on them.

Switching off the density gradient and setting R0/LT i = 5.5 obviously causes no
dramatic changes in the corresponding contour plots which are presented in Fig. 4.26.
However, the large scale structures are now less zonal flow-like, and small scales are now
even visible in the unfiltered plot. By compiling several subsequent snapshots to a movie,
it is furthermore possible to observe the opposite drift directions of large and small scale
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vortices. This is a surprising result since linearly, ITG modes are the dominant large-
scale turbulence type only at kyρs . 0.2 —all remaining low-k modes are dominated by
TEMs which would drift in the same direction as the small-scale ETG modes.

Figure 4.26: Snapshot of the electrostatic potential at the outboard mid-plane for case (B) with
R0/LTi = 5.5, R0/LTe = 6.9, and R0/Ln = 0, showing a dominance of large-scale, isotropic ITG
vortices, and the same data with all kyρs < 2 modes filtered out, demonstrating the existence of
small-scale ETG streamers which are again subject to vortex stretching.

The flat ion temperature profile simulation reveals a completely different behavior
compared to that with low-k ITG turbulence. Instead of isotropic vortices, the contour
plots of the electrostatic potential exhibit radially elongated structures with a multitude
of different length scales, as can be seen in Fig. 4.27. This streamer-like behavior is
in line with previous (pure) ETG and TEM simulations [37, 38]. A comparison of
the filtered images in Figs. 4.24 and 4.26 on the one hand and Fig. 4.27 on the other
suggests that the medium-k and high-k fluctuations are now less affected by the large-
scale fluctuations than in the ITG cases. This statement is supported by the good
agreement of the electron thermal diffusivities in simulations restricted to k⊥ρs > 1 [79]
and in the current multiscale simulation, evaluated at kyρs > 1. In other words, it is
much easier for the small ETG streamers to evolve within the also radially elongated
TEM vortices than in the isotropic or zonal flow-like structures. The high-k transport
is thus boosted.

Having developed a first understanding of how small-scale modes interact with long-
wavelength turbulence in magnetically confined fusion plasmas, one can now move on to
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Figure 4.27: Electrostatic potential contour at the low-field side for case (C) with R0/LTi = 0
and R0/LTe = 6.9, and the same contour neglecting all modes kyρs < 2.

the second question (II) on page 85 regarding possible reasons for a decreasing electron
heat flux when approaching the linear ITG/TEM transition. The most obvious one is
that large fractions of the electron heat channel are here driven by ITG modes and not
by the electron turbulence types TEM and ETG. For example, a simulation without
density and electron temperature gradients but otherwise using similar parameters as
in (A) yields up to Qe/Qi = 10% which would indeed constitute a significant fraction
in simulation (A). Furthermore, such transport minima seem to occur quite often close
to linear mode transitions as has recently been reported by F. Merz for single-scale,
multi-mode turbulence simulations [36]. Finally, transport levels can also be analyzed
by means of cross phases between fluctuating quantities like φ1, n1, T‖1, or T⊥,1. The
underlying motivation is given by the flux average calculation itself, cf. Sec. 3.6, which
can alternatively be written as

Γ =
1

V ∆t

∫ ∆t

0
dt
∫
V

d3xn1σ(x, t)vxξ (x, t), (4.5)

see e.g. Ref. [98], and

Qσ =
1

V ∆t

∫ ∆t

0
dt
∫
V

d3x

(
3
2
T0σn1σ(x, t) +

1
2
n0σT‖1(x, t) + n0σT⊥1(x, t)

)
vxξ (x, t)

(4.6)

thus representing a correlation of two signals. Considering that here, vxξ (x, t) ∝ ikyφ1,
the fluxes will reach a maximum if the relative phases between φ1 and (n1, T‖1, T⊥1)
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are close to odd multiples of π/2. If the cross phases are, on the other hand, close
to multiples of π, no transport is observed. Results of a corresponding analysis are
presented in Fig. 4.28. Here, the cross phases between two fluctuating quantities are
evaluated for each ky mode by sampling all values obtained for each x and z grid point
in a histogram, which is then weighed by the corresponding amplitudes. In addition,
linear simulation results, in particular the maxima of the cross phases, are included as
dashed lines for comparison. Clearly, cross phases between φ1 and n1e (displayed in
the first column of Fig. 4.28) are linearly and nonlinearly unfavorable for the transport
fluxes since they exhibit values close to 0 and ±π, respectively. This finding is in line
with the relatively small particle fluxes found in all presented multiscale simulations. In
the large ITG case (A), both remaining cross phases, φ1 × T‖1 and φ1 × T⊥1, exhibit
almost identical distances to their respective nearest unfavorable phase angle at small
wave numbers. The corresponding heat transport fractions are indeed similar if the
factor of 1/2 appearing in Eq. (4.6) is not considered. At larger wave numbers, however,
they show different behavior. Linearly and nonlinearly, the phase between φ1 and T‖1
becomes less distinctive so that a maximum can hardly be identified. The dashed line
in Fig. 4.28 indicating the maximum cross phase is therefore to be handled with care,
and the deviations between both simulation types are not of major concern. The cross
phase α(φ1, T⊥1), on the other hand, first stays within a certain range which is close to
5π/6 before slowly transitioning to α ≈ 0 for kyρs & 1. This finding is different than
what might be expected from linear simulations. Here, a jump in phase angle to values
about π/2 − 4π/3 is observed at kyρs ≈ 0.5 where ITG modes become linearly stable.
Therefore, it seems that nonlinear ITG features dominate up to kyρs ∼ 1, thus wiping
out the intermediate-scale TEM dynamics and also reducing the ETG fluctuations. In
case (B), the low-k cross phases imply strong T‖ contributions. However, the T⊥1 fraction
is still larger due to higher amplitudes of the perpendicular temperature. A significant
high-k mode range, in particular 2 . kyρs . 5, possesses cross phases close to π/2 in
both cases, thus more or less compensating the amplitude reduction at these scales and
therefore causing the previously mentioned scale separation. While comparisons with
linear results are again difficult for φ1×T‖1 due to a broad linear cross phase distribution,
they reveal a similar behavior for the φ1 × T⊥1 cross phases as in case (A). Thus, ITG
features seem to nonlinearly extend up to kyρs ≈ 1 which is much higher than in the
linear simulation where a jump in phase angle is observed at kyρs ≈ 0.4. However, it is
also surprising that ITG mode features manifest themselves at all. Except for kyρs ≈ 0.2,
TEM turbulence should be dominant as has been shown in Fig. 4.11. Hence, the good
low-k agreement of the φ1 × T⊥1 phase angles with those of the strong ITG case rather
than the TEM-ETG case suggests strong subdominant ITG modes being present below
the dominant TEM. Finally, in case (C) where ITG modes are stable, the φ1×T‖1 cross
phase remains close to 0 while a value of about π/2 is found over a wide range of wave
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numbers for the φ1 × T⊥1 cross phase. The electron heat transport is thus almost solely
driven through this channel. Linear and nonlinear cross phases are found to bear strong
resemblance.

Although question (III) on differences or similarities between linear and nonlinear
features has now been answered partially, it will be addressed again in the next section
where experimentally accessible quantities are considered.

(A)

(B)

(C)

Figure 4.28: Cross phases (weighed by amplitude per ky mode) between electrostatic potential
and electron density and temperatures, plotted against phase angle α and binormal wave number
ky for the multiscale simulations (A) to (C). The dashed lines represent the respective maxima
of the linear cross phases.
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4.4 Density spectra

The collection of significant evidence in experiment and numerical simulation that high-
k modes, namely ETG modes, may exhibit substantial or even dominant contributions
to the electron heat transport under certain conditions – e.g., in plasmas with dominant
electron heating, relatively high β values, substantial equilibrium E × B shear, and
(internal or edge) transport barriers – triggered a serious effort in the fusion community
to extend existing experimental diagnostics into the high wave number regime (see, e.g.,
Refs. [99, 100, 101, 102]). Unfortunately, the list of observables does not include electron
temperature and electrostatic potential fluctuations (or their cross phases). Thus, it is
currently not possible to determine electron heat flux spectra directly. Instead, most
high-k diagnostics measure density fluctuation spectra. While the latter may serve as
an indicator of the role of turbulence on sub-ion-gyroradius scales, little is known about
their connection with electron heat flux spectra. Therefore, the following section is
dedicated to an investigation of several experimentally accessible quantities – as, for
instance, density or frequency spectra – by means of nonlinear gyrokinetic simulations
covering both electron and ion spatio-temporal scales self-consistently.

Up to now, most core turbulence simulations have been performed for situations in
which there was only one mode type driving the system. In these “pure” cases, the
density fluctuation spectrum in the binormal direction, S(ky) = 〈|n1(k, ω)|2〉x,z,ω, with
〈. . . 〉 denoting averages over quantities listed as indices, usually exhibits a maximum
at kyρs ∼ 0.1 − 0.2. The radial spectra S(kx) = 〈|n1(k, ω)|2〉y,z,ω, however, typically
peak at wave numbers close to zero if concentric circular flux surfaces are considered.
Therefore, a low-k anisotropy is always present. At higher wave numbers, a power law
S(kx,y) ∝ k−ax,y is typically seen in both perpendicular directions. Unfortunately, only a
small number of publications contain numerically determined density spectra explicitly.
Based on the few existing ones, a rough range for the power law exponent can be stated
by a = 3 − 5 (see, e.g., Refs. [103, 38, 104]) which is consistent with the experimental
findings a ∼ 3.5 ± 0.5 for intermediate wave numbers, 0.3 . kyρs . 1.0 (see, e.g.,
Ref. [100] and references therein). For pure ETG turbulence, a similar behavior has
been observed in numerical simulations, where ρs is replaced by the electron gyroradius
ρe [79, 105].

Examples of such “pure” turbulence simulation results are presented in Fig. 4.29.
In particular, they comprise highly resolved ITG modes, temperature gradient driven
TEMs with linearly stable ETG modes, and additionally ETG modes employing a box
size restricted to high-k wave numbers but retaining nonadiabatic ion dynamics. The
underlying physical parameters are chosen close to the multiscale parameters presented
in Sec. 4.2.4. The few exceptions are listed in the following. In the ITG simulation,
the gradients are R0/LT i = 6.92, R0/LTe = 0, R0/Ln = 0 whereas the TEM case uses
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Figure 4.29: Squared electron density fluctuations for pure ITG, TEM, and ETG turbulence
cases as a function of (a) radial and (b) binormal wave number, each averaged over the remaining
directions and time. Since exact characteristics depend strongly on the chosen parameters, these
results are only presented to demonstrate that the power law exponent is typically in the range
of 2− 4, but not necessarily isotropic.

R0/LT i = 0, R0/LTe = 6.92, R0/Ln = 0 and Te/Ti = 3. The settings for the ETG sim-
ulation are the CBC values extended to two species, therefore R0/LT i = R0/LTe = 6.92
and R0/Ln = 2.22.

In comparison to the previously stated range for power law exponents, the binormal
spectra are slightly flatter – which might be due to the use of different physical parame-
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ters or higher resolution. Furthermore, a bulge at high ky in the ITG density spectrum is
observed which may be caused by a nonlinearly excited ETG mode, an effect which has
been reported before, see Ref. [85]. Its absence in a simulation using the same parameters
except for a finite Debye length of λD = ρs supports this physical interpretation.

While “pure” turbulence simulations have the great advantage of minimizing the de-
gree of complexity in performing and analyzing the runs, they usually represent idealized
situations which are, in general, of limited value for direct comparisons with experi-
mental findings. Thus, a step towards more realistic simulations involves the study of
mixtures of two or more different turbulence types as they occur in the multiscale simu-
lations mentioned before. Corresponding density spectra can be found in Fig. 4.30. As
the ion temperature gradient is decreased, a bulge at kyρs ≈ 2 − 5 (corresponding to
kyρe ≈ 0.10−0.25) develops and becomes more and more pronounced. Since most of the
ETG-induced transport is located in this wave number range and the radial spectrum
does not show such a distinctive structure, it seems likely that these modifications of
the binormal spectra is caused by the ETG modes, cf. Fig. 4.29. Above and below this
wave number range, the observed power laws more or less match those known from pure
turbulence simulations, except for case (A), where an unusually small exponent appears
at the highest ky values. This is thought to be a numerical effect, however, which is ex-
pected to disappear with increased perpendicular resolution. In any case, a pronounced
bulge in the binormal density spectrum as occurring in case (C) violates the often em-
ployed assumption of isotropic density spectrum at high-k modes. This can clearly be
seen in contour plots, see Fig. 4.31, where the density spectra for cases (A) and (C)
are plotted in kx-ky space. While the former exhibits a more or less circular shape at
kxρs ∼ kyρs ∼ 1, the latter displays an elongation in binormal direction at those wave
numbers. The explanation for this finding can be derived from Sec. 4.3.1. Here, a similar
deformation has been observed in Fig. 4.21 which can be attributed to the existence of
ETG-scale streamers being hampered by the presence of strong ITG turbulence in the
case (A), whereas they are well-developed in case (C). Naturally, this anisotropy is not
restricted to turbulence mixtures and may also be present in pure turbulence cases, as
can be seen by comparing the kx and ky power law exponents in Fig. 4.29.

Such anisotropies at short wavelengths should be taken into account when comparing
numerical with experimental results. For example, it is quite common to average (numer-
ically derived) squared amplitudes over the radial direction when displaying ky spectra,
while several detectors in experiments consider only a narrow region about kx ≈ 0, see
for instance the description of the modified ALTAIR [106] coherent forward Thomson
scattering diagnostic in the Tore Supra device [100]. In order to facilitate comparisons
with results originating from such diagnostics, ky spectra for kx = 0 have been evaluated,
as well. They are shown in Fig. 4.32, and, as expected, they significantly differ from those
presented in Fig. 4.29b and Fig. 4.30b. Most obviously, the power law exponents change.
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Figure 4.30: Squared electron density fluctuations for the multiscale simulations (A) to (C) as
functions of (a) kx and (b) ky, averaged over the remaining directions and time.
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(A) (B)

Figure 4.31: Squared electron density fluctuations as functions of kx and ky from the multiscale
simulations (A) and (C).

One now finds exponents up to a ≈ 5, and if a fit is applied to the range 4 . kyρs . 7
in the pure ETG turbulence case, one even arrives at a ≈ 7.4. These values are quite
close to the experimental findings presented in [100, 107, 108] where a ≈ 3.5 was found
at low-k, and a ≈ 6.5 − 7 in the high-k regime. Such characteristics are actually in
good qualitative agreement with those of case (C), but the power law exponents do not
match. One finds a ≈ 1.9 at 0.15 < kyρs < 2 and a ≈ 5 at 4 < kyρs < 10. A possible
mechanism which might help reducing the difference is the Debye shielding since it may
steepen the spectrum at high wave numbers (see, e.g., Ref. [105]). Naturally, a change
of plasma parameters or magnetic geometry may also lead to better agreement. Similar
arguments apply to the radial direction where Gurchenko and co-workers report a power
law transition from a ≈ 2.5 to a ≈ 6.2 at kyρs ∼ 9 [109].

Summarizing, an essence to be taken from these multiscale simulations is that a ten-
dency to flatten density spectra in the kyρe & 0.1 region may be a signature for strong
ETG activity (note that for a realistic mass ratio of mi/me = 1836 or mi/me = 3675, this
corresponds to kyρs & 4 and kyρs & 6, respectively). If the long-wavelength dynamics is
dominated by ITG modes, the fall-off up to that point will still be substantial, however,
and presumably no high-k peaks are to be expected. Nevertheless, the ETG-induced
contributions to the total electron heat flux can be large since most of it is driven by the
positive correlations between fluctuations of the electrostatic potential and the electron
temperature, both of which tend to decay more slowly than the density fluctuations. The
respective spectra of these quantities are shown in Fig. 4.33 – however, they cannot be
measured in current experiments.

In a final remark, it shall be pointed out that power law investigations are an important
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Figure 4.32: Squared electron density fluctuations evaluated at kxρs = 0 and averaged over
the parallel direction and time for (a) pure turbulence cases, cf. Fig. 4.29b, and (b) turbulence
mixtures, cf. Fig. 4.30b.

tool in gaining insights into the nature of plasma turbulence. The two most famous
scaling laws in turbulence theory, Kolmogorov’s five-thirds-law for three dimensional
fluid turbulence and the dual cascade in two dimensional fluids developed by Kraichnan,
Batchelor and Leith, for instance, assume self-similarity, locality, and isotropy (the latter
only in the perpendicular directions). Clearly, almost all those requirements fail in the
scenarios discussed above. Furthermore, sharply defined injection and dissipation scales
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Figure 4.33: Squared (a) electrostatic potential and (b) perpendicular temperature fluctuations
averaged over the radial and parallel direction and time for the multiscale simulations (A) to
(C).

enclosing an inertial range do not exist since wide ranges of wave numbers are excited
linearly, cf. Fig. 4.3. Hence, further numerical investigations are required to provide new
bases for alternative analytical models explaining and predicting the power laws, see for
instance Ref. [110].
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4.5 Frequency spectra and phase velocities

Besides density spectra, spectra of (nonlinear) frequencies or phase velocities represent
additional experimentally accessible turbulence characteristics. As will be seen in the
following, they might help answering the third question raised in Sec. 4.3.1 on the sig-
nificance of linear features in saturated plasma microturbulence. Both frequencies and
phase velocities are often closely linked to the respective linear quantities, such that
relevant information can already be inferred from rather inexpensive linear gyrokinetic
simulations. On the other hand, nonlinear effects seem to change the dominant mode
within a certain k range with respect to the linear expectations, which has to be taken
into account when attempting to compare results from experiments and simulations.

Two different diagnostics have been added to the GENE post-processing tool in order
to access the desired nonlinear frequencies. The first one is based on the assumption
φ1(t) ∼ eiωt which considers just one strong dominant mode with frequency ω governing
the dynamics of fluctuating quantities. Hence, given a discrete time series of φ1,

ω ≈ Im
[
ln
(

φ(t)
φ(t−∆t)

)]
/∆t, (4.7)

can be applied to approximate the frequency. Naturally, this approach is convenient
for linear runs where the mode possessing the largest growth rate eventually determines
the entire dynamics. Thus, an identical algorithm is implemented in GENE itself to
calculate growth rate and frequency directly and stop (linear) initial value calculations as
soon as the values of all z and connected kx grid points lie within a predefined confidence
interval —assuming the frequencies follow a normal distribution.

Nonlinearly, this approximation has to be handled with care, however, especially if
two or more modes are strongly excited at the same wave number. In that case, the
resulting value is not necessarily identical with the dominant real frequency but closely
linked to the first moment of the frequency spectrum. However, Eq. (4.7) usually yields
a robust and easily accessible quantity which at least allows to determine, e.g., whether
a certain wave number is influenced more by ITG or by TE-ETG modes.

The corresponding results are shown in Fig. 4.34 together with the linear frequency of
the dominant mode. Clearly, nonlinear and linear frequencies agree well over a significant
region in ky space in simulation (C). On the contrary, both simulations with unstable
ITG modes (A,B) show differences when the ITG mode becomes linearly subdominant
at kyρs ≈ 0.4. Instead of changing sign, the nonlinear real frequency predominantly
remains positive up to kyρs ≈ 1.5. Possible explanations for this finding are strong,
linearly subdominant modes which become dominant nonlinearly due to different satu-
ration mechanisms or, on the other hand, modes which transfer some of their features
to neighboring scales.
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Figure 4.34: Dominant real frequency, defined as the median of Eq. (4.7) at kxρs = 0 for the
multiscale simulations (A) to (C) with (blue) and without (red) consideration of the nonlinearity.
The error bars denote the one standard deviations.
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Figure 4.35: Linear growth rates and real frequencies of the dominant and the first subdominant
mode at kxρs = 0 in cs/R0 in the small-to-medium ky, range using the same parameters as in
the multiscale simulations (A) and (B).

Hence, the eigenvalue solver is now employed to investigate where modes characterized
by positive frequencies are subdominantly excited. As can be seen in Fig. 4.35, an upper
limit can be found around kyρs ≈ 0.5 which rules out the first explanation mentioned
above, at least for kyρs & 0.5. At very high wave numbers, the nonlinear behavior reflects
the linear one again to good approximation. Furthermore, the one standard deviations
are shown in Fig. 4.34 as error bars. With increasing wave number, they become larger;
thus, it is more difficult to assign certain frequencies to small-scale fluctuations. This
may, in part, be due to cross-scale interactions with large-scale turbulence [84]. Never-
theless, in all cases shown here, the existence of ETG turbulence at high wave numbers
is clearly reflected in the frequency spectra.

As already mentioned in the beginning of this section, a second approach to examine
nonlinear frequencies is available. Here, time traces of fluctuating quantities are analyzed
by means of Fourier transforms. However, the stochastic behavior of turbulence does not
provide periodicity in time, which is why windowed FFTs employing either Hamming
or Hanning apodization functions being well-known from signal processing theory, see
e.g. Ref. [111], are used. A disadvantage is the decreased resolution in frequency ∆ω =
2π/∆t, since the full time range is typically split into several windows. Since the results
do not differ significantly from those shown in Fig. 4.34, they are only presented for one
multiscale simulation (B) in Fig. 4.36.

Finally, phase velocities vph = ω/ky can be computed on the basis of the aforemen-
tioned frequencies. For the parameters under consideration, they are bound to the range
|vph| . 5 csρs/R0. While case (C) exhibits almost a constant value of −3.5 csρs/R0, the
situation changes when ITG modes are present. Here, a positive phase velocity up to
5 csρs/R0 is observed at kyρs . 1− 2, while higher wave numbers exhibit vph < 0.
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Figure 4.36: Frequency spectra of |φ1(kx = 0)| vs. binormal wave number ky for multiscale
simulation (B).

4.6 Beyond the prototypical parameter sets

As stated in the beginning of this chapter, several physical effects have been neglected
in the foregoing multiscale investigation for the sake of simplicity. For instance, only
electrostatic plasmas in a simplified geometry have been considered. While the former
assumption may have only a minor influence when investigating low-β discharges, the
latter might potentially result in significant quantitative as well as qualitative differences,
see, for example, Ref. [27].

Therefore, simulation results using parameters and geometries from actual experi-
mental discharges shall be discussed in the following. In particular, the ohmic DIII-D

discharge #126848 at t = 1800 ms and ρ/α = 0.35 is considered, with data kindly pro-
vided by T. Rhodes. Here, ρ = ρtor = (Ψtor/πBref)1/2 replaces r as the radial coordinate
since noncircular flux surfaces are considered, cf. Fig. 4.37, and α = ρ|separatrix is compa-
rable to the minor radius. The corresponding metric coefficients are extracted from the
specified MHD equilibrium using the TRACER code by P. Xanthopolous [26] which also
provides Gene parameters. The latter are the safety factor q0 = 1.34, the magnetic shear
ŝ = 0.66, the normalized electron temperature gradient ωTe = 2.6093, the ion tempera-
ture gradient ωT i = 1.9531, the temperature ratio Ti/Te = 0.6717, and βref = 2.015·10−3.
For now, only a single ion species (deuterium) is taken into account since impurities are
not expected to contribute significantly in the plasma core and would thus only require
more computational effort. Therefore, ne = ni and ωn ≡ ωne = 0.667 ≈ ωni is assumed.
Taking further into account the inverse aspect ratio analogon, ε = ρ/R0 ∼ 0.16, it be-
comes apparent that the full parameter set is comparable to the multiscale parameter
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Figure 4.37: Flux surfaces at different ρtor for DIII-D discharge #126848 at t = 1800 ms. The
flux surface used for the local simulations is highlighted. Source: [112]

set (B). Indeed, linear growth rates and real frequencies shown in Fig. 4.38 look quite
similar to the results for said case. As before, two maxima can be identified. The one at
low k can be attributed to ITG modes, and the one at high k to ETG modes, following
the same argument as before. In between and presumably below the ITG mode, a TEM
or TEM/ETG hybrid mode is linearly unstable.

Nonlinear results in terms of heat diffusivity spectra – calculated with respect to the
noncircular geometry as described in Appendix B.2 – are presented in Fig. 4.39. Clearly,
they resemble previous findings gained with a reduced parameter set. In particular, the
ion heat channel is basically (> 80%) driven by kyρs < 0.5 modes, whereas the electron
heat diffusivity exhibits contributions of more than 40% originating from kyρs > 0.5 and
almost one quarter at kyρs > 1. The numerical parameters of the underlying simulation
are the following. In the parallel (z) direction, 24 grid points are used which is higher than
in the ŝ-α case due to the more complicated magnetic field structure. The perpendicular
box size is chosen to be (Lx, Ly) = (64ρs, 64ρs) and 192× 384 real space grid points are
chosen along these directions. In (v‖, µ) space, 32×8 grid points are used, as before. The
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Figure 4.38: Linear growth rate (a) and frequency (b) vs. binormal wave number for discharge
126848 using a mass ratio of mi/me = 3675.12.
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Figure 4.39: Ion (a) and electron (b) heat diffusivities for #126848, multiplied by the binormal
wave number vs. binormal wave number. Here, a mass ratio of mi/me = 400 is used, and
collisions as well as a Debye length are neglected.

mass ratio is again reduced to mi/me = 400 which complicates a direct comparison with
the experimental values. Assuming a deuterium mass for the ions implies unnaturally
heavy electrons with a mass being 4.6 times larger than in reality. The heat diffusivities
are then evaluated χsim

e ∼ 3.1 m2/s for electrons and χsim
i ∼ 7.0 m2/s for ions. Contrary

to the previously discussed CBC simulation, the difference to the measured diffusivities,
χexp
e ∼ 0.6 m2/s and χexp

i ∼ 1.2 m2/s [112], is not one or two orders of magnitude but still
a factor of 5 − 6. Again, a strong dependence on the turbulent transport to the actual
gradient settings might serve as a possible explanation. For example, lowering the ion
temperature gradient ωT i = 1.953 by 20% almost bisects the ion heat diffusivity χsim

i to
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3.7 m2/s. Unfortunately, χsim
e increases to 6.8 m2/s in this case. Thus, if uncertainties

in the gradients would be responsible for the mismatch, a two-dimensional – or, if the
temperature ratio is also varied, three-dimensional – nonlinear parameter scan would
be required. While such studies have been successfully accomplished when considering
only low-k turbulence, full multiscale investigations of this type are not feasible at the
moment.

Naturally, the actual numerical parameter choice is a possible candidate for the trans-
port overestimation, as well. Increasing, for instance, the very low radial resolution may
raise the high-k electron heat transport level since ETG modes are probably underre-
solved. On the other hand, this effect might be compensated partly by considering a
finite Debye length. The latter is evaluated to λD ≈ 1.3 ρe for the discharge under in-
vestigation and is therefore linearly stabilizing the highest mode numbers, as can indeed
be observed in Fig. 4.38. Computing the Debye length as defined by Eq. (2.82) for
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Figure 4.40: Example for the maximum linear growth rate dependence on the Debye length.
Here, a pure ETG mode in ŝ-α geometry is considered.

ITER-like parameters, namely Bref ≈ 5 T and ne ≈ 1020 m−3, leads to a slightly higher
value of λD ≈ 1.6 ρe. For pure ETG mode simulations in ŝ-α geometry, this would cause
a reduction of about 1/3 in the maximum linear growth rate as is shown in Fig. 4.40.
Coming back to the DIII-D results, Fig. 4.38 reveals the influence of collisions which
are not considered in the nonlinear simulation due to the additionally required compu-
tational effort. Most likely, collisions will reduce the transport at low and intermediate
wave numbers since TEMs are obviously most susceptible to such modifications. This
finding is in agreement with simple explanations arguing that a significant fraction of
trapped particles might be (more quickly) turned into passing ones as soon as binary
collisions become important. Unfortunately, a detailed investigation of possible effects
on turbulence covering several scales has to be left for future work. Finally, an external
E×B shear might, in principle, reduce the low-k turbulence, as shown in Ref. [84].

The aim of this section was to demonstrate the general possibility of significant high-k
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transport contributions in more experimentally adapted simulations than those used for
the basic multiscale study. Assuming that a fraction of ∼ 11% originating from kyρs > 2
will most likely not be affected even by a total omission of TEMs and that collisions and
external shear flows tend to decrease the low-k transport level by a significant factor,
the original purpose can be considered fulfilled.

4.7 Chapter summary and conclusions

Motivated by recent experimental and theoretical findings on the importance of high-k
ETG modes, several nonlinear gyrokinetic simulations employing the Gene code have
been dedicated to study the behavior of these modes in the presence of long-wavelength
turbulence, in particular ITG and TE modes. For this purpose, two spatial and temporal
scales connected to these turbulence types had to be covered self-consistently. The re-
sulting numerical problem turned out to be on the verge of present day’s supercomputing
capabilities and has therefore rarely been addressed in the past. Using three different
prototypical sets of parameters, it has been found that for realistic ion heat (and par-
ticle) flux levels and in the presence of unstable ETG modes, there tends to be a scale
separation between ion and electron thermal transport. In contrast to the former, the
latter may exhibit substantial or even dominant high-wave-number contributions car-
ried by ETG modes and short-wavelength TEMs. Compared to TEM simulations with
linearly stable ETG modes, it becomes clear that ETG modes may potentially influence
the transport spectrum over a surprisingly wide range, down to kyρs ≈ 0.5 in the cases
studied here.

In terms of experimentally accessible spectral quantities, it was found that multiscale
simulations involving unstable ETG modes tend to exhibit a flat region in the binormal
wave number spectrum of density fluctuations at kyρe & 0.1. At both longer and shorter
wavelengths, power law decays are observed which are more or less in line with respect
to earlier, single-scale simulation results. In the case of a TEM-ETG turbulence mixture
(with stable ITG modes), a remarkable level of agreement with recent experimental find-
ings, claiming that the power law exponent becomes much larger at kyρs & 1, has been
observed. However, the results do not match quantitatively, most probably because sev-
eral potentially important physical effects (like collisions, magnetic fluctuations, realistic
geometry, or a finite Debye length) were neglected here for simplicity. It shall also be
noted that most experimental measurements were done close to the edge, while all mul-
tiscale simulations in this chapter employed typical core parameters and geometries. In
addition, increasing the mass ratio to realistic values would lead to a further separation
of ion and electron scales and would therefore likely alter the results quantitatively.

Based on the investigations on the influence of the mass ratio on the growth rate max-
ima presented in this chapter, qualitative findings are nevertheless expected to remain
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valid, in particular the fact that high-k modes may contribute significantly to the elec-
tron heat transport, although the density spectra may exhibit a rather fast decay. This
effect might be even further enhanced in situations where ITG modes are hampered and
thus subdominant or (nonlinearly) stable as in plasmas, e.g., with dominant electron
heating, relatively high β values, substantial equilibrium E×B shear, or internal trans-
port barriers. Simulations for specific fusion devices employing more complete physics
are left for future work.

On the other hand, the experimental detection of a flat region in the binormal wave
number spectrum of the density fluctuations at around kyρe & 0.1 would be a good
indication for the existence of strong ETG activity. Currently, several diagnostics are
under development or being extended to capture the small scales, so that comparisons
between experiments and numerical results might become possible in the near future.
Naturally, such investigations would not need to be restricted to density spectra but could
also be based on measurements of frequencies or phase velocities at short wavelengths,
as has been shown above.
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Chapter 5

Benchmarks and first results including

nonlocal effects

The present chapter is dedicated to the verification of the global Gene implementation
and the presentation of first nonlocal results. The first task is performed by means of
several benchmarks—either with analytical test cases or – if they already exist – with
other codes solving the same or very similar sets of equations. In the following, several
corresponding studies with increasing complexity will be presented.

5.1 The local limit

A first obvious test is a direct comparison of both implementations available in Gene,
i.e. the approach based on spectral methods and the one employing finite differences and
interpolations in radial direction instead. Naturally, this practice cannot be utilized for
the verification of nonlocal contributions, but ensures that both versions produce similar
results when using the same physical parameters and boundary conditions. However,
examples are not shown because they constitute a sub-ensemble of the next, more elab-
orate test. Here, radially varying profiles are included and ρ∗ is then decreased until the
global code eventually reaches the local limit. As a side effect, first judgments on the
validity of local simulations for specific devices can be drawn.

For this purpose, two different profile types also used in other codes, e.g. Orb5 [113,
114], will be employed in the following. The first one is defined by

T̂i,e = exp
[
−κT ε∆T tanh

(
(x− x0)/a

∆T

)]
,

n̂i,e = exp
[
−κnε∆n tanh

(
(x− x0)/a

∆n

)]
(5.1)

and will be called the peaked (gradient) profile. The second type is characterized by flat
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top gradient profiles and is defined by

T̂i,e =

cosh
(

(x−x0)/a+δT
∆T

)
cosh

(
(x−x0)/a−δT

∆T

)
−κT ε∆T/2

and n̂i,e =

cosh
(

(x−x0)/a+δn
∆n

)
cosh

(
(x−x0)/a−δn

∆n

)
−κn ε∆n/2

.

(5.2)

Here, δT and ∆T (and δn, ∆n, respectively) are characteristic profile widths as demon-
strated in Fig. 5.1. Furthermore, κT = max (R0/LT ) and κn = max (R0/Ln) denote
the maximum temperature and density gradient values and ε is the inverse aspect ratio
between minor radius a and major radius R0. They will be set similar to the CBC pa-
rameters used before, i.e. κT = 6.96, κn = 2.23 and ε = 0.36. In addition, the shape of
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Figure 5.1: Illustration of the normalized background temperature profiles together with the
normalized gradients described in Sec. 5.1. The density profiles are chosen similar but may have
different widths and amplitudes.

the flux surfaces is assumed to be circular and concentric with a safety factor profile of
q(x/a) = 0.498(x/a)4−0.466(x/a)3+2.373(x/a)2+0.854 so that q0 = q(x0 = 0.5) = 1.42
matches the CBC value.

5.1.1 ρ∗ scan with fixed box size in ion gyroradius units

In a first test, the radial simulation box length is kept fixed with respect to the gyro-
radius. Hence, with decreasing ρ∗ parameter, it becomes smaller and smaller compared
to the minor radius a so that eventually only a very narrow region about a central flux
surface at x/a = 0.5 is taken into account. Naturally, such simulations should be close
to those performed with a local code if periodic boundary conditions are assumed. The
resulting growth rates using adiabatic electrons are presented in Fig. 5.2. Note that
each simulation has been performed at the wave number being closest to kyρs = 0.3.
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5.1 The local limit

However, the exact value cannot be chosen in general since the quantization condition,
see Sec. 3.3.3, has to be fulfilled. The resulting deviations tend to be larger with increas-
ing ρ∗ values which explains the jagged behavior in this region. All in all, a very good
agreement with the local result can be observed for different profiles and widths at small
ρ∗. However, at larger ρ∗ values both code versions start to diverge. For instance, at a
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Figure 5.2: Growth rate of an ITG mode with adiabatic electrons at kyρs ≈ 0.3 as function of the
inverse ρ∗ value using (a) the peaked and (b) the flat temperature and density gradient profiles.
The latter are additionally employing ∆T,∆n = 0.025 as second characteristical width. Here,
the radial simulation box length is kept fixed with respect to the gyroradius and the number
of grid points is set to (a) (64 × 16 × 48 × 16) and (b) (64 × 16 × 64 × 32) in the (x, z, v‖, µ)
directions. The local code result using the maximum gradients is shown as thin, black line.

ratio of ρ∗ = 1/200 which can be reached in medium-sized tokamaks, the differences are
about 12 − 16% when using the peaked profile with ∆T = 0.3 and 0.2. Going further
to even narrower gradient profiles with ∆T = 0.1, the deviation increases to almost
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30%. However, such strongly peaked profiles are unlikely to be realized in experiments.
Changing to another profile shape, as shown in Fig. 5.2(b), does not significantly al-
ter these findings. For example, employing the peaked profile with ∆T = 0.2 and the
flat shape with δT = 0.1 yields growth rates which deviate by less than 5%—only at
ρ∗ = 1/50 a significant difference can be observed.

5.1.2 ρ∗ scan with fixed box size with respect to the minor radius

A second approach is to fix the radial simulation box size with respect to the macroscopic
length, in particular the minor radius. A change in ρ∗ thus corresponds to a change of the
gyroradius. This effect has to be considered when choosing the number of grid points
since the resolution has to be adjusted for each ρ∗ value due the strong correlation
between the gyroradius and the actual turbulent length scale. The resulting growth
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Figure 5.3: Growth rate of an ITG mode with adiabatic electrons at kyρs = 0.3 as function
of inverse ρ∗ using the peaked temperature and density profile. Here, the radial simulation box
length is kept fixed with respect to the minor radius a and (16×48×16) grid points are employed
in the (z, v‖, µ) directions while the number of radial grid points is adjusted to each ρ∗ value.
The local code result using the maximum gradients is shown as thin, solid black line for kxρs = 0
and as black, dashed line for kxρs = −0.038.

rates of ITG simulations using adiabatic electrons are shown in Fig. 5.3. Again, a
fast convergence towards the local results can be observed with decreasing ρ∗ values.
While the difference for the narrowest gradient profile with ∆T,∆n = 0.1 amounts, for
instance, to more than 80% at ρ∗ = 1/50, it is already decreased to 30% at ρ∗ = 1/200.
However, at smaller ρ∗ only a very slow convergence compared to the first ρ∗ test is
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observed. On the other hand, it might seem astonishing that this kind of test converges

(a) (b)

Figure 5.4: Poloidal cross-section of the electrostatic potential for (a) ρ∗ = 1/100 and (b)
ρ∗ = 1/1000. Although temperature and density profiles are kept constant, a decreasing eddy
size is observed.

towards the linear result at all, given that only a very narrow region possesses the same
gradient drive as in the local simulation. A possible explanation is given by Cowley and
co-workers [48] who estimate the radial extend of a turbulent eddy to scale as ∼ √ρsLT .
Thus, with decreasing gyroradius and constant temperature gradient profile, the vortices
become more and more localized about the maximum gradient as can be seen in Fig. 5.4
where poloidal cross-sections are presented for two different settings of ρ∗, namely 1/100
and 1/1000. Indeed, the ratio of the radial widths is here given by 3.1 ≈ √10. The
mentioned localization about the maximum gradient might now help to explain the
increasing growth rate since the eddies now ”feel” a stronger drive. On the other hand,
the square root dependence on ρs is a first but probably not comprehensive explanation
for the slower convergence. An additional issue is, for instance, a slight tilting of the
eddies which can be seen in Fig. 5.4. As explained in Ref. [49], such finite ballooning
angles θ0 are linked to finite kx values by kx = −ky ŝθ0. Indeed, the agreement between
the local and the nonlocal code gets even better when those effects are considered.
For instance, kx can be estimated to be kxρs ≈ −0.0377 for the narrowest profile at
ρ∗ = 1/500. The corresponding local result is included in Fig. 5.3 as thin, dashed line.
Obviously, the agreement with the global growth rates at small ρ∗ is improved.
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Chapter 5 Benchmarks and first results including nonlocal effects

5.1.3 Kinetic electrons and electromagnetic effects

Up to now, all ρ∗ tests have been performed using adiabatic electrons and thus without
any magnetic effect. However, the consideration of both kinetic electrons and A‖1 does
does not change the general behavior as can be seen in Fig. 5.5. Here, the electron

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  100  200  300  400  500

1/ρ∗

γ
/

[c
s/

R
0]

ρ∗ scan I
ρ∗ scan II

Figure 5.5: Growth rate at kyρs ≈ 0.284 as function of the inverse ρ∗ value. Here, kinetic
electrons with a proton-electron mass ratio are considered as well as a finite βref of 2.5%. The
temperature and density gradient profiles are peaked with ∆Ti,e,∆n = 0.3. The radial simulation
box is kept fixed with respect to (I) the gyroradius and (II) the minor radius. Here, the number
of grid points is set to (128 × 16 × 64 × 16) n the (x, z, v‖, µ) directions. The local code result
using the maximum gradients is shown as thin, black line.

and ion temperature and density gradient profiles are chosen to be peaked, i.e. following
Eq. (5.1) with ∆T,∆n = 0.3. The mass ratio is set to mi/me = 1836 as in hydrogen
plasmas. Furthermore, βref = 2.5% so that kinetic ballooning modes dominate. Gen-
erally, both resolutions in the (x, v‖) directions need to be increased to higher values if
kinetic electrons are considered. The most likely reason for this is the electron behav-
ior at mode rational flux surfaces [115], i.e. flux surfaces with low-order rational safety
factor. Here, magnetic field lines connect to themselves after few poloidal turns which
allows the electrons to become non-adiabatic. In the present case, at least (128 × 64)
grid points had to be taken in the (x, v‖) directions.

Based on these local limit tests, one can state that the applicability of local codes to
medium or large-scale tokamaks is strongly supported in the linear regime. However,
the particular convergence behavior depends on the chosen profiles.
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5.2 Rosenbluth-Hinton test

5.2 Rosenbluth-Hinton test

A well established test for gyrokinetic codes is based on the time evolution of an initial
E × B zonal flow impulse in a toroidal plasma with circular flux surfaces and a large
aspect ratio. In the absence of collisions and any nonlinear coupling, a rapid but damped
oscillation of the geodesic acoustic mode (GAM) [116] is observed which relaxes to a finite
stationary value AR so that

〈φ1〉FS(x, t)
〈φ1〉FS(x, t = 0)

= (1−AR) e−γGt cos(ωGt) +AR. (5.3)

In the local limit and for adiabatic electrons, the residual has been analytically predicted
by Rosenbluth and Hinton [117, 118] to be

AR =
1

1 + 1.6 q(x)2/
√
x/R0

. (5.4)

Since zonal flows are identified as one of the most important saturation mechanisms in
several parameter regimes, for instance in ITG mode dominated turbulence, it is widely
accepted that this test has to be passed by gyrokinetic codes. For the local Gene version,
detailed benchmark results are available in [14] and [41] where the latter work focuses
on the influence of additional hyperdiffusion terms.

In the following investigation, the same physical parameters as in Sec. 5.1.1 are
employed—except for the temperature and density profiles which are taken to be con-
stant as in the analytic calculation. The number of grid points in the (x, z, v‖, µ) di-
rections is (63 × 16 × 128 × 16) and the box lengths are chosen to be (Lx, Lv‖ , Lµ) =
(48ρref , 3 vT i(x0), 9T0i(x0)/Bref). The resulting residual levels at the center of the sim-
ulation domain are plotted in Fig. 5.6 for several ρ∗ values. While the deviation from
the Rosenbluth-Hinton prediction is significant at large ρ∗, it becomes less than 10% at
1/ρ∗ & 200. In contrast to the former case, the latter appears to have a flatter safety
factor profile throughout the simulation domain, thus being more consistent with the
work by Rosenbluth and Hinton where a constant q has been assumed. However, a
perfect agreement between the numerical and analytical results is never achieved in this
test. Nevertheless, taking into account the approximations performed by Rosenbluth
and Hinton, e.g. the large aspect ratio assumption, the benchmark can be considered to
be successful.

A further example employs parameters being similar but not identical to those pre-
sented in Ref. [113]. In particular, they prescribe a linear safety factor profile q(x/a) =
0.7 + 0.9 · (x/a) and an inverse aspect ratio of a/R0 = 1/10. With this choice, an even
better agreement with the analytic prediction can be expected, although ρ∗ is taken to
be 1/40. The numerical parameters are the same as before, except for the radial direc-
tion where 48 grid points are taken along a box length of Lx = 38ρref . Contrary to local
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Figure 5.6: Rosenbluth-Hinton residual (black dots and line) evaluated at the radial center
position of the simulation box for different settings of ρ∗. The red line indicates the Rosenbluth-
Hinton prediction.
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Figure 5.7: Rosenbluth-Hinton test at two different radial positions using a linear safety factor
profile. The red line indicates the residual as predicted by Rosenbluth and Hinton.

codes where exactly one safety factor q and radial position x/R0 tuple is chosen and
thus just one residual can be investigated per simulation, a global code automatically
provides results for a wide parameter range. Therefore, time traces taken at two different
radial positions are presented in Fig. 5.7. In both cases, the damped oscillations end up
in residual levels which are indeed in very good agreement with the prediction made in
Eq. (5.4). Furthermore, the frequencies gained by fitting the time traces to Eq. (5.3)
deviate by less than 5% from another analytical result,

ωG
R0

cs
=

√
(7/τe + 4)AG

2
(5.5)

with τe = Te/Ti and AG =
[
1 + (2(23 + 16τe + 4τ2

e ))/(q(7 + 4τe))2
]
, which can be found
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Figure 5.8: Rosenbluth-Hinton residual (a) and oscillation frequency (b) evaluated at all radial
positions except for the two outermost grid points. The black dots represent numerical results
whereas the red solid line illustrates the analytical prediction. Note that negative values are
suppressed.

in Ref. [119]. Motivated by these results, another plot is shown in Fig. 5.8 where the
residual level and the oscillation frequency are displayed for all radial positions except for
the two outermost grid points. Clearly, both values agree well with the predictions within
0.3 . x/a . 0.8. The deviations at the remaining radial positions can be attributed to
the Dirichlet boundary condition. Considering the relatively large reference gyroradius
ρs = 0.025 a employed in this simulation, it is obvious that gyroaverages at intermediate
to high µ values, which might partially be calculated outside the simulation domain, may
exhibit an influence even at radial positions being far away from the boundaries. Indeed,
simulations at smaller ρ∗ (ρ∗ = 1/100, 1/200), possess a narrower transition region but
do not show such excellent agreement. For instance, numerical and analytical residual
levels deviate up to about 20% at x/a = 0.3. Hence, the remarkable coincidence found
in the present case seems to be restricted to a very narrow parameter regime.

5.3 Linear benchmarks

Having successfully passed the Rosenbluth-Hinton and local limit tests, more compli-
cated scenarios involving more comprehensive physical effects can be studied.

In this section, direct comparisons between Gene and the global particle-in-cell (PIC)
code Gygles [120] solving the linear gyrokinetic equations are presented. Once again,
parameters similar to the CBC set are employed so that ε = a/R0 = 0.6043 m/1.6714 m =
0.3616. The temperature and density profiles of the gyrokinetic ions and adiabatic
electrons are assumed to follow Eq. (5.1) with gradient peak values of κT = 6.9589
and κn = 2.2320 at x0 = 0.5 a. The characteristical widths, see Fig. 5.1, are set to
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∆T = ∆n = 0.3. Extracting from the DIII-D discharge 81499 which constitutes the
CBC basis, a temperature of T0(x0) = 1.9693 keV and a reference magnetic field of
Bref = 1.9 T allows for estimating ρ∗ ≈ 1/180 in case of pure Deuterium plasmas. The
geometry is chosen to be circular concentric as before with a parabolic safety factor
profile of

q(x/a) = 0.854 + 2.4045 (x/a)2. (5.6)

The resulting growth rates and frequencies gained by Gygles [121] and Gene are
presented in Fig. 5.9 and show excellent agreement except for the highest ky modes.
However, this deviation can be explained by the different treatment of gyroaverage and
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Figure 5.9: A comparison of growth rates (left) and real frequencies (right) calculated by the
linear, gyrokinetic PIC code Gygles and the global Gene version for an adiabatic electrons test
case further described in the text.

field operators at these wave numbers. In the Gygles version at hand, a long wave-
length approximation, k⊥ρ� 1, is applied so that Larmor radius effects are kept up to
second order (k⊥ρ)2 while all orders are considered in Gene.

The numerical Gene parameters employed in the present linear study are the follow-
ing. At each binormal wave number, the radial box size is set to Lx = 160ρs and 16 grid
points are used in the parallel direction. All remaining grid sizes and resolutions vary.
For instance, at low wave numbers, i.e. kyρs < 0.5, (160 × 32 × 16) grid points in the
(x, v‖, µ) directions and a velocity space box of (Lv‖ , Lµ) = (3 vT i(x0), 9T0i(x0)/Bref)
turn out to be sufficient while at higher wave numbers up to (256×64×128) grid points
and (Lv‖ , Lµ) = (5 vT i(x0), 18T0i(x0)/Bref) are required.

In general, it is not surprising that the velocity space resolution and the box sizes have
to be increased compared to typical local code settings since velocity space structures
vary with the thermal velocity or the temperature, respectively. Taking into account the
fixed normalization to a reference temperature, cf. Sec. 2.2.3, the according boxes have
thus to be enlarged to cover the structures at high temperatures, and highly resolved
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to consider the small structures at low temperature. However, only a fraction of the
simulation domain centered around the gradient peak actually needs to be considered
in this argument. Otherwise, an estimate based on the present total temperature vari-
ation by a factor of about 4 would demand for higher resolutions and larger box sizes
than actually required. Indeed, local simulations confirm regions with R0/LT i . 3.3 to
be linearly stable so that underresolved grids at those radial positions may exhibit a
negligible influence in a global investigation.

Up to now, only explanations for a general increase of grid sizes and resolutions have
been given which are not considered to exhibit a ky dependence. However, the lin-
ear benchmark revealed an additional requirement for high resolutions at higher wave
numbers—especially in µ direction. This effect is most likely caused by oscillating terms
appearing in the gyroaverage operator, Eq. (3.46), which contain kyρσ(x, z, µ). In nu-
merical µ integrations being performed, e.g. in the field equations, those terms clearly
raise the necessary number of according grid points if the oscillations become faster with
higher ky.

5.4 Nonlinear benchmark

In 2008, a test case for nonlinear gyrokinetic simulations with adiabatic electrons has
been defined within the framework of the European Integrated Tokamak Modeling (ITM)
benchmarking effort [122] and is now employed to check the nonlinear Gene behavior.

The underlying physical parameters are very similar to those used in the linear Gygles-
Gene comparison so that only important deviations are listed in the following. In par-
ticular, they comprise the temperature and density profiles since their gradients are not
peaked but flat over a wide radial range. In fact their shapes bear strong resemblance
to those shown in Fig. 5.1(b). However, they are not identical since the corresponding
function is

ω(T,n)(r) = κ(T,n)

(
1− sech2 [(r − ri)/(a∆r)]− sech2 [(r − ra)/(a∆r)]

)
(5.7)

with ri/a = 0.1, ra/a = 0.9 and ∆r = 0.04.
The benchmark itself describes a nonlinear relaxation problem, i.e. no additional

sources or sinks are applied. As mentioned in Sec. 3.7, the instability is then first
expected to develop due to the linear ITG drive being prescribed by the initial gradi-
ent profiles. As soon as nonlinear couplings sufficiently excite the zonal components, a
further increase is prevented by the nonlinear saturation mechanisms. In addition, the
linear drive is reduced due to a flattening of the temperature profile.

The chosen observable is the volume averaged ion thermal diffusivity as a function
of the average ion temperature gradient in the radial domain 0.4 < r/a < 0.6. Sam-
pling both values at successive time points generates a cloud of points as can be seen
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in Fig. 5.10. The following stages can be identified: At the beginning, the thermal dif-

Figure 5.10: Volume averaged ion thermal diffusivity in units of χGB = csρ
2
s/a vs. the nor-

malized ion temperature gradient. The points represent both values at successive time points.
Here, nonlinear Gene simulation results are merged with the results of other gyrokinetic codes
published in [122] (modified and printed with permission).

fusivity grows at a fixed temperature gradient, thus clearly reflecting the linear phase.
As soon as the nonlinearity becomes important, an overshoot occurs which is followed
by a first saturation phase where the diffusivity and the gradient both fluctuate around
a constant value for some time. Eventually, the ion temperature profile starts to relax
and thus lowers the heat diffusivity.

All these features have been found within the ITM benchmarking effort by the nonlin-
ear, gyrokinetic PIC codes Orb5, Gysela [123, 124], and Elmfire [125] and can well
be reproduced with Gene, see Fig. 5.10. However, the uncertainties given by the point
clouds are quite large. Furthermore, different time windows have obviously been used,
since no full relaxation is observed although, e.g., Orb5 employed a floating bound-
ary condition at the inner boundary. Gene, on the other hand, is currently operating
with Dirichlet boundary conditions which fix the temperatures at the boundaries. A
corresponding plot of the total ion temperature and its normalized gradient is shown in
Fig. 5.11. In this context, two particular features shall be pointed out. Firstly, the max-
imum relative deviation from the original background profile is here about 20%. This
relaxation test is therefore at risk to violate the limits set by the gyrokinetic ordering.
Secondly, a gradient reduction is only observed in the center of the simulation domain.
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Figure 5.11: Total temperature (left) and normalized temperature gradient (right) calculated as
shown in Eq. (3.89) (a) at t = 0R0/cs and (b) averaged over the last 15% of the full simulation
time.

At the boundaries, however, the gradients become very large since no additional damping
terms are applied.

Comparison with local code results

Besides global code results, Fig. 5.10 additionally includes the LLNL fit which is based
on the results of several US gyrokinetic flux-tube codes [43] and which can well be
reproduced with the local Gene version [122]. With all point clouds being close to
this fit line, one could be led to state a good agreement between the nonlocal and local
simulations. However, the local flux-tube codes typically employ the ŝ-α model in the
Cyclone benchmark case whereas all global codes in Fig. 5.10 used the circular model.
A difference would therefore be expected. In Ref. [27] it is argued that the agreement
is observed for CBC parameters since geometry and finite ρ∗ effects cancel each other
coincidentally. In order to investigate these claims, one could either perform a nonlinear
ρ∗ scan or simply implement a radially dependent ŝ-α model into the global code. The
second alternative is chosen in the following and the results are presented in Fig. 5.12.
Here, volume averages are plotted as functions of the averaged temperature gradients for
two different Gene simulations. The one labeled (a) is based on the circular equilibrium
whereas the ŝ-α model has been employed for curve (b). In both simulations, peaked
gradient profiles with ∆T,∆n = 0.3 have been initialized and Krook damping terms
have been applied in order to reduce the fluctuations at the boundaries. Furthermore,
the maximum gradient has been set to κT = 6.96. Although both simulations seem to
coincide for a certain time period, they clearly differ in the end. While the simulation
using a circular geometry relaxes to temperature gradients of about 5.4, a value exactly
matching the local result is observed for the ŝ-α model. With regard to the Dimits shift,
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Figure 5.12: Volume averaged ion thermal diffusivity in units of χgB vs. the normalized ion
temperature gradient for simulations with (a) the circular and (b) a radially dependent ŝ-α
model. The LLNL fit result is included for comparison as curve (c).

these findings are in line with the linear thresholds presented for local Gene simulations
in Ref. [27] since they similarly decrease from ωcrit

T ≈ 4.2 in the ŝ-α case to ωcrit
T ≈ 3.

Changing from the circular geometry to a radially varying ŝ-α model thus clearly the
affects global code results, which provides further evidence for the coincidental agreement
between local and global codes in Fig. 5.10.

5.5 Sources and Sinks

The implementation of additional terms acting as sources and sinks has been discussed
in Sec. 3.7. In this section, corresponding examples will be presented.

5.5.1 Application of the Krook damping term

The nonlinear benchmark presented above exhibited large temperature gradients close
to the boundaries, see Fig. 5.11. Such strong linear drives may cause high fluctuation
amplitudes which may potentially become inconsistent with the Dirichlet condition, the
latter enforcing vanishing amplitudes at the boundaries. Although the benchmark case
seems to be numerically stable, it shall nevertheless be used to study the effect of the
Krook damping term. A corresponding plot is presented in Fig. 5.13. Here, two buffer
zones are established by the ν̂Krook profile, labeled by (d). The maximum amplitude is set
to 5 cs/R0 at both boundaries, and is thus several times larger than the maximum linear
growth rate. However, only about 4% of the simulation domain are directly affected at
each side since the damping term profile quickly decreases by means of a fourth order
polynomial. The time-averaged temperature gradient profiles with and without Krook
term demonstrate the desired behavior. While normalized gradient values of up to 16 are
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Figure 5.13: Normalized temperature gradient profile averaged over t = 100−115R0/cs without
(b) and with (c) a Krook damping term. For comparison, the initial background profile (a) and
the Krook amplitude profile ν̂Krook (d), cf. Eq. (3.90), are presented as well.

observed at the outer boundary in the simulation without any damping, they are kept
far below the linear threshold in the same radial region if the Krook term is switched
on. Within the center, both profiles bear strong resemblance so that similar heat fluxes
can be expected. Indeed, the heat diffusivities shown in Fig. 5.14 are quite close during
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Figure 5.14: Volume averaged (0.4 < x/a < 0.6) ion thermal diffusivity vs. the normalized ion
temperature gradient. Time trace (a) denotes the simulation without any numerical damping as
shown in Fig. 5.10 while a Krook term is considered in (b). For comparison, the LLNL fit [43] is
included as curve (c).

the last 10% of the simulation where the time average has been evaluated. However,
during the gradient relaxation period they differ significantly which has to be considered
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in future simulations. According diagnostics – measuring, for instance, the particle and
energy modifications caused by the Krook term – are currently under development and
will facilitate further insights soon.

5.5.2 Effects of the heat source

The basic features of the heat source which has been introduced in Sec. 3.7 will be ex-
plored in the following. Motivated by current experiments where the plasma heating
is typically localized within a certain radial domain, the source profile is chosen to be
Gaussian shaped and close to the magnetic axis. A corresponding plot can be found
in Fig. 5.15. Here, two temperature profiles are shown, as well. The black dotted line
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Figure 5.15: Temperature and source term profiles. Here, T̂0i denotes the initial temperature
profile, 〈T̂i〉t the profile including the flux surface averaged fluctuations averaged over t = 371−
421R0/cs, ν̂src the heat source profile, and ν̂Krook the Krook term profile.

represents the initial profile while the blue solid line indicates the time averaged tem-
perature including the flux surface averaged fluctuations. The latter is clearly increased
and exhibits a maximum value at the same position as the heat source. With the den-
sity keeping a fixed value, the principle operational capability of the source term can be
considered to be confirmed. However, it shall be noted that the presented simulation
has not developed a quasi-stationary state. Furthermore, a large relative difference is
observed between the initial equilibrium temperature and the temperature propagated
in time. In order to avoid inconsistencies with the gyrokinetic ordering, one could, for
instance, stop the simulation once the deviations become significant and continue with
an correspondingly updated equilibrium. In addition, a more advanced set of sources
and sinks and floating boundary conditions might help to avoid these inconsistencies.
All these suggestions are going to be addressed in the near future.

However, although the physics might not be fully consistent, the simulation already re-
veals some interesting features which could be of possible relevance for future flux-driven
simulations. The heat flux, for instance, exhibits outward propagating structures which
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Figure 5.16: Radial heat flux Qi in units of QgB as function of the normalized radius and time.
The tilted stripes indicate an outward propagation of the heat flux amplitudes.

can be observed by means of tilted stripes in Fig. 5.16. Interestingly, they bear strong
resemblance with so-called avalanches which have been reported in global simulations
including an additional toroidal momentum, see Ref. [126]. The blue colored inward
transport may be surprising at first sight. However, with a temperature maximum not
coinciding with the inner boundary, strong negative temperature gradients appear and
inward transport becomes not unlikely.

5.6 Chapter summary

The newly developed global Gene version has been extensively tested and benchmarked.
In particular, they comprised ρ∗ scans, Rosenbluth-Hinton tests, as well as linear and
nonlinear inter-code benchmarks. Within these simulations, it has been confirmed that
linear local simulations are justified for medium- to large-scale fusion devices. Fur-
thermore, global simulations with slightly different magnetic geometries have been pre-
sented which support arguments for a coincidental agreement of local and global codes in
nonlinear simulations employing the CBC parameters. Finally, the general operational
functionality of the implemented numerical and physical source and sink terms has been
demonstrated. Along this lines, avalanches have been observed which are first examples
for nonlocal effects which might appear in future flux-driven simulations being adapted
to specific experiments.
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Chapter 6

Conclusions

In the course of this thesis work, the gyrokinetic plasma turbulence code Gene has been
fundamentally extended by the consideration of radial temperature, density and mag-
netic geometry variations. These modifications which comprise changes of the underlying
equations as well as the numerical schemes are essential for the future investigation of
nonlocal phenomena. In addition, Gene has been utilized to study the behavior of
small-scale fluctuations within large-scale plasma microturbulence, a topic which is of
great interest e.g. for future fusion devices where the small-scale turbulence is expected
to be strongly driven.

Below, a brief review of the most important findings is presented for each chapter.
Furthermore, an outlook on possible future research topics is given.

6.1 Summary

Gyrokinetic theory

The gyrokinetic theory underlying the description of microturbulence throughout this
thesis has been briefly reviewed. Hereafter, the remaining steps towards the final system
of equations implemented into the plasma turbulence code Gene have been presented.
In contrast to previous publications deriving similar equations for earlier Gene versions,
special attention has been paid to the consideration of full radial profiles of tempera-
ture, density and geometry. Furthermore, a more general phase space volume has been
included which is expected to show improved energy conserving properties in case of
significant electromagnetic effects.

Upgrading GENE to a nonlocal code

Former versions of Gene were using the local approximation exclusively. One major
purpose of this thesis was to relax this constraint and implement the aforementioned
profiles to allow for the investigation of nonlocal effects. Since most of the numerical
schemes had been highly optimized for the local version, almost all core parts of the code
had to be redesigned and rewritten. For instance, new boundary conditions in the radial
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and parallel directions had to be designed, and the Fourier representation in the radial
direction had to be abandoned, thus requiring new interpolation schemes. Furthermore,
a first model for heat sources and sinks has been implemented.

Coupled ITG/TEM and ETG driven turbulence

Given the expected strong electron heating by α particles in future fusion devices, as well
as the experimental and theoretical indication of a possible relevance of electron temper-
ature gradient driven modes, the urgent question arises whether high-k turbulence may
contribute substantially to the electron heat transport in the presence of ion-gyroradius-
scale turbulence. Due to the enormous computational demands of simulations covering
electron and ion space and time scales self-consistently, it is currently virtually impossi-
ble to perform extensive parameter scans. Therefore, only a few prototypical parameter
sets have been chosen in this thesis. In the first case – which was motivated by a popu-
lar benchmark – small-scale turbulence indeed appeared to be hampered by large-scale
dynamics. The ion transport level, however, turned out to be unrealistically high. By
lowering the low-k drive in order to achieve levels which agree better with experimental
findings, a tendency towards a scale separation between ion and electron heat transport
has been observed for the first time. In contrast to its ion counterpart, the electron heat
channel may thus exhibit substantial or even dominant high wave number contributions
carried by ETG modes and short-wavelength TEMs. Therefore, the work presented in
this thesis might help to understand residual electron heat fluxes in cases where the
low-k drive becomes small compared to the ETG drive, as for instance in discharges
with dominant electron heating, high β, or internal transport barriers. Furthermore,
density and frequency spectra have been presented which might enable experimentalists
to identify two-scale signatures.

First nonlocal investigations with Gene

An extensive verification effort has been performed for the newly developed global code.
Along these lines, various benchmarks – as for instance Rosenbluth-Hinton tests, ρ∗

scans, and direct comparisons with other gyrokinetic codes – have been passed success-
fully. Gene can thus be considered to be fully operational for nonlocal investigations. In
terms of the comprehensiveness with respect to physical effects, it therefore represents
by now one of the leading gyrokinetic codes worldwide. First results presented here
have highlighted the importance of the choice of profile shapes when comparing local
and global code results. In addition, the influence of the employed magnetic equilibrium
model has been confirmed. Finally, the general operational functionality of the imple-
mented source and sink terms has been demonstrated which represents an important
step on the way to flux driven simulations.
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6.2 Outlook

Coupled turbulence types on different scales

The prediction of significant electron heat fluxes originating from small scales even in
the presence of large scale turbulence constitutes an important contribution to the dis-
cussion on the relevance of ETG driven modes in future fusion devices. Hence, further
investigations including more complete physics, e.g. a realistic mass ratio or a realistic
MHD equilibrium, are justified. However, an obvious obstacle within this context is
the extremely challenging computational demand which can only be satisfied by state-
of-the-art supercomputers. Additionally, a close cooperation with experimental groups
working on the extension of their diagnostics into the high-k regime is desirable in order
to facilitate comparisons with experimental data.

Nonlocal effects and further code development

The implementation of additional radial temperature, density, and magnetic geome-
try variations allows for the investigation of many new areas of interest which could
not be addressed with Gene before. For instance, it is now possible to contribute to
on-going discussions on local profile shearing [127, 128], avalanches [126], turbulence
spreading [129], and the related discussion on the limitations of gyro-Bohm scaling, see
e.g. Refs. [130, 128]. The further development of sources and sinks and the resulting
possibility of performing flux-driven simulations may facilitate comparisons with exper-
iments.

From the practical point of view, however, optimization of performance and paral-
lelization are additional crucial issues. For instance, a modification of the velocity space
representation or normalization in order to avoid the large number of grid points which
is currently required, see Sec. 5.3, would probably result in a considerable improvement.

Furthermore, in order to perform simulations for small devices – i.e. large ρ∗ – addi-
tional terms could be implemented, e.g. the v‖ nonlinearity.

Coupled simulations

Another project which involves further macroscopic scales is the coupling of the Gene

code with transport solvers, see e.g. Ref. [131]. The advantages are expected to be
twofold. On one hand, several (local) flux tube simulations could be run in parallel at
different radial positions. The results would be passed to the transport solver which
would evolve the profiles and restart the local code with the updated temperatures and
densities (along with the respective gradients) until a converged state is reached. Such
a scenario would provide, for instance, an extended benchmark case for the global code.
On the other hand, it is conceivable to employ the transport solver’s ability to treat the
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long-time evolution of what appears to be an equilibrium for the gyrokinetic codes. In
this context, a transport solver could even be coupled to the global code which would
then provide transport fluxes at predefined radial positions as soon as a quasi-stationary
state is reached.
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Appendix A

Implementation details of the gyrokinetic

Vlasov-Maxwell system in GENE

As already mentioned in Sec. 2.2, Eq. (2.60) is not exactly the version of the gyroki-
netic Vlasov Equation which is implemented in Gene . However, the modifications
are only minor and will therefore be presented in this appendix. In a first step, Γσ
shall be replaced by the modified distribution function and potential. Starting with
the definitions of Γσ = ∇F1σ + F0σ

T0σ
∇ (qσφ̄1 + µB̄1‖

)
, gσ = F1σ + qσ

c Ā1‖
v‖
T0σ

F0σ, and
ξ1 = φ1 − v‖

c A1‖ + µ
qσ
B1‖, it is easy to show that

Γσ =∇g1σ +
qσ
T0σ

F0σ∇ξ̄1−

qσ
c
v‖Ā1‖

F0σ

T0σ

[
∇n0σ

n0σ
+
∇T0σ

T0σ

(
mσv

2
‖/2 + µB0

T0σ
+

1
2

)
− ∇B0

B0

µB0

T0σ

]
.

Further evaluation and normalization yields for the single components

Γ̂σ,x =∂x̂ĝ1σ +
q̂σ

T̂0σ

F̂0σ∂x̂
ˆ̄ξ1 +

ρref

Lref
v̂Tσ(x0)q̂σv̂‖ ˆ̄A1‖

F̂0σ

T̂0σ

[
ωn + ωT

(
v̂2
‖ + µ̂B̂0

T̂0σ/T̂0σ(x0)
− 3

2

)

+
∂x̂B̂0

B̂0

µ̂B̂0T0σ(x0)
T̂0σ

]
= ∂x̂ĝ1σ +

q̂σ

T̂0σ

F̂0σ∂x̂
ˆ̄ξ1 +O

(
ρref

Lref

)
,

Γ̂σ,y =∂ŷ ĝ1σ +
q̂σ

T̂0σ

F̂0σ∂ŷ
ˆ̄ξ1,

Γ̂σ,z =∂ẑ ĝ1σ +
q̂σ

T̂0σ

F̂0σ∂ẑ
ˆ̄ξ1 +

q̂σ

T̂0σ

F̂0σv̂Tσ(x0)v̂‖µ̂ ˆ̄A1‖∂ẑB̂0
T̂0σ(x0)
T̂0σ

.
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Neglecting the term in Γσ,x which is smaller by a factor ρref
Lref

, Eq. (2.60) becomes

∂ĝ1σ

∂t̂
= −

{
1
Ĉ
B̂0

B̂∗0‖
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2
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. (A.1)

Finally, the gyrokinetic Vlasov equation is presented in terms of the abbreviations em-
ployed in Gene in order to facilitate direct comparisons with the source code.

∂ĝσ

∂t̂
=pdchibardy ∂ŷ ˆ̄ξ1 + pdchibardx ∂x̂ ˆ̄ξ1

+ pdg1dx ∂x̂ĝ1σ + pdg1dy ∂ŷ ĝ1σ

+ pdf1dz ∂ẑF̂1σ + pdphidz
(
∂ẑ

ˆ̄φ1 + mu Tjqj ∂ẑ ˆ̄B1‖

)
+ pnl

(
−∂x̂ ˆ̄ξ1∂ŷ ĝ1σ + ∂ŷ

ˆ̄ξ1∂x̂ĝ1σ

)
+ trp

∂F̂1σ

∂v̂‖
+ f0 contr (A.2)

with the modified distribution function and field

ĝ1σ = F̂1σ − papbar ˆ̄A1‖

ˆ̄ξ1 = ˆ̄φ1 − vTvpar ˆ̄A1‖ + mu Tjqj ˆ̄B1‖, (A.3)
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the following prefactors as implemented in Gene (revision 1106)

pdchibardy = −edr − curv qjTjF0 Ky + press qjTjF0

pdchibardx = −curv qjTjF0 Kx

pdg1dx = −curv Kx

pdg1dy = −curv Ky + press
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Ĉ
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2
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and the additional abbreviations
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2
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133



Appendix A Implementation details of the gyrokinetic Vlasov-Maxwell system in GENE

134



Appendix B

Geometry related issues

B.1 Volume and flux surface averages

Several physical quantities as, for instance, particle and heat transport levels are often
compared by means of their volume or flux surface averages. This section therefore
provides details on the corresponding calculations and furthermore contains a discussion
on differences between the local and the global code version.

A volume average of an arbitrary function f(x) is defined as

〈f〉V ≡ 1
V

Lx∫
0

Ly∫
0

Lz∫
0

f(x)J(x) dxdydz (B.1)

where x = (x, y, z) and the flux tube volume is

V ≡
Lx∫
0

Ly∫
0

Lz∫
0

J(x)dxdydz (B.2)

with the Jacobian J taken from Eq. (2.38). Similarly, a flux surface average is constructed
by

〈f〉FS ≡ ∂

∂V

∫
V
f(x) dV ′ =

1
AFS

∫
f(x)J(x) dydz (B.3)

where the integration limits have been suppressed for the sake of readability and where
AFS(x) ≡ ∫ J(x) dydz as mentioned in Sec. 2.4.1. A simplification can be employed, if
only axisymmetric devices are considered. Here, all geometry related quantities become
independent of y and thus

〈f〉V =
∫
f(x)J(x, z) dxdydz
Ly
∫
J(x, z) dxdz

and 〈f〉FS =
∫
f(x)J(x, z) dydz
Ly
∫
J(x, z) dz

. (B.4)

A discretization on a regular grid applied to all directions and a Fourier transformation
in the y coordinate yield

〈f〉V =

∑
x,z f(x, ky = 0, z)J(x, z)∑

x,z J(x, z)
and 〈f〉FS =

∑
z f(x, ky = 0, z)J(x, z)∑

z J(x, z)
. (B.5)
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While both averages are closely related via 〈f〉V = 〈〈f〉FS(x)〉x in the local code where
the Jacobian does not vary in the radial direction, they need to be carefully distinguished
in the global code and in the corresponding post-processing.

For some applications, e.g. for interfaces to transport codes, the volume and flux
surface area themselves are employed. They read in discretized form

V =
Lx
Nx

∑
x

AFS =
Lx
Nx

Ly2πNpol

Nz

∑
x

∑
z

J(x, z) (B.6)

where Lz has been identified by the number of poloidal turns Npol ∈ N times 2π in the
last step. Considering the normalization introduced in Sec. 2.2.3, the normalized volume
is given in units of ρ2

refLref while the flux surface area is normalized to ρrefLref .

B.2 Diffusivities in arbitrary geometries

The diffusivities introduced in Sec. 3.6 have to be slightly modified if noncircular geome-
tries or Shafranov shifts are considered. In theses cases, Eq. (3.88) has to generalized
to

Qxσ = −n0σχσ∇x · ∇T0σ = −n0σχσ |∇x|2 ∂T0σ

∂x
. (B.7)

By furthermore assuming χσ to be constant on flux surfaces, one arrives at

〈Qxσ〉FS = −n0σχσ〈gxx〉FS
∂T0σ

∂x
or χ =

〈Qx〉FS

n0σT0σωT 〈gxx〉FS
, (B.8)

respectively. The volume averaged diffusivity which is often employed in this work is
then given by

〈χ〉V =
〈 〈Qx〉FS(x)
n0σ(x)T0σ(x)ωT (x)〈gxx〉FS(x)

〉
V

. (B.9)

In the local code, it can be further simplified to

〈χ〉V =
〈Qx〉V

n0σT0σωT 〈gxx〉FS
. (B.10)

Note that in the global code, n0σ, T0σ and ωT are often corrected by the flux surface
averaged part of the fluctuations, and that the same arguments naturally hold for the
particle diffusivity Dσ.
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Erläuterungen, bspw. zu numerischen Problemstellungen und Parallelisierungstechniken,
danken. Sie waren für das Gelingen dieser Arbeit ausgesprochen hilfreich. Ebenso bin
ich Dr. Tilman Dannert zu Dank verpflichtet, der mir bei ersten Schritten mit Gene

half und dem einige der Kernalgorithmen zur Einbindung nichtlokaler Effekte, auf denen
diese Arbeit in großen Teilen beruht, zu verdanken sind. Die Entwicklung der globalen
Erweiterung des Gene Codes wurde und wird in einer sehr harmonischen Zusammen-
arbeit mit dem CRPP, Lausanne, betrieben. Besonders hervorheben möchte ich hierbei
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die vielen interessanten physikalischen Fragestellungen, aber auch für die ständige Er-
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Dr. Florian Merz, Thilo Hauff, Daniel Told, Dr. Tilman Dannert und Xavier Lapillonne
einen großen Dienst erwiesen.

Zuletzt gilt mein Dank meinen Eltern und Geschwistern, die mir während meiner
gesamten Ausbildung immer ermunternd zur Seite standen und somit auch zum Gelingen
dieser Arbeit beigetragen haben.


	Introduction
	Fusion energy
	Magnetic confinement fusion
	Plasma modeling
	Multiple scales in plasma microturbulence
	Thesis Outline

	An introduction to and an application of gyrokinetic theory
	Basic ideas of gyrokinetic theory
	The gyrokinetic ordering
	Elimination of the gyroangle dependence

	The gyrokinetic Vlasov equation
	The field aligned coordinate system
	Splitting of the distribution function
	Normalization

	Velocity space moments of the particle distribution function
	The gyrokinetic field equations
	The Poisson equation
	Ampère's law

	Collisions
	Chapter summary

	Upgrading GENE to a nonlocal code
	Local vs. global simulations
	Geometry
	Axisymmetric systems
	Arbitrary geometries

	Flux tube approach and boundary conditions
	Radial boundary condition
	Boundary condition in y direction
	Parallel boundary condition

	The gyroaverage operator
	Global representation
	The local limit

	Further numerical schemes
	Time stepping scheme
	Spatial and velocity space derivatives
	Numerical integration
	The nonlinearity

	Observables
	Global code specific observables

	Sources and sinks
	Chapter summary

	Multiscale simulations
	Introduction
	Historical context

	Simulation details
	Linear results
	Numerical parameters for nonlinear multiscale runs using a realistic mass ratio
	Reduced ion/electron mass ratio
	Final parameter choice

	Nonlinear simulation results
	Heat and particle transport

	Density spectra
	Frequency spectra and phase velocities
	Beyond the prototypical parameter sets
	Chapter summary and conclusions

	Benchmarks and first results including nonlocal effects
	The local limit
	rho* scan with fixed box size with respect to the ion gyroradius
	rho* scan with fixed box size with respect to the minor radius
	Kinetic electrons and electromagnetic effects

	Rosenbluth-Hinton test
	Linear benchmarks
	Nonlinear benchmark
	Sources and Sinks
	Application of the Krook damping term
	Effects of the heat source

	Chapter summary

	Conclusions
	Summary
	Outlook

	Implementation details of the gyrokinetic Vlasov-Maxwell system in GENE
	Geometry related issues
	Volume and flux surface averages
	Diffusivities in arbitrary geometries

	Bibliography
	List of publications
	Acknowledgment

