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Zusammenfassung
In modernen Fusionsexperimenten wird die Güte des Plasmaeinschlusses in einem
magnetischen Feld größtenteils durch turbulente Prozesse bestimmt. Tiefergehen-
des theoretisches Verständnis in diesem Bereich trägt somit zur Weiterentwicklung
heutiger und zukünftiger Fusionsexperimente bei. Ziel der Fusionsforschung ist es,
Kernfusion als sichere und langfristige Energiequelle nutzbar zu machen und so zur
nachhaltigen Energieversorgung der Menschheit beizutragen. Besonders in großen
Maschinen, wie dem zur Zeit im Aufbau befindlichen Experiment ITER oder einem
zukünftigen Fusionskraftwerk, wirkt die Plasmaheizung vorwiegend auf die Elektro-
nenspezies. Es ist daher wichtig, unser Verständnis des Elektronenwärmetransportes
zu erweitern. Neben Mikroinstabilitäten auf der Skala von Elektronengyroradien
kann auch ein stochastisches Magnetfeld zu erhöhtem Elektronenwärmetransport
beitragen. Als mögliche Quelle solcher stochastischen Magnetfelder wird seit den
1970er Jahren die sogenannte ’Microtearing Mode’ diskutiert. Diese Namensgebung
resultiert aus deren Eigenschaft die Magnetfeldtopologie aufzubrechen, um klein-
skalige magnetische Inseln zu formen. Die zugrundeliegende Plasmainstabilität und
ihr nichtlineares, turbulentes Verhalten wird in dieser Arbeit untersucht. Zu diesem
Zweck werden Simulationen mit dem Turbulenzcode Gene durchgeführt.
Die zugrundeliegenden gyrokinetischen Gleichungen sind nicht nur geeignet, um

turbulente Prozesse zu beschreiben, sondern eignen sich auch zur Berechnung des
neoklassischen Transports. Letzteres beinhaltet interessante Physik auf relativ lan-
gen Zeitskalen, stellt aber außerdem einen exzellenten Test für den Landau-Boltzmann
Stoßoperator dar, der in Gene implementiert ist. Es zeigt sich, dass eine genauere
Berücksichtigung einer gewissen Symmetrie (der Selbstadjungiertheit) zu einer bes-
seren Übereinstimmung mit dem etablierten neoklassischen Code Neo führt. Der
Vergleich mit Neo verwendet die lokale Näherung, doch auch der radial globale
Stoßoperator wird erfolgreich gegen den PIC code Orb5 getestet. Die durchgeführ-
ten neoklassischen Studien sind auch für die Berechnung von Mikroturbulenz von
Belang, da Stoßprozesse beispielsweise einen wichtigen Beitrag zum Instabilitäts-
mechanismus von Microtearing Moden leisten.
Unter Berücksichtigung von Plasmaparametern, die realistisch für das Fusions-

experiment ASDEX Upgrade sind, finden sich Microtearing Instabilitäten in Gene
Simulationen. Diese Parameter lassen sich auch auf gewisse ITER Szenarien über-
tragen. Die relevanten Wellenlängen liegen leicht oberhalb des Ionengyroradius, es
zeichnen sich jedoch wesentlich feinere radiale Strukturen ab. Obwohl nichtlineare
Simulationen wegen dieser Anisotropie extrem anspruchsvoll sind, gelingt es erstma-
lig, Microtearing-Turbulenz in gyrokinetischen Simulationen zu berechnen. Über-
steigen die Magnetfeldfluktuationen eine gewisse Amplitude, so lässt sich der re-



sultierende Elektronenwärmefluss gut mit einem einfachen Diffusivitätsmodell nach
Rechester und Rosenbluth beschreiben, das stochastische Magnetfelder voraussetzt.
Die Magnetfeld-Diffusivität wird in den Simulationen gemessen, zeigt sich aber auch
rein graphisch in Poincaré-Schnitten.
Insgesamt etablieren unsere Berechnungen Microtearing-Turbulenz als weitere

mögliche Ursache für den erhöhten Elektronenwärmetransport in Tokamak-Fusions-
experimenten.



Summary
In modern fusion experiments, plasma turbulence is responsible for the radial heat
transport and thus determines the plasma confinement within the magnetic field
of tokamak devices. Deeper theoretical understanding is needed to explain today’s
and future fusion experiments. The goal of fusion research is to establish nuclear
fusion as a safe and sustainable energy source. In future fusion power plants, and
also in large fusion experiments like the presently constructed ITER, plasma heating
predominantly affects the electron species. The reason is of fundamental nature: the
collisional cross section of fast ions that are produced by the heating systems is larger
for thermal electrons than for thermal ions. It is thus essential to correctly predict
electron thermal transport, but the overall picture still continues to evolve. Besides
microinstabilities on the electron gyroradius scales, also a stochastized magnetic
field can contribute to enhanced electron transport. Already since the 1970’s, the
so-called microtearing instability is discussed as a source of stochastic fields. This
microinstability deserves its name for breaking up the magnetic field structure by
forming small-scale magnetic islands. The linear microtearing instability and its
nonlinear, turbulent behavior is investigated in this thesis by means of numerical
simulations with the gyrokinetic turbulence code Gene.
The underlying gyrokinetic equations are not only appropriate to predict turbulent

transport, but also describe neoclassical transport that is drift-kinetic in nature.
Besides revealing interesting physics on long time scales, solving the neoclassical
equation serves as an excellent test for the numerical implementation of the collision
operator in Gene. Focusing on the local limit, it is found that a modification
of this implementation that considers certain symmetries is necessary to obtain a
satisfactory agreement with the well-established drift-kinetic neoclassical code Neo.
Also the radially global implementation of collisions is successfully benchmarked
against the PIC code Orb5. Validation of the collision operator is of relevance for
microturbulence simulations as well, since collisional effects, for example, play an
important role in the instability mechanism of microtearing modes.
Considering plasma parameters that are realistic for the fusion experiment

ASDEX Upgrade, a standard tokamak device, microtearing modes are found in
Gene simulations. These parameters are also relevant for certain ITER scenarios.
The most unstable toroidal wavelength lies somewhat above the ion gyroradius, but
much finer radial scales are developed. Although this inherent multiscale feature
causes nonlinear simulations to be extremely challenging, such gyrokinetic simula-
tions of microtearing turbulence succeed for the first time in the coarse of this work.
An outstanding feature of these simulations is that the radial transport of (electron)
heat is well described by a simple diffusivity model, as long as the magnetic field



fluctuations exceed a certain threshold. The employed Rechester-Rosenbluth type of
model crucially relies on magnetic field stochasticity. To show that this condition is
fulfilled, the value for the magnetic field diffusivity is computed from the simulation
data.
Since the resulting transport level is found to be experimentally relevant, our

simulations establish microtearing turbulence as an additional candidate to explain
enhanced electron thermal transport in standard tokamaks.
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1. Introduction

1.1. The physics of plasmas

P
lasma constitutes the fourth state of matter and is generally defined as an
ionized gas. Unlike in a neutral gas, electromagnetic forces play a central
role in plasmas. This opens a field of research that offers great variety

and diversity. A large amount of matter in the universe is in the plasma state.
The interstellar medium consists of a dilute and cold plasma, developing extremely
large scale magnetic fields. Stars themselves, including our Sun, are formed of
more condensed, but very hot plasmas. In the core of the Sun, temperatures of 15
million Kelvin are reached. On Earth, plasmas are found in nature—lightnings are a
popular example—as well as in laboratory experiments. Every-day applications like
fluorescent lamps are ubiquitous, but also high-tech applications of plasma physics
exist, one example is plasma etching of surfaces. Moreover, the methods of plasma
physics prove useful to trap anti-protons, thereby helping to study the fundamental
symmetry between matter and antimatter.[1]
Plasmas of all scales, in space and in the laboratory, often exhibit nonlinear redis-

tribution of energy in a turbulent way. Supernova explosions, for example, drive tur-
bulence in the interstellar medium. Such processes have become experimentally ac-
cessible with radio-wave measurements. Also the development of astrophysical phe-
nomena like jets and accretion discs is largely determined by plasma turbulence.[2, 3]
Due to a much larger number of degrees of freedom, plasma turbulence is more di-
verse than its fluid counterpart. Importantly, plasma turbulence plays a key role in
one of the most complex technologies that are presently developed—fusion power
plants. Extreme temperatures of more than 100 million Kelvin are reached in fusion
experiments. The goal of fusion research is to establish nuclear fusion as a safe,
sustainable, and environmentally friendly energy source for humanity.1 It turns
out that energy confinement—that is related to energy gain—is mainly limited by
plasma turbulence.[5] Accurate predictions thus require theoretical understanding of
the underlying physics and the overall picture continues to evolve. In the following,
we motivate fusion research in magnetic confinement devices and develop the basic
concepts of energy (and particle) transport in these devices.

1Interesting material on the scientific progress in fusion research can be found on the ITER
website Ref. [4]
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Chapter 1 Introduction

1.2. Fusion energy
Fusion is the energy source in the core of stars. Beginning with the lightest element,
hydrogen, nuclear fusion is also responsible for the formation of heavier elements, up
to iron. Energy is released, because these heavier elements are often more strongly
bound by nuclear forces. We note in passing that even heavier elements are created
in Supernova explosions of stars in which fusion reactions ceased after all fuel had
been burned. Our Sun is a comparably small star, but nevertheless every second
it turns 600 million tons of hydrogen into helium, thereby releasing an enormous
amount of energy. The main nuclear reaction achieving this is called proton-proton
chain. Involving a variety of sub-reactions, it can be summarized as

4 1
1H→ 4

2He + 2e+ + 2νe− + 2γ + 25.7 MeV .

In the first half of the 20th century, the discovery of nuclear fusion to be responsible
for energy production in the Sun—and therefore enabling life on Earth—was indeed
astonishing. Ever since, scientists aim at harnessing fusion energy on Earth. Because
the proton-proton chain involves the weak nuclear interaction to transform protons
into neutrons, this reaction is too slow to be efficiently realized on earth. Instead,
the most promising fusion reaction begins with the hydrogen isotopes deuterium
and tritium,

2
1D + 3

1T→ 4
1He +1

0 n + 17.59 MeV ,

creating a helium nucleus that carries 20% of the released energy and a neutron
that gets 80% of the released energy, according to the mass ratio. The D-T fusion
reaction is actually the most efficient fusion reaction which exists.

The potential of fusion energy

As a matter of fact, the world-wide energy consumption is predicted to increase by a
factor of five until to end of the century. Today’s energy production mostly relies on
the combustion of fossil fuels, releasing enormous amounts of CO2 into the Earth’s
atmosphere. It is commonly accepted that severe environmental problems are the
result, including climate change. As a reaction to these circumstances, governments
of many countries agree on saving energy and support programs to research technolo-
gies to overcome combustion of fossil fuels. One established alternative technology
are nuclear fission power plants that are virtually free of CO2-release. They are,
however, controversially discussed because the danger of severe accidents exists2

and long-lived radioactive waste is produced. Another alternative is given by regen-
erative energy forms like wind, water, and solar power. Despite great recent progress
in that area, it is difficult to provide sufficient supply with these technologies alone.

2Chernobyl 1986: control over chain reaction was lost.
Fukushima 2011: after shut-down of chain reactions, the cooling system broke down that is
required to remove the afterheat that emanates from further decay of the fission products.
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1.2 Fusion energy

The reason is mainly seen in the need for massive energy storage to be installed
in order to balance daily and seasonal fluctuations in wind strength and sunshine
duration. Further development of techniques to greatly exceed the installed (and
easily accessible) storage capacity is needed.
In that framework, fusion power plants enter the discussion as another energy

source. The main motivation for fusion research, despite all technological difficulties,
is the superior efficiency of the D-T fusion reaction and its safety. The energy
released in a single fusion event exceeds that of a single combustion reaction by
a factor of a million. Moreover, fusion energy is virtually free of CO2 release and
the danger of an uncontrolled chain reaction does not exist. The fusion reaction
itself does not produce radioactive materials. Radioactive isotopes are created in
the reactor wall, which has to be stored (only) for a few decades after the reactor
is shut down. This storage is thus much less problematic than that of radioactive
waste of a fission power plant.

Fusion requirements

The main challenge of initiating nuclear fusion is to overcome the repulsive Coulomb
forces between two positively charged nuclei. The strong nuclear forces that bind
the helium nucleus only have a range of the order of 10−15 m. The corresponding
potential barrier that the fusion partners have to overcome is as large as a few
100 keV.3 Highly energetic collisions are required that are commonly realized by
strongly heating a deuterium tritium mixture. Fortunately, the quantum mechanical
tunneling effect yields an enhanced probability of fusion reactions even at an average
kinetic energy of 10-20 keV, well below the height of the Coulomb barrier. Ultimately,
it is this quantum mechanical effect that makes fusion reactors feasible. Still, the
required kinetic energy corresponds to temperatures of 100-200 million Kelvin, which
by far exceed the atomic (electron) binding energy. As a consequence, the plasma
state of matter is reached under these conditions.

Technical realization: Magnetic confinement

The most promising method for creating and maintaining such a high-temperature
plasma is the confinement in a magnetic field.[6] The Lorentz force (q/m)v × B
prohibits free particle motion perpendicular to the magnetic field. End-losses are
prevented by constructing toroidal devices. Plasmas confined in simple ring-shaped
magnetic fields, however, are subject to drifts and thus unstable. Good confinement
can be reached when the field lines are helically twisted, as shown in Fig. 1.2.1. Major
advances have been made in the 1950’s, when Soviet scientists developed a machine
called tokamak. In 1968, the first quasistationary thermonuclear fusion reaction
was documented in the T-4 tokamak. The translation of this Russian acronym is
toroidal chamber with magnetic coils. These main field coils are axisymmetric and

3In plasma physics, temperature is often given in energy units of eV, implying the conversion
with Boltzmann’s constant: 1 K=̂8.6 · 10−5 eV.
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Chapter 1 Introduction

create a purely toroidal (not twisted) magnetic field. Additionally, a plasma current
is induced by transformer coils, using the plasma itself as the secondary transformer
winding, which adds a poloidal field component. Altogether, a helical field structure
is generated that is suited for plasma confinement. An obvious problem intrinsic to
the tokamak principle is that the plasma current can only be maintained for a certain
time. This restriction is overcome in a second type of magnetic confinement devices,
the stellarator, which operates without a plasma current. Instead, stellarators are
built with specially shaped field-coils (see Fig. 1.2.1) that generate a helical guiding
field. The complex shape of the field coils can only be determined with powerful
computers, but also possibilities of optimization exist. At present, both machine
types are subject to research.

(a) (b)

Figure 1.2.1.: Schematic drawings of the two main concepts of magnetic confine-
ment fusion: The tokamak (a) and the stellarator (b), source: www.ipp.mpg.de

Plasma confinement can be characterized by the triple product of density n, tem-
perature T , and energy confinement time τE. The latter is defined as the ratio of
the plasma energy content and the heating power in steady state. The ASDEX Up-
grade tokamak, with a plasma volume of 14m3, reaches an energy confinement time
of about 0.15 s, for example.[6] The Lawson criterion of a D-T plasma at T = 10 keV

nTτE > 3× 1021keV s
m3

gives a threshold for the triple product to reach a self-sustaining (burning) plasma,
in which fusion power overcomes convection and radiation losses.[6] Since the be-
ginning of fusion research, this quality factor was enhanced by a factor of about
10,000, constituting great progress. While the required density and temperatures
are already realized in modern experiments, the energy confinement time is still to
be increased to ensure net energy generation. A power plant must maintain a fu-
sion power that overcomes the heating power significantly. Theoretical predictions
as well as experimental findings suggest to increase the system size in order to im-
prove on the energy confinement time. The currently running tokamak experiment

4



1.3 Cross-field transport in tokamaks

JET (Joint European Torus) with a plasma volume of 200m3 is much larger than
ASDEX Upgrade. JET has closely approached break-even by reaching a fusion
power of 60% of the heating power. Following these lines, the ITER tokamak is
presently constructed as an international cooperation.[4] With a plasma volume of
800m3, ITER is about 4 times larger than JET and aims at an amplification factor
of 10.

1.3. Cross-field transport in tokamaks
Achieving a large energy confinement time τE is crucial to creating a burning plasma.
Besides inevitable radiation losses, collisional and convectional cross-field transport
of energy and particles are limiting the confinement. It is the task of transport
theory to better understand the underlying physics and predict the resulting heat
and particle fluxes. Transport in tokamaks is often viewed as a type of diffusion
of heat and particles (although the underlying processes are often convective). The
energy confinement time is then given by the (heat) diffusivity χ as

τE '
a2

χ
,

where the minor tokamak radius a gives the distance across the field, along which
matter and energy have to diffuse to leave the machine. A brief overview over
transport mechanisms is provided in this section. We make use of the particle
picture for plasma description, meaning that we focus on describing the trajectories
of single particles that occur in magnetic confinement.

Classical transport

Some concepts are introduced by discussing classical diffusive transport, although
it is shown to be negligible under fusion conditions. A simple random walk model
for the particle diffusivity gives

D = ∆x2

∆t ,

where ∆x denotes a typical step size and ∆t is the typical step time. For diffu-
sive transport across the confining magnetic field ∆x ∼ ρa is a thermal Larmor
radius (the index a denotes the plasma species) and the time scale is given by the
inverse Coulomb collision rate ∆t ∼ 1/νa. In high-temperature plasmas, νa is a
small quantity. Since also the Larmor radii ρe and ρi of electrons and ions are
small compared to the plasma diameter, one finds the diffusion coefficients to be
Dclass
e = Dclass

i ∼ νeρ
2
e ∼ 10−3 m2/s (for typical fusion plasmas with T ∼ 10 keV,

n ∼ 1020 m−3, B ∼ 3T). This diffusivity is negligible compared to actual measure-
ments of ∼ 1 m2/s. Note that the classical diffusion is equal for electrons and ions,
since the (by a factor of

√
mi/me) smaller step size for electrons is balanced by a

5



Chapter 1 Introduction

collision rate that is by a factor mi/me larger.[7] The classical heat diffusivity has
a similar form χclass ∼ νaρ

2
a and the expected confinement time exceeds the values

determined in experiments by several orders of magnitude.

Bφ

Bθ

θ

r

jφ

Z

φ
R

Figure 1.3.1.: Tokamak geometry relations.

Potato Orbit

Half-width rB
Flux surface

INBOARD SIDE OUTBOARD SIDE

Banana Orbit

Figure 1.3.2.: Trapped particle orbits in tokamak geometry, projected on a
poloidal plane. Most important effects are attributed to banana orbits. Potato-
shaped orbits are found only close to the magnetic axis, and we refer to them in
a later section.
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1.3 Cross-field transport in tokamaks

Neoclassical transport

Toroidal geometry (illustrated in Fig. 1.3.1) yields modified particle trajectories,
thereby introducing larger length scales in particle and heat diffusion. This so-
called neoclassical transport collects various effects, and collisionality determines
which of these mechanisms is most significant. Here, we discuss neoclassical effects
in a phenomenological manner. A more precise treatment is found in the following
Chapters 2 and 4. At low collisionalities typical of high-temperature fusion plasmas,
a process called banana transport dominates. The naming becomes clear when
considering the particle orbits of Fig. 1.3.2. These orbits are influenced by the fact
that in toroidally shaped plasmas, the magnetic field is inhomogeneous. It is stronger
on the inboard side than on the outboard side of the torus. Particles follow spiral
paths along the field, where their magnetic moment µ = mv2

⊥/2B is an adiabatic
invariant. Additionally, the kinetic energy ε = mv2/2 = mv2

‖ + µB is a conserved
quantity. In consequence, only highly energetic particles can travel freely along the
field line. Low energy particles are trapped on the low field side, and the fraction of
trapped particles is given by

ft =
( 2r
R0 + r

)1/2
∼
√

2ε1/2 .

where R0 and r are the major and minor radii of the particles flux surface (see
Fig.1.3.1), and ε = r/R0 is the local inverse aspect ratio. These trapped particles
perform a periodic motion between their bounce points, with a bounce-frequency of
ωB = (r/2R0)1/2v⊥/(qR0), thereby changing the sign of the parallel velocity v‖. The
magnetic drifts change direction with v‖ and the resulting trapped particle orbit
reminds of a banana in projection on the poloidal plane, as shown in Fig. 1.3.2. The
banana width is given by

rB ≈
qρa
ε1/2

,

where we have introduced the safety factor q ≈ (r/R0)Bφ/Bθ. Generally, q/
√
ε

is larger than one, so that rB > ρa. Consequently, collisional de-trapping and
re-trapping has a much larger step-size than classical processes. Additionally, the
effective collision rate is enhanced as

νeff = νa/ε ,

since νa gives the average rate for a 90 degree deflection, but the scattering angle for
a dislocation of rB turns out to be smaller than 90 degrees. Together, the banana
diffusion is

DB = ftνeffr
2
B ≈

q2

ε3/2
νaρ

2
a ,

which is up to two orders of magnitude larger than the classical value.
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Chapter 1 Introduction

As collisionality increases, the collision rate eventually becomes larger than the
bounce frequency, νeff & ωB.4 Then, collisional decorrelation occurs before banana
orbits are completed, which reduces the radial step length. In the limit of large as-
pect ratio it is possible to show that in this moderate collisionality regime, transport
does not depend on collisionality. Thus, one speaks of the plateau regime.[8]
The third effect of toroidal geometry on collisional transport is known as Pfirsch-

Schlüter diffusion. It has a diffusion coefficient of

DPS = q2ρ2
eνe .

Since this coefficient is smaller than the banana coefficient, Pfirsch-Schlüter trans-
port becomes relevant only at large collisionality.
Overall, neoclassical effects yield cross-field transport roughly two orders of mag-

nitude larger than the classical value, constituting a minimum level of transport
present in every toroidal magnetic confinement device. Although ion transport is
sometimes down to neoclassical limits, one generally finds an even shorter con-
finement time in plasma experiments, giving rise to the statement that tokamak
transport is anomalous.

Turbulent transport

At this point we have to overcome the single particle picture and introduce collective
phenomena like plasma waves. It is well established that plasma turbulence, driven
by unstable small-scale plasma waves, leads to enhanced (convective) transport of
heat and particles. The intuitive picture is as follows. To reach the extreme con-
ditions required for fusion in the plasma core, a large pressure gradient is built up
across the magnetic field. This gradient, however, provides a source of free energy
that destabilizes small-scale plasma waves. Complex nonlinear processes lead to a
statistically stationary state far from thermodynamic equilibrium. In this turbulent
state, convection due to electromagnetic perturbations result in enhanced transport.
Turbulent fluctuations are indeed measured in present-day fusion experiments.

These fluctuations are of rather small magnitude. For the plasma density, for exam-
ple, one finds ñ/n ∼ 10−2 to 10−3 in the plasma core (larger fluctuations are possible
towards the edge). Also the plasma electric field exhibits fluctuations Ẽ, leading to
a perpendicular Ẽ ×B drift velocity

ṽrE×B = Ẽ⊥ ×B0

B2
0

∼ Ẽ⊥
B0

of which we denote the radial component. When density fluctuations are in phase
with such radial drifts, the associated advection efficiently enhances the particle flux

Γturb = 〈ñṽrE×B〉 .

4Often, the ratio ν∗ = (νa/ε)/ωb . 1 is utilized to define the banana regime
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1.3 Cross-field transport in tokamaks

In the same fashion, a finite radial heat flux arises from advection of the pressure
perturbations

Qturb = 3
2〈p̃ṽ

r
E×B〉 .

If density/temperature gradients exist, convection relaxes these gradients. We can
define the heat diffusivity χ by writing

Q = −nχ∇T , (1.3.1)

which can be a function of the gradients and other plasma parameters, keeping in
mind that the underlying physics is not inherently diffusive. Furthermore, Eq. (1.3.1)
implies the relation to be local, although it is in principle possible that radial vari-
ations of ∇T , for example, influence the heat fluxes.
Importantly, even for small fluctuations, the associated fluxes can be large enough

to explain the experimental measurements.

Electron thermal transport in stochastic fields

Yet another transport channel is associated to magnetic field perturbations that
destroy the structure of nested flux surfaces (see Fig. 1.3.2) in such a way that the
magnetic field becomes stochastic. In stochastic fields, field-line following particles
randomly obtain a radial component in their motion (see Fig. 1.3.3).

∆r , δBr

B0

Lc,

trajectory

Figure 1.3.3.: The relation of a radial magnetic perturbation to the step-size of a
random walk process is shown.

Describing this process as a random walk, the step length and time are estimated
as

∆x = B̃r

B0
Lc , ∆t = Lc

vte
, Dst. = ∆x2

∆t = vteLc

(
B̃r

B0

)2

,
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Chapter 1 Introduction

to find that diffusivity crucially depends on the strength of the magnetic field per-
turbation. We find that Dst can be as large as a few m2/s, assuming the correlation
length Lc = πqR ∼ 30m, a fluctuation amplitude of B̃/B0 ∼ 5 × 10−4, which is
consistent with experimental measurements, and a (electron) thermal velocity of
390 km/s at a temperature of Te = 10 keV. Note that the resulting heat transport is
particularly relevant for the electrons, since their thermal velocity vte is much larger
than the ion thermal velocity.
Gaining a better understanding of electron thermal transport is of major impor-

tance for future large-scale fusion experiments like ITER, because in such devices,
the common heating systems are more efficient for electrons than for ions. While
electron cyclotron frequency heating naturally affects electrons directly, both neutral
beam injection and cyclotron heating create fast ions that have a large collisional
cross-section with (approximately) equally fast thermal electrons. Thermalization
between highly energetic ions and the bulk of thermal ions is slower. Also fusion-
created α particles give their energy mostly to electrons.
Since the 1970’s a particular type of microinstability, the microtearing mode, has

been considered as a source for such minute magnetic perturbations and stochastic
transport. However, their analytical theory proves extremely complicated. Numeri-
cal methods and computational resources have only very recently evolved far enough
to address this topic. Some contribution to this numerical work is reported in the
course of this thesis (see also [9, 10]) and indicates a role of such modes in standard
tokamaks, including ITER.

1.4. Plasma modeling
A rigorous description of plasma physics in fusion devices is necessary to reliably
predict the effects of neoclassical effects and plasma turbulence on cross-field trans-
port. The probably most intuitive framework considers the trajectories of single
particles. This particle picture has been used in the previous section to discuss neo-
classical and classical transport, as well as electron transport in stochastic fields. It
is clear, however, that a plasma is a complex system made up by a large number of
interacting particles.

1.4.1. Collisional kinetic theory
A complete description on the particle level is given by the exact ‘microscopic‘
distribution function Fa(x,v, t) for each plasma species (denoted by the index a).
Phase space conservation requires

∂Fa
∂t

+ v · ∇Fa + aa ·
∂Fa
∂v

= 0 (1.4.1)

where particle acceleration aa = qa

ma
(E+v×B) is given by the Lorentz force. Hence,

knowledge of the electromagnetic fields determines the evolution of Fa. However,
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1.4 Plasma modeling

the plasma itself consists of charged particles and thus contributes to the fields. A
self-consistent description is given by Maxwell’s equations

∇× E = −1
c
∂B
∂t

∇×B = 4π
c
∑
a

ˆ
qavFa(x,v, t)d3v − 1

c
∂E
∂t

(1.4.2)

∇ · E =
∑
a

ˆ
qaFa(x,v, t)d3v

∇ ·B = 0

where we have normalized Fa(x,v, t) such that the configuration space density
na =

´
Fa(x,v, t)d3v is obtained by the velocity space integral of Fa. Solving

the set of equations (1.4.1) and (1.4.2) is in principle possible. However, this would
be equivalent to determining each single particle trajectory of the electromagnetic
many-body problem, involving scales from the quantum level up to macroscopic
system size, which is obviously highly impractical. Reducing complexity not only
facilitates ab-initio calculations, but is also motivated from plasma experiments.
Measurements can only access macroscopic quantities (like the plasma density), and
thus the description on the single particle level is not necessary. Instead, a statistical
formulation is appropriate. We take the ensemble average

fa = F̄a = 〈Fa〉ensemble

to obtain a substantially smoother (and more relevant) distribution fa. The problem
in averaging Eq. (1.4.1) lies in the last, nonlinear term, because aa and Fa are not
statistically independent. Formally we can write

〈aa ·
∂Fa
∂v
〉ensemble = ā

∂fa
∂v
− Ca[f ]

to collect all statistical correlations in the quantity Ca[f ]. Most of these correlations
originate from particle collisions that are interactions at small distances of the order
of a Debye length, where E and B are large. This is why Ca[f ] is generally called the
collision operator, which depends on all plasma species and includes self-collisions.
In this way we find the statistically averaged kinetic equation

∂fa
∂t

+ v · ∇fa + āa ·
∂fa
∂v

= Ca[f ] , (1.4.3)

where āa = qa

ma
(Ē + v × B̄) is now determined from fa with Maxwell’s equations

self-consistently. Henceforth we understand E = Ē and B = B̄ to be macroscopic
quantities (averaged over particle discreteness) and thus these fields do not vary
much over a few Debye lengths. The resulting macroscopic kinetic equation forms
the basis of our studies. It is named Fokker-Planck-equation, since we make use of
the Fokker-Planck collision operator that is introduced in Sec. 2.1.2.
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1.4.2. Limits: Fluid models and the Vlasov equation
Instead of solving the kinetic equation, one is often interested in velocity space inte-
grated quantities

´
vmfad3v, such as the density (m = 0), the temperature (m = 2)

and the heat flux (m = 3).5 For their evolution, so-called fluid equations are obtained
by taking corresponding velocity space moments of the kinetic equation. From the
fact that Eq. (1.4.3) contains fa as well as terms of the type ’v ·fa’, it is obvious that
the kinetic equation is equivalent to an infinite hierarchy of fluid moment equations.
Closed fluid models are derived by truncating this hierarchy and making a physically
motivated assumption on the higher order moments. Importantly, simple closures
are possible for high collision rate, because in this case fa is known to be close to a
Maxwellian distribution.[11]
By additionally neglecting electron inertia and finite Larmor radius effects, the

well-known magneto-hydrodynamic (MHD) model is derived. It describes the plasma
as a single, magnetized fluid and is well suited to predict macroscopic plasma sta-
bility. Requiring the time derivatives to vanish, the equilibrium condition

∇p0 = 1
c j0 ×B0 , (1.4.4)

is obtained, which links the radial profiles of plasma pressure p0, current density j0
and magnetic field B0.
Such fluid models have the advantage to be solvable with moderate effort. Un-

fortunately, they are often not applicable for the description of plasma waves in hot
and dilute fusion plasmas, which are weakly collisional. In this case, velocity space
dynamics plays a central role and kinetic theory is to be applied. Particle trapping,
Landau damping and the influence of finite Larmor radius are exemplary effects that
require a kinetic treatment. In the limit of extremely weak collisions, one can set
Ca = 0 in Eq. (1.4.3), to obtain the so-called Vlasov equation.
However, in actual fusion plasmas (and also in astrophysical plasmas) collisionality

is often not negligible, even if it is small. Including collisional dynamics in the kinetic
framework does not only alter the collision-free physics, but can also lead to new
phenomena. Mathematically, the collision-free kinetic equation is very different from
the case of weak, but finite collisionality.

1.5. Thesis outline
In this thesis the gyrokinetic turbulence code Gene is used to simulate microtearing
turbulence as a possible source of stochastic fields in tokamaks, thereby enhancing
electron heat transport. Collisional dynamics is an important ingredient to the
physics of microtearing modes. To define a test scenario for collision operators,
neoclassical theory proves valuable. The theoretical framework for turbulence com-
putations is given by gyrokinetic theory, whereas neoclassics appears as a certain

5Here, we have suppressed prefactors.
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subset of this theory. The layout of this thesis is organized as follows. In Chapter 2
we introduce the gyrokinetic ordering to begin with an outline of the derivation of
the gyrokinetic equations. Binary collisions are included. The collision operator
is linearized and split into test-particle and field-particle collisions. An improved
model for the latter is presented. We observe that the drift-kinetic equation–used
to describe neoclassical transport phenomena–is obtained when imposing neoclas-
sical ordering to the collisional gyrokinetic equation. Furthermore, the definitions
for computing turbulent and neoclassical transport from the gyrokinetic distribu-
tion function are given. Chapter 3 summarizes the equations implemented in Gene
and introduces appropriate normalization. Moreover, we give some details on the
numerical solvers used in Gene. In the following, we turn to simulation results,
beginning with neoclassical Gene simulations in Chapter 4. Based on the fact
that collisions play a major and delicate role for neoclassical transport, appropri-
ate numerical implementations of the collision operator are identified. The problem
is much simpler than turbulent transport, so that even analytical expressions for
the cross-field transport can be obtained and compared to numerical results. For
a particular (self-adjoint) form of the field-particle collision operator, a successful
benchmark against the neoclassical Neo code is presented. The global code version
is employed to study system-size effects and the neoclassical heat continuity equa-
tion. Global neoclassical computations are finally benchmarked against the Orb5
code. Having tested our numerical model of collisions, we turn to the microtearing
problem in Chapter 5. After giving an overview of existing literature, we turn to
the simulation of global microtearing modes in realistic geometry of the ASDEX
Upgrade tokamak. This motivates several studies on the linear physics, including
system-size effects, the variation of important physical parameters, and the com-
parison to analytical models. Finally, we present recent nonlinear simulation results
that suggest that microtearing turbulence can play some role in standard tokamaks,
including ITER.
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2. Aspects of gyrokinetic theory

2.1. Collisional gyrokinetic theory

A
lthough the kinetic equation Eq. (1.4.3) is already simplified compared to
the single-particle description, it is still very expensive to solve it in practice.
It proves extremely useful to adapt the equations to the properties of the

system we want to describe, which is a high-temperature plasma that is strongly
magnetized by a guiding magnetic field. We begin by identifying certain small pa-
rameters, motivated by experimental findings and theoretical considerations. The
kinetic equation is then transformed and expanded in these small parameters to
yield a reduced–gyrokinetic–equation that is significantly more tractable. We de-
velop gyrokinetic theory in three steps, involving different phase space coordinates.
In a first step, we linearize the collision operator and write it in Fokker-Planck form.
The phase space coordinates for this step are particle coordinates z(pc) = (x,v).
The following two steps describe phase space transformations to obtain coordinates
in which the particle trajectories that are greatly influenced by the magnetic field
become more simple. The first of those is the guiding center (gc) transformation
that yields Z(gc) coordinates. We particularly focus on transforming the collision
operator to (gc) coordinates. The last step accounts for small-scale electromagnetic
field fluctuations. To that aim a near-identity gyrocenter (gy) transformation is
applied to obtain Z(gy) coordinates. The resulting kinetic equation is further modi-
fied by splitting the distribution function and introducing a field-aligned coordinate
system, which brings us to a form suitable for numerical implementation. The gy-
rokinetic Maxwell equations are formulated to enable self-consistent computation of
the electromagnetic fields, closing the equations.

2.1.1. The gyrokinetic ordering
Kinetic theory is generally applied to hot and dilute plasmas that are weakly colli-
sional. Particle correlations are given by binary Coulomb collisions and each collision
changes the velocity vector of a particle only by a small angle. Nevertheless, the
plasma parameter Λ = λD/rmin � 1, defined as the ratio of the Debye length and the
distance of closest approach, is large. Together, this motivates the use of a Fokker-
Planck model for collisions. Before giving more details on the collision model, we
turn to ordering properties of plasma turbulence and plasma microinstabilities that
form the basis of gyrokinetic theory. In magnetic confinement experiments, a strong
guiding field B0 introduces a striking scale separation between parallel and perpen-
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dicular dynamics.1 This can most intuitively be understood when observing the
trajectory of a single charged particle. While the particle is free in its parallel mo-
tion, the Lorentz force qa/ma(v×B0) lets the particle perform a spiral path around
a field line. The angular frequency of this gyromotion is the Larmor frequency
Ωa = qaB0/mac and the radius of the perpendicular orbit is the Larmor radius
ρa = v⊥/Ωa, where v⊥ =

√
v2 − v2

‖ is the perpendicular velocity and v‖ = b0 · v is
the parallel velocity and b0 = B0/B0. In typical tokamak experiments a magnetic
field B0 ∼ 1−5T and temperatures of 5−20 keV are reached. The thermal velocity
vTa =

√
2T0a/ma is introduced to find that the thermal ion gyroradius is of the order

of ρi ∼ 0.1 cm and the electron thermal gyroradius ρe ∼
√
me/miρi is smaller still,

given that the temperatures are similar. Together with experimental findings one
obtains a set {εα} of small parameters

1. Primarily, the Larmor radius is much smaller than the scale length of the
magnetic field LB, justifying the assumption of purely circular gyro-orbits.
We find the small parameter εB = ρi/LB � 1. Also the spatial variation
in the temperature and density profile, characterized by the gradient lengths
LT = −∇ lnT and Ln = −∇ lnn are large compared to the gyroradius. The
quantities ρi/LT ∼ ρi/Ln ∼ εB � 1 are ordered as the magnetic field inhomo-
geneity.

2. Further, one concludes from measurements that fusion plasmas are highly tur-
bulent systems that develop very small fluctuations around some slowly vary-
ing background. Thus, quantities like δT/T ∼ δn/n ∼ εδ � 1 are typically
very small, at least in the core of a fusion plasma.

3. The above mentioned gyro-trajectories enforce a strong anisotropy of the tur-
bulent fluctuations that are to be described. While perpendicular correlation
lengths are 10-100ρi, along the magnetic field, correlation lengths of up to sev-
eral 10 meters are typical. In terms of characteristic wave numbers, one can
write k‖/k⊥ ∼ ε‖ � 1.

4. Measurement of the frequency spectrum of density and temperature fluctua-
tions yield ω ∼ 10 − 500 kHz. Indeed, the Larmor frequency is much larger
and we order ω/Ω ∼ εt � 1.

5. In high temperature plasmas the collision frequency ν ∼ n/T 3/2, the rate of
collisional dissipation, is much smaller than the Larmor frequency, because
particles of high velocity spend only short times within a zone of interaction
with another particle. The corresponding small parameter is νa/Ωa ∼ εν � 1.
For thermal particles, one finds νa/Ωa = ρa/λmfp with λmfp denoting the col-
lisional mean free path. Relating εν to the magnetic field inhomogeneity, one

1Here and in the following, parallel and perpendicular directions refer to the guiding magnetic
field, unless specified otherwise.
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has the parameter ∆ = εν/εB = LB/λmfp that defines the degree of collisional-
ity of the system. ∆� 1 denotes a collisional regime in which particles do not
complete a full gyro-orbit before collisional decorrelations occur. The neoclas-
sical regime and weakly collisional regimes are defined as ∆ . 1 and ∆ � 1,
respectively. The latter is most relevant for high temperature fusion plasmas,
where the collisional mean free path is of the order of the major radius R of
the device, and often larger. Then, from εν � εB one can see that these two
smallness parameters are quite distinct.

A plasma that fulfills the constraints (1)-(5) can be described by reduced (gyroki-
netic) equations. In particular constraint (4) allows the fast gyration time scale to
be removed. This is equivalent to removing the gyroangle θ from the equations, or,
more precisely, decouple the dynamics related to θ from the comparably slow dynam-
ics we are interested in. Extensive analytical work has been done along these lines
since the 1970’s and various approaches are pursued since then. Here, the method
of two consecutive coordinate transformations is briefly outlined. The first is called
guiding center (gc) transformation. It removes the fast orbital time scales introduced
by a time-independent background magnetic field, implying that particle gyration is
much faster than changes in the plasma equilibrium along the trajectory of a particle.
In a second step, time-dependent electromagnetic fields are introduced in the form
of the electrostatic potential φ1(t), and the vector potential A1(t). These fluctuat-
ing fields spatially vary on gyroradius scales and thus re-introduce the gyroangle.
Therefore, a second phase space transformation, the gyrocenter (gy) transformation
is performed. As a result one obtains a set of coordinates Z(gy) = {X, v‖, µ, θ} and
a kinetic equation in which both the θ dependence is removed and the dynamics is
reduced in the sense that µ is an adiabatic invariant.

2.1.2. Fokker-Planck collision operator in particle space
In very hot and dilute plasmas, collisions between two particles can be considered
rare, which essentially constitutes the necessity of a kinetic description. Three-
particle collisions are rarer still, we thus restrict ourselves to binary collisions that
can be decomposed into the contributions

C[fa] =
∑
b

Cab[fa, fb]

from all plasma species b (including self-collisions defined by a = b). To determine
the properties of the collision operator it is useful to first examine one single colli-
sional event between two particles with the charges qa, and qb, the relative mass m∗
and the relative velocity u = v − v′. From the Coulomb force one derives (in cgs
units) a deflection angle

α = 2qaqb
rm∗u2 (2.1.1)

17



Chapter 2 Aspects of gyrokinetic theory

where r is the impact parameter of the collision. In many laboratory plasmas, such
as fusion devices, the number of particles inside a sphere of radius of the Debye
length λD =

√
T/4πne2 is large. One can write nλ3

D � 1 and thus λD is a typical
impact parameter. For r ∼ λD one finds α � 1 at thermal velocity u = vTa,
which justifies the claim that most deflections only lead to a small change ∆v of
the velocity vector. Defining rmin = 2qaqb/m∗v2

ta, this circumstance is expressed by
the largeness of the plasma parameter Λ = λD/rmin � 1. In this limit, the collision
operator effectively describes drag and diffusion in velocity space and one can derive
the Fokker-Planck operator

Cab[fa, fb] =
(
∂fa(v, t)

∂t

)
c,ab

= − ∂

∂vk

(
〈∆vk〉ab

∆t fa

)
+ ∂2

∂vk∂vl

(
〈∆vk∆vl〉ab

2∆t fa

)

in the limit ∆t → 0. Here, ∆vk are the (small) Cartesian components of ∆v.
Higher-order derivatives can be shown to be smaller by one order in (1/ ln Λ). It is
thus essential that the Coulomb logarithm ln Λ is indeed large. The Fokker-Planck
operator is much simpler than the Boltzmann operator of kinetic gas theory and
therefore appropriate for numerical computation and analytical work. The actual
expectation values 〈∆vk〉/∆t and 〈∆vk∆vl〉/2∆t are to be computed from the field-
particle distribution fb. This essentially involves integration the Coulomb potential
over impact parameters leading to a logarithmically divergent integral

γab = 2πq2
aq

2
b

ˆ λD

rmin

1
r

dr = 2πq2
aq

2
b ln Λ

that has to be cut off at both ends. For the lower boundary one takes rmin defined
above, which is the distance of closest approach at thermal velocity. For distances
much larger than the Debye length, the electric potential of the charge qb is effectively
shielded by the surrounding plasma. Thus, no deflection can be expected and the
integral is cut off at rmax = λD.2 The Coulomb logarithm ln Λ = ln(λD/rmin) is
difficult to calculate, but numerical values for various plasma regimes are found, for
example, in Ref. [12]. In this way one obtains the Landau-Boltzmann operator

Cab[f ] = −γab
ma

∂

∂vk

ˆ
Ukl

(
fa(v)
mb

∂fb(v′)
∂v′l

− fb(v′)
ma

∂fa(v)
∂vl

)
d3v′ (2.1.2)

that has originally been derived by Landau in 1936 [13]. Derivations are found also
in [7, 14]. Here, summation over repeated indices is understood and the velocity
space tensor

Ukl = u2δkl − ukul
u3 (2.1.3)

2This rough estimate is possible because the integral (only) diverges logarithmically.
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has been introduced with u = v−v′. Due to the symmetric form of Ukl, Eq. (2.1.2)
is well suited to demonstrate the conservationˆ

Cab d3v = 0
ˆ
Cabmv d3v = −

ˆ
Cbambv d3v (2.1.4)

ˆ
Cabmav

2 d3v = −
ˆ
Cbambv

2 d3v

of particles, momentum, and energy, respectively. These conservation laws are ful-
filled at each point in space, expressing the fact that the Fokker-Planck operator
describes local interactions. Non-local processes, like interaction with waves, are
treated explicitly in the kinetic equation and are not included in the collision oper-
ator.
Another important property that can be inferred from Eq. (2.1.2) is that of Boltz-

mann’s H-theorem. Defining entropy as

Sa = −
ˆ

d3v fa ln fa ,

it can be seen from the Fokker-Planck equation Eq. (1.4.3) that entropy production
is exclusively due to collisions, because the other terms vanish in the integral [7].
We obtain the entropy production

∂

∂t
Sa = − ∂

∂t

ˆ
d3v fa (ln fa) = −

ˆ
d3v (Ca[f ] + (ln fa)Ca[f ])

= −
ˆ

d3v (ln fa)Ca[fa]

≈
ˆ

f1a

fMa

Ca[fa]d3v ≥ 0 , (2.1.5)

where in the first step we have used particle conservation
´

d3v Ca[f ] = 0 and in the
last step the distribution function is split to f = fM + f1 with f1/fM ∼ εδ � 1 and
terms of order O(ε2δ) are neglected. The splitting of f is made more explicit in the
next section. Positivity of entropy change can be traced back to positivity of the
tensor U in the Landau operator Eq. (2.1.2). Let us finally mention that collisional
equilibrium ( ∂

∂t
Sa = 0) is reached for Maxwellian distributions f = fM with equal

temperature and velocity (see Eq. (2.1.7)).

2.1.2.1. Linearization of collision operators

Gyrokinetic ordering allows for a linearization of the collision operator, which is of
great advantage in numerical and analytical work. In particular the smallness of
εδ is used to split the distribution function f = f0 + f1 into a background f0 and
a perturbed part f1. The treatment of collision operators is significantly simplified
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when the background is taken to be a Maxwellian distribution. We use the unshifted
Maxwellian

f0a = fMa = na
π3/2v3

Ta

e−v
2/v2

T a

for the following analysis. The bilinear collision operator(
d
dt

)
c

fa =
∑
b

Cab

Cab = C[fMa, fMb]︸ ︷︷ ︸
=0 for T0a=T0b

+C[f1a, fMb] + C[fMa, f1b]︸ ︷︷ ︸
CL

ab

+C[f1a, f1b]︸ ︷︷ ︸
higher order

(2.1.6)

yields four terms. The first term describes collisional interaction between the back-
ground distribution functions. It is evaluated as

C[fMa, fMb] = − 2γabnb
mambvTbv2

Ta

(
1− Tb

Ta

) [erf(xb)
xb

−
(

1− mbTa
maTb

)
erf ′(xb)

]
fMa,

(2.1.7)

where xb = v/vTb is a velocity normalized to the thermal velocity vTb =
√

2T0b/mb

of species b and erf(xb) = (2/
√
π)
´ xb

0 e−t
2dt is the error function.[14] This term de-

scribes collisional thermalization between two species and it obviously vanishes for
like-species collisions or equal temperatures. For unequal temperatures, it describes
collisional thermalization between two species. The associated thermalization time
can be considered large and of the order of the characteristic equilibrium time scales,
such that the term C[fMa, fMb] is neglected. Since in our δf modeling the back-
ground distributions do not evolve in time, we are not able to take this term into
account anyway. The fourth term is usually neglected because it is of second order
in εδ of the gyrokinetic ordering. The remaining terms constitute the linearized
Landau-Boltzmann collision operator

CL
ab[fa, fb] =C[f1a, fMb] + C[fMa, f1b] (2.1.8)

for which conservation of particle number, momentum and energy can be proven.
The first term in Eq.(2.1.8) is often referred to as the test-particle operator CT

ab[f1a] =
C[f1a, fMb]. The second term is called field-particle operator CF [f1b] = Cab[fMa, f1b];
it accounts for the correct transfer of energy and parallel momentum. In the follow-
ing, we derive a self-adjoint model for CF

ab from the test-particle operator.

2.1.2.2. Collisions with Maxwellian background: The test-particle operator

It is often useful to express the Landau-Boltzmann operator in terms of certain
integrals of the distribution function

Gb(v) =
ˆ

d3v′fbu , Hb(v) =
ˆ

d3v′fb
1
u
,
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2.1 Collisional gyrokinetic theory

the so-called Rosenbluth potentials with u = |v− v′|. Equation (2.1.2) is then cast
in the form of an advection-diffusion operator

C[fa, fb] = ∂

∂v
·
(
←→
D ab ·

∂

∂v
−Rab

)
fa, (2.1.9)

where←→D ab is the diffusion tensor and the vector Rab is called the dynamical friction
coefficient given by

←→
D ab = γab

mamb

mb

ma

∂Gb

∂v∂v
Rab = γab

mamb

2∂Hb

∂v

In the case of a Maxwellian distribution fb = fMb, the Rosenbluth potentials can be
evaluated analytically as

HMb(xb) = nb
vTbxb

erf(xb) GMb(xb) = nbvTb
2xb

[
erf ′(xb) + (1 + 2x2

b)erf(xb)
]
,

(2.1.10)

which has been done for example in Ref. [7, 14]. Then, the coefficients ←→D and R
take the form3

←→
D ab = γabnbTb

m2
amb

1
v3

[
1vΦ1(xb) + 3vv

v2 Φ2(xb)
]

(2.1.11)

Rab = − γabnb
mamb

v
v3 Φ3(xb)

where the abbreviations

Φ1(xb) = xberf ′(xb) + (2x2
b − 1)erf(xb)

Φ2(xb) = (1− 2
3x

2
b)erf(xb)− xberf ′(xb) (2.1.12)

Φ3(xb) = 2erf(xb)− 2xberf ′(xb)
= Φ1(xb) + 3Φ2(xb)

have been introduced,4 and xb = v/vTb. While Eq. (2.1.9) gives our final analytical
form of the test-particle operator, it is also possible to cast the collision operator
into

CT (f1a) = C[f1a, fMb] = ∂

∂v
·
[
fMa

←→
D ab ·

∂

∂v
−
(

1− Tb
Ta

)
fMaRab

]
f1a

fMa

(2.1.13)

3For comparison to the literature it may be useful to note that the final result of Rab in Ref. [14]
(their Eq. (7.71)) and also in Ref. [15] is given with the wrong sign. Further, Eq. (2.1.10) has
been corrected compared to Ref. [14].

4A useful property of erf(x) is the relation d erf(x)/dx = erf ′(x) = 2 exp(−x2)/
√
π .
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Chapter 2 Aspects of gyrokinetic theory

such that its argument is the normalized distribution function f1a/fMa. Inserting
the inverse product rule

∂

∂v
f1a = fMa

∂

∂v
f1a

fMa

− 2
v2
Ta

vf1a,
←→
D ab ·

2
v2
Ta

v = −Tb
Ta

Rab

into Eq. (2.1.9), one indeed finds equivalence to Eq. (2.1.13). This last version
Eq. (2.1.13) is suited to prove conservation properties and possibly offers advantages
for numerical implementation.

2.1.2.3. Scalar product and self-adjointness

A fundamental property of the Landau-Boltzmann operator, the self-adjointness,
can be observed in Eq. (2.1.13), when temperatures are equal. To make this clear,
a scalar product

〈f |g〉 =
ˆ

d3v f(v)g(v) (2.1.14)

and the operator notation

Cab[fb, ·]|ga〉 = C[ga, fb] (2.1.15)

are defined, so that the self-adjointness relation is written as the symmetry of the
functional

S[ga, fa] = 〈ga|
1
fMa

C[fMb, ·]|fa〉 = S[fa, ga]. (2.1.16)

When the temperatures Ta = Tb are equal, Eq. (2.1.16) is easily proven by inserting
Eq. (2.1.13) and integrating by parts to obtain the symmetric expression

〈ga|
1
fMa

C[fMb, ·]|fa〉 = −
ˆ

d3v

(
∂

∂v
ga
fMa

)
· fMa

←→
D ab ·

(
∂

∂v
fa
fMa

)

= 〈fa|
1
fMa

C[fMb, ·]|ga〉 .

One clearly does not obtain a symmetric expression for non-equal temperatures,
since then, the prefactor of the dynamical friction term Rab does not vanish. This
symmetry breaking is connected with the fact that we have linearized with respect to
a non-equilibrium state when Ta 6= Tb. Collisional thermalization processes between
the background of different species are dropped when neglecting the zeroth order
term C[f0a, f0b], and this breaks the symmetry of the test-particle operator. Since
self-adjointness is required in neoclassical computations and also related to energy
conservation (see Sec. 4.2) there lies a potential problem that can be treated various
ways. One may demand self-adjointness even for Ta 6= Tb and find a modified
operator for that purpose. The modification presented by Sugama [16] takes into
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2.1 Collisional gyrokinetic theory

account that in the limit
√
mb/ma(1 − Tb/Ta) � 1 the symmetry breaking terms

may be neglected. Otherwise their operator is still symmetric, but different from the
linearized Landau-Boltzmann form. Alternatively one can simply work with equal
temperatures.[17, 18, 19] The approach pursued here is to neglect the symmetry
breaking in case of Ta 6= Tb to only keep exact conservation of particles, momentum,
and energy as physical constraints on the operator. A corresponding field-particle
operator is described in the next section.

2.1.2.4. The field-particle operator

Calculating the full field particle operator is possible, in principle, but computation-
ally expensive, for it involves the evaluation of the Rosenbluth potentials of the per-
turbed distribution functions.5 It is often sufficient to replace the exact field-particle
operator by an ad-hoc model capturing the most relevant physics, which is the con-
servation of particles, momentum, and energy. A certain self-adjointness symmetry,
is often required of the collision operator, since it is used to derive Onsager sym-
metry in neoclassical transport theory (see Sec. 4.2). It turns out that Boltzmann’s
H-Theorem of entropy increase is related to self-adjointness as well.[7, 20, 21, 22]
Following Ref. [22], an operator CF

ab(f1b) is derived by using the notation of
Eqs. (2.1.14) and (2.1.15) and defining an orthogonal projection operator

Pba =
|fMbv〉 · 〈fMbv| 1

fMb
Cba[fMa, ·]

1
3〈fMbv| · 1

fMb
Cba[fMa, ·]|fMbv〉

+
|fMbv

2〉〈fMbv
2| 1
fMb

Cba[fMa, ·]
〈fMbv2| 1

fMb
Cba[fMa, ·]|fMbv2〉

that can be viewed as the first two terms of an expansion in spherical harmonics. A
model for the field particle operator is then obtained from the test-particle operator
by projection

1
fMa

CF
ab = 1

fMa

Cab[·, fMa] ◦ Pab

Making use of symmetry and conservation properties of Cab (that hold for equal
temperatures) leads to

1
fMa

CF
ab|f1a〉 =− mb

ma

〈fMbv| 1
fMb

Cba[fMa, ·]|f1b〉
1
3〈fMav| · 1

fMa
Cab[fMb, ·]|fMbv〉

· 1
fMa

Cab[fMb, ·]|fMav〉

− mb

ma

〈fMbv
2| 1
fMb

Cba[fMa, ·]|f1b〉
〈fMav2| 1

fMa
Cab[fMb, ·]|fMav2〉

1
fMa

Cab[fMb, ·]|fMav
2〉 .

Resolving the bracket structure of the scalar product gives
5One numerical difficulty arises from the fact that vTe/vTi ∼

√
mi/me � 1. In consequence, the

electron distribution function is usually significantly broader in ion velocity space and in turn
the ion distribution is very narrow when seen by the electrons. For an accurate integral, both
scales should be resolved, which is possible, but expensive.
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CF
ab(f1b) = δṖ‖ba´

d3v′ v‖Cab(v‖fMa, fMb)
CT
ab(v‖fMa) (2.1.17)

δṖ⊥ba
1
2

´
d3v′ v⊥ · Cab(v⊥fMa, fMb)

CT
ab(v⊥fMa) (2.1.18)

+ δĖba´
d3v′mav2Cab(v2fMa, fMb)

CT
ab(v2fMa) (2.1.19)

where the rates of collisional transfer of parallel momentum and energy from species
b to species a are computed as velocity space moments

δṖ‖ba = −
ˆ
mbv‖C

T
ba(f1b)d3v

δṖ⊥ba = −
ˆ
mbv⊥CT

ba(f1b)d3v

δĖba = −
ˆ
mbv

2CT
ba(f1b)d3v (2.1.20)

of the test-particle operator CT
ba(f1b). In view of our further treatment described in

Appendix A, we only consider parallel momentum transfer, which is correct in the
drift-kinetic limit (i.e. k⊥ρ→ 0). The perpendicular momentum transfer is strongly
suppressed in that limit. Note that the model operator Eq. (2.1.17) is written as
it appears in the Fokker-Planck equation for species a. It preserves self-adjointness
and conservation laws. When explicitly evaluating the expressions CT

ab(v2fMa) and
CT
ab(v‖fMa) one obtains

CF
ab(f1a) = fMa

n0a(x)B
P
ab(xb)

v‖
vTb(x)

δṖ‖ba
mbvTb(x) + fMa

n0a(x)B
E
ab(xb)

δĖba
mbv2

Tb(x)

BP
ab(xb) =

√
2π
2 (1 + mb

ma

)3/26H(xb) (2.1.21)

BE
ab(xb) =

√
2π
2 (1 + mb

ma

)3/2
{[(

1 + ma

mb

)
2x2

b − 1
]
H(xb)−K(xb)

}

which for self-collisions a = b reduces to the form proposed by Lin et al. [22, 23, 24]
The functions H and K are defined as

H(xb) = 1
23/2x3

b

erf(xb)−
√

1
π

2xbe−x
2
b


K(xb) = 1

23/2x3
b

(x2
b − 1)erf(xb) +

√
1
π

2xbe−x
2
b
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2.1 Collisional gyrokinetic theory

where xb = v/vTb is the common normalized velocity. A field-particle model operator
of this form, together with the test particle operator CT

ab(f1a), analytically conserves
particles, energy and momentum for the case of equal temperatures T0a = T0b and
is furthermore self-adjoint.

Correction of numerical errors

Unfortunately, numerical errors are usually introduced by discretization of the ve-
locity space and by the use of a finite simulation domain. Nevertheless, conservation
properties are desired, and thus a correction term is added to Eq. (2.1.21),

CF
ab(f1a) =c1,ab

fMa

n0a(x)B
P
ab(xb)

v‖
vTb(x)

δṖ‖ba
mbvTb(x) (2.1.22)

+ c2,ab
fMa

n0a(x)B
E
ab(xb)

δĖba
mbv2

Tb(x) + c3,abfMaδĖba ,

where the coefficients c1,ab, c2,ab, and c3,ab are introduced. Technically, these mod-
ifications have the drawback of breaking the self-adjointness symmetry. However,
we have previously shown that in the case of unequal temperatures, self-adjointness
is not given anyway. Only in this case of unequal temperatures, the ci,ab become
significant; otherwise they only provide a small correction to ensure conservation
to machine precision. For the coefficients c1,ab, c2,ab, c3,ab, a system of equations is
obtained by inserting Eq. (2.1.22) into the constraints

ˆ
CF
ab(f1b) d3v = 0 ,

ˆ
CF
ab(f1b)mav‖ d3v = −

ˆ
CT
ba(f1a)mbv‖ d3v = δṖ‖ba , (2.1.23)

ˆ
CF
ab(f1b)mav

2 d3v = −
ˆ
CT
ba(f1a)mbv

2 d3v = δĖba ,

in which the equation for c1,ab decouples, because of the odd v‖ symmetry of the
BP term as opposed to the even v‖ symmetry of the remaining terms. Defining the
integrals

I1,ab =
ˆ
fMa d3v I2,ab =

ˆ
fMaB

E
ab d3v I3,ab =

ˆ
v2fMaB

E
ab d3v

I4,ab =
ˆ
v2fMa d3v I5,ab =

ˆ
v2
‖fMaB

P
ab d3v

and solving the system of equations gives the coefficients

c1,ab = n0av
2
Tbmb

ma

1
I5,ab

c2,ab = mbn0av
2
Tb

ma

I1,ab

I3,abI1,ab − I2,abI4,ab
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Chapter 2 Aspects of gyrokinetic theory

c3,ab = − 1
ma

I2,ab

I3,abI1,ab − I2,abI4,ab

which turns Eq. (2.1.22) into

CF
ab(f1a) =B

P
ab(xb)
I5,ab

v‖fMa

ma

δṖ‖ba + I1,abB
E
ab(xb)− I2,ab

I3,abI1,ab − I2,abI4,ab

fMa

ma

δĖba . (2.1.24)

Conservation to machine precision is reached by computing the integrals Ii,ab nu-
merically instead of evaluating them analytically.

The Xu-Rosenbluth model

At this point we note that the Xu-Rosenbluth operator [25] is obtained by choosing
the coefficients

BP,XR
ab (xb) = 1, BE,XR

ab (xb) = x2
b

of simpler velocity space structure (which gives an intrinsically non-self-adjoint op-
erator). The Xu-Rosenbluth model described in Ref. [15] follows the same procedure
of solving a system of equations to preserve particles, momentum, and energy.

2.1.3. Guiding center transformation including collisions
So far, the Fokker-Planck collision operator has been discussed in detail using par-
ticle coordinates. The corresponding kinetic equation Eq. (1.4.3) formally reads

d
dtfa =

∑
b

Cab[fa, fb] , (2.1.25)

with the collision-free Vlasov operator on the left hand side and the collision operator
on the right hand side. We now employ a phase space transformation that removes
the fast gyration timescale introduced by the guiding magnetic field. In traditional
gyrokinetic theory, only the collision-free (Vlasov) operator is transformed (see e.g.
[26, 27]). Following a paper by Brizard [28], we outline a guiding center transforma-
tion that additionally includes collisional dynamics. Therefor, it is important that
the Fokker-Planck operator C is bi-linear in its two arguments. The basic idea is
to first introduce guiding center coordinates Z(gc) = {X(gc), v‖, µ, θ} with parallel
velocity v‖, magnetic moment µ = 1

2mv
2
⊥/B0, and gyroangle θ as velocity space co-

ordinates, where v2
⊥ = v2

x + v2
y. The particle coordinates x = {x, y, z} are expressed

as

x = X(gc) + ρ(gc) (2.1.26)
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2.1 Collisional gyrokinetic theory

in terms of the guiding center position X(gc) and the gyro-vector ρ(gc). We take the
gyration vector and velocity as

ρ(gc) = v⊥
Ω â â = [ê1 cos θ − ê2 sin θ]

v = v‖b0 + v⊥ĉ ĉ = − [ê1 sin θ + ê2 cos θ]

in a local rectangular coordinate system with the perpendicular unit vectors ê1 and
ê2.6 The velocity space Jacobian of this transformation is Jv = B0/m.

2.1.3.1. Transformation of the collision-free part

For the formal guiding center transformation of the collision-free part, we implicitly
define the transformed zeroth order guiding center one-form Γ0 from the Lagrangian
L0 by writing

ˆ
Γ0dt = L0 .

It can be shown with the appropriate choice of the Lie transform that

Γ0 = q

c
A∗0 · dX + µB0(X)

Ω(X) dθ −H0(X, v‖, µ)dt , (2.1.27)

which indeed has decoupled gyroangle-dependency.7 Here H0(X, v‖, µ) = 1
2mv

2
‖ +

µB0(X) denotes the zeroth-order guiding center Hamiltonian. The effective vector
potential A∗0 = A0 + mc

q
v‖b0 has been used to write Eq. (2.1.27) in a compact from,

adding a term proportional to the unit vector b0 = B0/B0 to the equilibrium vector
potential A0. From the zeroth order guiding center one form one can derive the
drift-kinetic equation, which is often used in plasma modeling. Neoclassical theory,
for example, makes use of the drift kinetic framework. We derive the corresponding
equations by taking the appropriate limit of the gyrokinetic equations in Sec. 2.2,
however.

2.1.3.2. Formal transformation of the collision operator

Some authors define the guiding center transformation in a more rigorous way, ob-
taining Jv = B∗‖0/m for the Jacobian [27]. These authors formulate the guiding
center coordinate transformation as a Lie transform Z(gc) = T(gc) z with generating
functions G1 and G2, such that the gyration vector

ρε(Z(gc)) = ρ0 − ε(GX
2 + 1

2G1 · dρ0)

6Note that the choice of the sign of θ makes {ê‖, êµ, êθ} a left-handed coordinate system, which
has to be consistently accounted for also in the field equation for B1‖ in Sec. 2.1.8.

7See, also Ref. [29], for example.
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includes corrections of the order ε ∼ εB due to magnetic field inhomogeneity. This
more involved approach offers the possibility of expansion in εB within a rigorous
formalism. The guiding center phase space coordinates are denoted as Z(gc). The
coordinate transformation is associated with a push-forward operator

T−1
(gc) : f → F (gc) ≡ T−1

(gc)f

transforming a scalar field f on particle phase space to a scalar field F on the guiding
center phase space. Conversely, the pull-back operator

T(gc) : F → f ≡ T(gc)F
(gc)

transforms a scalar field F on guiding center phase space to a scalar field f on the
particle space. The transformation rule for operators A : f → Af is then given by

AF (gc) ≡ T−1
(gc)A(T(gc)F

(gc)) , (2.1.28)

when Af is a scalar, just as f .
Using this induced transformation on the collision operator yields

Cab,ε[F (gc)
a ](Z(gc), t) = T−1

(gc)Cab[T(gc)F
(gc)
a ](Z(gc), t) ,

where the transformations of the field-particle species F (gc)
b is not explicitly needed

here. In this way the Fokker-Planck equation Eq. (2.1.25) is turned into a set of two
kinetic equations(

d
dt

)(gc)

〈F (gc)〉 = 〈Cε[F (gc)]〉 ≡ 〈Cε[〈F (gc)〉]〉+ 〈Cε[F̃ (gc)]〉Ω ∂

∂θ
+
(

d
dt

)(gc)
 F̃ (gc) = Cε[F (gc)]− 〈Cε[F (gc)]〉

that are coupled by collisions.8 One equation determines the θ averaged distribution
〈F (gc)〉, the other is for the θ dependent part F̃ (gc). The reduced Vlasov operator
(d/dt)(gc) is not θ dependent by definition of the guiding center coordinate trans-
formation. However, such transformations are not designed to remove gyroangle-
dependencies from the collision operator. Expanding F̃ in a Fourier series in θ, one
can write(

d
dt

)(gc)

〈F (gc)〉 = C(gc)[〈F (gc)〉]

with

C(gc)[〈F (gc)〉] = 〈T−1
(gc)C[T(gc)〈F (gc)〉]〉+O(εν) . (2.1.29)

8Note that we have used the bilinearity of C.
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Generally it is assumed that the zeroth order expression is sufficient in practice,
giving the desired result of a collision operator that requires knowledge of the gy-
roaveraged part

〈
F (gc)

〉
only. Thus, it becomes clear that within the gyrokinetic

formalism εν plays the special role to remove gyroangle-dependencies after θ is elim-
inated from the collision-free part. Already, first order terms in εν are neglected to
yield a closed form of the kinetic equation for the gyroaveraged part of F . This
last point is of great importance for numerical computation, allowing one to evalu-
ate the collision operator from the guiding center distribution without inconvenient
back-and-forth transformation. As stated above, one typically has εν � εB in fu-
sion plasmas, further supporting the above treatment. We have outlined the formal
transformation of the collisional term so far. An explicit transformation is performed
in an Appendix A and the result actually used in the GENE code are summarized
in the next section.

2.1.4. Transformation to gyrocenter coordinates
Plasma microturbulence requires to include small-scale fluctuating electromagnetic
fields. In the framework of the previously discussed guding center transformation, it
is not possible to remove fast gyroangle dynamics in a straightforward manner. The
basic ideas behind a more sophisticated treatment, the gyrocenter transformation,
are presented this section. It is developed to account for the effects of small-scale
electromagnetic field fluctuations φ1 and A1, without depending directly on the
gyroangle θ. These fluctuations introduce order-εδ perturbations of the guiding-
center one-form and Hamiltonian function as

Γ = Γ0 + Γ1

H = H0 +H1 .

The perturbations read

H1 = qφ1(x, t)

Γ1 = q

c
A1 · dX + q

c
A1 ·

∂ρ

∂µ
dµ+ q

c
A1 ·

∂ρ

∂θ
dθ −H1dt .

A near-identity Lie-transform, the gyrocenter transformation, is applied to obtain

H
(gy)
1 = q

〈
φ1 + µ

q
B1‖

〉
≡ q〈ψ1〉

Γ(gy)
1 =

[
q

c
A∗0 + q

c
〈A1‖〉b0

]
· dX + µB0

Ω dθ − [H0 + q〈ψ1〉]dt

where the gyroaverage 〈〉 = 1
2π

´ 2π
0 dθ has been introduced. Appropriate choices

for the generating functions and gauge functions that define this gyrocenter Lie
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transform are found in Ref. [29], for example. The resulting gyrocenter Fokker-
Planck equation reads

∂

∂t
F (gy) + Ẋ · ∇F (gy) + v̇‖

∂F (gy)

∂v‖
= 〈Ca[F (gy)]〉 , (2.1.30)

where the Vlasov operator on the left hand side does not contain a µ derivative,
since by construction of gyrocenter coordinates µ̇ = 0. The term ∂θF disappears as
well and F is taken to be independent on θ. The model for the gyrokinetic collision
operator is discussed in the next subsection. The perturbed equations of motion are
consistently derived in Ref. [29] from the associated Poisson brackets Ẋ = {X, H}
and v̇‖ = {v‖, H}. One gets

Ẋ = v‖b̂0 + B

B∗‖
vD

v̇‖ = − 1
mv‖

Ẋ ·
(
q∇φ̄1 + µ∇(B0 + B̄1‖)

)
− q

mc
˙̄A1‖

where the overbars label gyroaveraged quantities. With the gyroaveraged modified
potential

χ̄1 = φ̄1 −
v‖
c
Ā1‖ + µ

q
B̄1‖ ,

the gyrocenter drift velocity is written as

vD =vχ̄ + v∇B0 + vc , (2.1.31)

which is the sum of the generalized E ×B velocity

vχ̄ = c

B2
0
B0 ×∇χ̄1 , (2.1.32)

the gradient-B velocity

v∇B0 = µc

qB2
0
B0 ×∇B0 (2.1.33)

and the magnetic curvature drift velocity

vc =
v2
‖

Ω (∇×B0)⊥ . (2.1.34)

as also derived in [30]. Using Ampères law and the MHD equilibrium condition
Eq. (1.4.4), the curvature drift is rewritten as

vc =
v2
‖mc

qB2
0

(
B0 ×

[
∇B0

B0
+ βp

2
∇p0

p0

])
, (2.1.35)

where βp = 8πp0/B
2
0 denotes the kinetic to magnetic pressure ratio[12].
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The gyrokinetic full-F equation

Altogether, the gyrokinetic full-F equation reads

∂Fa
∂t
− qa
mac

˙̄A1‖
∂Fa
∂v‖

+
 B0

B∗0‖

(
v‖b̂0 + vD

) · (2.1.36)
{
∇Fa −

(
qa∇φ̄1 + µ∇(B0 + B̄1‖)

) 1
mav‖

∂Fa
∂v‖

}
= 〈Ca[F ]〉 ,

where we abbreviate the gyrocenter distribution Fa = F (gy)
a and its gyrocenter phase

space as Z(gy) = {X, v‖, µ}. The collision operator on the right hand side is described
in the next section.

2.1.5. The model for collisions
To treat collisional dynamics, it is of great advantage to expand the distribution
function Fa = F0a + F1a + . . . into a background part that is constant in time,
and a small fluctuating part F1a ∼ εδF0a. This allows to linearize the Fokker-Planck
equation conveniently. A constant background is justified, when only processes faster
than the equilibrium time scale are considered. Here, we choose a local Maxwellian
distribution

F0a = FMa(x, v‖, µ) = n0a(x)
π3/2v3

Ta(x) exp
[
−
mav

2
‖/2 + µB0(x)
T0a(x)

]
(2.1.37)

with vanishing flow velocity.9 The guiding center collision operator, Eq. (2.1.29)
C(gc)[〈F (gc)〉] has been explicitly evaluated in Ref. [28] for an isotropic background
F0 and expanded in terms of εB.10 The lowest order operator is equivalent to the test-
particle operator implemented in GENE, as also described in Ref. [15]. However, for
the actual evaluation of collisions in the gyrocenter equation, we ignore the difference
of F (gc) and F (gy) and further take F (gy) to be independent of the gyroangle to
compute

〈Ca[F ]〉 = 〈C(gc)[F (gy)]〉 . (2.1.38)

The difference of the guiding center (gc) and gyrocenter (gy) distribution is given
the gyrocenter pull-back operation

F (gc)
a = T (gy)∗F

(gy)
1a = F

(gy)
1a −

{
qa(φ1 − φ̄(gy)

1 )− µB̄(gy)
1‖

} F0a

T0a
. (2.1.39)

9The property local refers to the fact that F0 is a function of position x and defines local tem-
perature and density at that position.

10(FMa is isotropic)
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Chapter 2 Aspects of gyrokinetic theory

of the near-identity transform that we take from Ref. [29] for a local Maxwellian
F0a, keeping only first order terms in εB . Equation (2.1.39) yields the identity
F (gc)
a = F (gy)

a in the drift-kinetic limit k⊥ρa → 0, when additionally B1‖ fluctua-
tions are not considered. This limit is well applicable, for example, in neoclassical
computations. Also, electron collisions are correctly described by Eq. 2.1.38, since
k⊥ρe � 1, provided that k⊥ρi . 1. The problems considered in this thesis all fulfill
these conditions. We will thus, in the following take Fa = F (gy)

a to evaluate col-
lisions. The linearized Fokker-Planck collision operator introduced in Sec. 2.1.2 is
transformed to guiding center coordinates in Appendix A to have the gyroaveraged
form 〈

CL
a

〉
=
[∑

b

〈CT
ab〉+ 〈CF

ab〉
]

The final form of the test-particle operator turns Eq. (2.1.13) into

〈CT
ab〉 =γabn0b

mamb

∂

∂V
· FMa

 T0b

mav5

[ 2µB0
ma

Φ1 + v2
‖Φ2 6µv‖Φ2

6µv‖Φ2
2ma

B0
v2
‖µΦ1 + 4µ2Φ3

]
· ∂
∂V

+
(

1− T0b

T0a

) Φ3

v3

[
v‖
2µ

] Fa
FMa

(2.1.40)

where ∂/∂V summarizes
(
∂/∂v‖, ∂/∂µ

)
. For field-particle collisions, Eq. (2.1.24)

turns into the model operator
〈
CF
ab(F1a)

〉
=B

P
ab(xb)
I5,ab

v‖FMa

ma

δṖ‖ba + I1,abB
E
ab(xb)− I2,ab

I3,abI1,ab − I2,abI4,ab

FMa

ma

δĖba (2.1.41)

with the integrals for collisional momentum and energy transfer rates

δṖ‖ba = −
ˆ
mbv‖

〈
CT
ba[Fb]

〉
b
d3v

δĖba = −
ˆ
mbv

2
〈
CT
ba[Fb]

〉
b
d3v (2.1.42)

evaluated from the guiding-center test-particle operator. For the prefactors Bα (and
thereby Iα), different choices are possible. In Sec. 2.1.2 we have discussed the Xu-
Rosenbluth model, as well as a self-adjoint form. The corresponding integrals are
performed in guiding center space, inserting the gyrocenter distribution, according
to our convention.

2.1.6. Further transformation of the gyrocenter equation
In the framework of δf splitting it is consistent to neglect the (slow) thermalization
term of the collision operator. Because equilibrium quantities like F0 can be eval-
uated at particle position x or gyrocenter position X, the zeroth order collisional
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2.1 Collisional gyrokinetic theory

term is identical to Eq. (2.1.7) and is taken to vanish. The resulting zeroth order
kinetic equation

〈Ca[F0]〉 = 0 = v‖b0 ·
[
∇F0a −

1
mav‖

µ∇B0
∂F0a

∂v‖

]
,

is fulfilled by our choice of F 0a, which can easily be verified by inserting Eq. (2.1.37).
The remaining terms of Eq. (2.1.36), to first order in εi are

〈CL
a [F ]〉 =∂F1a

∂t
− ˙̄A1‖

qa
mac

∂F0a

∂v‖

+ B0

B∗0‖
v‖b̂0 ·


[
∇F1a − µ∇B0

1
mav‖

∂F1a

∂v‖

]
(2.1.43)

−
(
qa∇φ̄1 + µ∇B̄1‖

) 1
mav‖

∂F0a

∂v‖


+ B0

B∗0‖
vD ·

∇ (F0a + F1a)−
(
qa∇φ̄1 + µ∇(B0 + B̄1‖)

) 1
mav‖

∂F0a

∂v‖


where on the left hand side, the linearized collision operator appears. Higher order
terms will not be considered in this work. They involve the nonlinearity of the
collision operator 〈CN

ab[F1a, F1b]〉 as well as the so-called v‖ nonlinearity or parallel
nonlinearity given to all orders by

N‖a =− ˙̄A1‖
qa
mac

∂F1a

∂v‖
− B0

B∗0‖
v‖b̂0 ·

{(
qa∇φ̄1 + µ∇(B̄1‖)

) 1
mav‖

∂F1a

∂v‖

}

− B0

B∗0‖
vD ·

{(
qa∇φ̄1 + µ∇(B0 + B̄1‖)

) 1
mav‖

∂F1a

∂v‖

}

as appearing on the right hand side of the equation. The collisional nonlinearity is
commonly neglected in computational models. Its influence is discussed in [17] in
the context of neoclassical transport. The parallel nonlinearity is discussed in the
literature in the context of maintaining an energy conservation law for the gyroki-
netic equation. Nevertheless, it has been shown in [31, 32, 33] that no significant
contribution is expected for medium-size and large tokamaks.
We further simplify Eq. (2.1.43) by explicitly evaluating the derivatives of the

Maxwellian background distribution
∂F0a

∂v‖
= −mav‖

T0a
F0a,

∂F0a

∂µ
= −B0

T0a
F0a , (2.1.44)

and

∇F0a =
[
∇n0a

n0a
+ ∇T0a

T0a

(
mav

2
‖/2 + µB0

T0a
− 3

2

)
− µ∇B0

T0a

]
F0a . (2.1.45)
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Chapter 2 Aspects of gyrokinetic theory

Note that the first two terms are purely radial, because they involve gradients of
density n0a and temperature T0a, which are flux surface quantities. The last term
in ∇F0a cancels with a µ∇B0 term in Eq. (2.1.43). The appearance of this term
essentially is a consequence of our choice of velocity space coordinates {v‖,µ}. This
becomes more clear in Sec. 2.2.4, where the neoclassical equation is compared to
other formulations. In Eq. (2.1.43), two terms involving time derivatives exist. It
is of computational advantage to combine these two terms on the left hand side by
defining a modified distribution function

g1a = F1a − Ā1‖
qa
mac

∂F0a

∂v‖
= F1a + v‖Ā1‖

qa
c
F0a

that is evolved in time. In summary, the gyrokinetic equation turns into

∂g1a

∂t
=− B0

B∗0‖
v‖b̂0 ·


[
∇F1a − µ∇B0

1
mav‖

∂F1a

∂v‖

]

+
(
qa∇φ̄1 + µ∇B̄1‖

) 1
T0a

F0a


− B0

B∗0‖
vD ·

∇F1a +
(
qa∇φ̄1 + µ∇B̄1‖

) 1
T0a

F0a


− B0

B∗0‖
vD ·


[
∇n0a

n0a
+ ∇T0a

T0a

(
mav

2
‖/2 + µB0

T0a
− 3

2

)]
F0a


+ 〈CL

a [F ]〉 (2.1.46)

2.1.6.1. The field-aligned coordinate system

We exploit the strong anisotropy between parallel and perpendicular length scales
that is introduced by the guiding magnetic field, by employing a field-aligned coor-
dinate system. A useful introduction to field-aligned coordinates in plasma physics
is given in Ref. [34]. The transformation to a general curvilinear coordinate system
u(1,2,3) = (x, y, z) is described by the (contravariant) metric tensor

(gij) = (∇ui · ∇uj) =

 gxx gyx gzx

gxy gyy gzy

gxz gyz gzz

 .

We utilize a Clebsch coordinate system by writing the magnetic field as

B0 = C [∇x×∇y]

and thereby find the Jacobian of the transformation

J−1 = [∇x×∇y] · ∇z = B0 · ∇z
C

.
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2.1 Collisional gyrokinetic theory

Here, z denotes the ’parallel’ coordinate along the field line, x is the flux-surface
label (the radial coordinate) and y is the field-line label (binormal coordinate).
The vector relations occurring in Eq. (2.1.36) are now expanded in terms of the
introduced metric tensor. The salient feature of these field-aligned coordinates is
that the parallel derivative

B0 · ∇ = C [∇x×∇y] · ∇ui∂i

= C
J
∂z

only has one component. The drift velocities involve outer vector products of the
type

1
B2

0
(B0 ×∇A) · ∇ = C

B2
0

(
[∇x×∇y]× ∂iA∇ui

)
· ∇uj∂j

= 1
C
g1ig2j − g2ig1j

γ1
∂iA∂j

where for the function A we insert p0, B0, χ̄1 in Eq. (2.1.36). We introduce the
abbreviations

γ1 = g11g22 − g21g12

γ2 = g11g23 − g21g13

γ3 = g12g23 − g22g13

as well as the curvature terms

Kx = − 1
C

(
∂yB0 + γ2

γ1
∂zB0

)
and Ky = 1

C

(
∂xB0 + γ3

γ1
∂zB0

)
(2.1.47)

to facilitate notation. The transformation of the (radial component of the) drift
velocities is given in Sec. 2.3 as an example. In particular, the field-aligned coor-
dinates allow to identify small terms in the parallel-wavenumber ordering, which
becomes apparent in the E×B drift velocity. We can write, for example, the radial
component as

vxχ̄ = − c
C

(
∂yχ̄+ γ2

γ1
∂zχ̄

)
= − c
C
∂yχ̄+O(εδε‖)

and neglect the parallel derivative, since it appears in direct combination with a
perpendicular derivative. Thereby, the metric quantities γi, as well as their ratios
are taken to be of order unity. We additionally introduce the abbreviations

Γa,i = ∂iF1a +
(
qa∂iφ̄1 + µ∂iB̄1‖

) F0a

T0a

with i ∈ {x, y, z} so that altogether, the gyrokinetic equation turns into
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Chapter 2 Aspects of gyrokinetic theory

∂g1a

∂t
= + c

C
B0

B∗0‖

[
∂xn0a

n0a
+ ∂xT0a

T0a

(
mav

2
‖/2 + µB0

T0a
− 3

2

)]
F0a∂yχ̄1

− cB0

B∗0‖

µB0 +mav
2
‖

qaB0
KxΓa,x

− cB0

B∗0‖

[
µB0 +mav

2
‖

qaB0
Ky + c

C
ma

qa
v2
‖
βp
2
∂xp0

p0

]
Γa,y

− c

C
B0

B∗0‖
((∂xχ̄1) Γa,y − (∂yχ̄1) Γa,x)

− C
JB0

v‖

[
Γa,z − µ∂zB0

1
mav‖

∂F1a

∂v‖

]

+ cB0

B∗0‖

µB0 +mav
2
‖

qaB0
Kx

[
∂xn0a

n0a
+ ∂xT0a

T0a

(
mav

2
‖/2 + µB0

T0a
− 3

2

)]
F0a

+ 〈CL
a [F ]〉 . (2.1.48)

On the left-hand side we isolate the explicit time derivative, while on the right hand
side we identify the terms (in order) as the drive term due to background density
and temperature gradients, the x and y curvature terms11, the generalized E × B
nonlinearity including also magnetic flutter, the parallel advection, the neoclassical
drive term that does not contain F1a in any way, and finally the collision operator.

2.1.7. Moments of the distribution function
The gyrokinetic equations involve particle drifts that require a self-consistent de-
scription of the electromagnetic fields. These can be computed from the particle
distribution with Maxwell’s equations

−∇2φ = 4πρ(x) = 4π
∑
a

qana(x) (2.1.49)

−∇2A = 4π
c

j(x) = 4π
c

∑
a

qana(x)ua(x) .

Note that the requirement of low frequency waves described within the gyrokinetic
framework allows us to neglect the displacement current in Ampères law. Here, we
only compute the fluctuating parts of A and φ from the particle distribution. The
the zeroth order plasma current density j0 that provides the poloidal component of
the guiding magnetic field, as well as the vector potential generated by external coils
are not considered. The zeroth order electric field −∇φ0 is moreover assumed to
11Note that the contribution of the pressure gradient to the y curvature term is O(βpεδ) and thus

often neglected.
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2.1 Collisional gyrokinetic theory

vanish. The fluid moments, like density, flow velocity and temperature are computed
as velocity space moments of the kinetic distribution function fa in particle space

na(x) =
ˆ
fa(x,v) d3v

ua(x) = 1
na(x)

ˆ
vfa(x,v) d3v

Ta(x) = 1
na(x)

ˆ
ma

2 (v− ua)2fa(x,v) d3v

and these quantities enter Maxwell’s equations Eq. (2.1.49). From the fact that the
gyrokinetic equation evolves the gyrocenter distribution function, it is clear that a
transformation to particle coordinates is required. It is therefore helpful to derive a
general expression for these moments

Mmn
a (x) =

ˆ
vm
‖ v

n
⊥f

(pc)
a (x,v)d3v

=
ˆ
δ(X− x + ρ)F (gc)

a (X,V)vm
‖ v

n
⊥
B∗0‖(x,v)

ma

dXdv‖dµ

=
ˆ
δ(X− x + ρ)T (gy)∗F (gy)

a (X,V)
B∗0‖(x,v)

ma

vm
‖ v

n
⊥dXdv‖dµ ,

(2.1.50)

where, in two steps, the particle distribution function f (pc)
a is obtained from the

gyrocenter distribution function. We refer to Refs. [27, 30] for the guiding center
transformation (the first step) that yields the velocity space Jacobian B∗0‖(x,v)/ma.
The second step involves the gyrocenter pull-back operation

F (gc)
a = T (gy)∗F

(gy)
1a = F

(gy)
1a −

{
qa(φ(pc)

1 − φ̄(gy)
1 )− µB̄(gy)

1‖

} F0a

T0a
. (2.1.51)

(see Eq. 2.1.51) that we take from Ref. [29] for a local Maxwellian F0a and keep
only first order terms in εB . In the following we use the gyrocenter distribution
F1a = F

(gy)
1a without explicitly marking it. By expressing

B∗0‖(x,v) = B0 + mac

qa
v‖b0 · ∇ × b0

we find the second term to be one order in εB smaller than the first term. We
will thus neglect this second term in the following, which turns out to simplify and
partially decouple Maxwell’s equations. At this point we note that two forms of
gyroaverages exist. The first form

φ̄1(X) = 1
2π

ˆ
φ1(X + ρa)dθ
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Chapter 2 Aspects of gyrokinetic theory

is denoted by ¯· · · and it appears in the transformation to gyrocenter coordinates, and
thus also in the Vlasov equation. The second gyroaverage is introduced by taking
velocity space moments as

〈
φ̄
〉

(x) = 1
2π

ˆ
δ(X− x + ρa)φ̄1(X)dXdθ .

By explicitly writing φ̃1 = φ
(pc)
1 (x) − φ̄(gy)

1 (X) it is clear that the first term is not
affected by the 〈· · · 〉 type of gyroaverage, since it does not depend on X. On the
other hand, evaluating the ¯· · · type gyroaveraged function of the second term at the
position X = x − ρa(θ) actually re-introduces the gyroangle-dependence. Indeed,
inserting the pull-back operation Eq. (2.1.51) into the moment Eq. (2.1.50) gives

Mmn
a (x) = 2π

ma

ˆ 〈{(2B0

ma

)n/2
B0

[
F1a + qaφ̄1 + µB̄1‖

F0a

T0a

]} ∣∣∣∣
x−ρ

〉
vm
‖ µ

n/2dv‖dµ

− 2π
ma

qaφ1(x)
ˆ (2B0

ma

)n/2
B0
F0a

T0a
vm
‖ µ

n/2dv‖dµ (2.1.52)

including consecutive gyroaverages of the form
〈
φ̄1
〉
. Here, the factor (2B0/ma)n/2

appears due to the replacement of v⊥ by the magnetic moment µ. The notation
{· · · } |x−ρ indicates that the bracketed expression is to be evaluated at the position
x − ρa. Note that in Eq. (2.1.52), the equilibrium quantities are kept within the
gyroaverage in order to preserve the symmetry of the Maxwell equations also in the
(radially) global case. In some of the above terms in Eq. (2.1.52) it is possible to
evaluate the velocity integrals analytically. In particular,

2πB0

ma

ˆ
F0adv‖dµ = n0aB0

T0a

ˆ
e−µB0/T0adµ = n0.

2.1.8. Gyrokinetic form of Maxwell’s equations
We now turn to the gyrokinetic field equations by inserting the appropriate moments
into Maxwell’s equations.

2.1.8.1. Gyrokinetic Poisson equation

The Poisson equation reads

∇2
⊥φ1(x) =− 4π

∑
a

qaM
00
a (x)

=− 8π2∑
a

qa
ma

ˆ 〈{B0F1}
∣∣∣∣
x−ρ

〉
+
〈{(

qaφ̄1 + µB̄1‖
)
B0
F0a

T0a

} ∣∣∣∣
x−ρ

〉

− qaφ1B0
F0a

T0a

dv‖dµ
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2.1 Collisional gyrokinetic theory

where the quasineutrality condition ∑a n0aqa = 0 has been explicitly evaluated and
the parallel wavenumber ordering has been used on the Laplacian. We rearrange
the equation to have all terms containing the electrostatic potential on the left hand
side

∇2
⊥φ1(x)− 8π2∑

a

q2
a

ma

ˆ 〈φ1B0
F0a

T0a
−
{
φ̄1B0

F0a

T0a

} ∣∣∣∣
x−ρ

〉dv‖dµ

= −8π2∑
a

qa
ma

ˆ 〈{B0g1}
∣∣∣∣
x−ρ

〉
+
〈{

µB̄1‖B0
F0a

T0a

} ∣∣∣∣
x−ρ

〉dv‖dµ .

Furthermore, we replace the distribution F1a with the modified distribution g1, which
does not change the Poisson equation because the added term is anti-symmetric in
v‖ and its velocity integral vanishes. The operator on the left hand side can be
formally inverted and applied on the right hand side to solve the equation. Note
that B1‖ fluctuations are coupled to φ1 fluctuations.

2.1.8.2. Gyrokinetic Ampère’s law

The gyrokinetic version of the perpendicular component of Ampère’s law reads

∇⊥A1‖(x) =− 4π
c

∑
a

qaM
10
a (x)

=− 8π2

c

∑
a

qa
ma

ˆ
v‖

〈
{B0F1}

∣∣∣∣
x−ρ

〉
dv‖dµ

=− 8π2

c

∑
a

qa
ma

ˆ [
v‖

〈
{B0g1a}

∣∣∣∣
x−ρ

〉
− v2

‖

〈{
B0
F0a

T0a
Ā1‖

} ∣∣∣∣
x−ρ

〉]
dv‖dµ ,

where no equilibrium currents are taken into account, since they are stationary and
accounted for in the equilibrium magnetic field. We have again introduced the g1
distribution, which gives an extra term. Collecting all expressions including A1‖ on
the left hand side gives

∇⊥A1‖(x)− 8π2

c

∑
a

qa
ma

ˆ 〈{
B0
F0a

T0a
Ā1‖

} ∣∣∣∣
x−ρ

〉
v2
‖dv‖dµ

= −8π2

c

∑
a

qa
ma

ˆ 〈
{B0g1a}

∣∣∣∣
x−ρ

〉
v‖dv‖dµ .

We complete the field equations with the perpendicular component of Ampère’s law

(∇×B1)⊥ = 4π
c

j⊥ .

An equation for compressional magnetic field fluctuations B1‖ is obtained by evalu-
ating the curl expression

∂yB1‖ê1 − ∂xB1‖ê2
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in terms of the two unit vectors perpendicular to the magnetic field. We also intro-
duce the unit vector of perpendicular velocity

ĉ(θ) = − sin θê1 − cos θê2 ,

which is included in the moment M01
a for obtaining a (vector-valued) expression for

current j⊥, to get(
∂yB1‖
−∂xB1‖

)
=

4π2

c

∑
a

qa

( 2
ma

)3/2 ˆ 〈ĉB3/2
0

F1a + qaφ̄1a
F0a

T0a
+ µB̄1‖

F0a

T0a


∣∣∣∣
x−ρ

〉
√
µdv‖dµ .

Here, we use the fact that the term 〈φ1ĉ〉 = 0 vanishes on gyroaverage. A more
detailed derivation is given in Ref. [29, 30]. We note that the equation for A1‖ is
decoupled from the other field equations (because we have not considered equilib-
rium currents). The remaining equations for φ and B1‖ form a coupled system of
equations. Its solution is described in Ref. [15] for the local limit.

2.1.8.3. The local limit

In the local (flux-tube) limit, the equilibrium quantities can be taken out of the
gyroaverages. The equations thus reduce to

∇2
⊥φ1 − 8π2∑

a

q2
a

ma

B0

T0a

ˆ
F0a

[
φ1 −

〈
φ̄1
〉]

dv‖dµ =

− 8π2∑
a

qa
ma

B0

ˆ [
〈g1〉+ F0a

T0a
µ
〈
B̄1‖

〉]
dv‖dµ

∇⊥A1‖(x)− 8π2

c

∑
a

qa
ma

B0F0a

T0a

ˆ 〈
Ā1‖

〉
v2
‖dv‖dµ =

− 8π2

c

∑
a

qaB0

ma

ˆ
〈g1a〉 v‖dv‖dµ .

(
∂yB1‖
−∂xB1‖

)
=

4π2

c

∑
a

qa

(2B0

ma

)3/2 ˆ  〈ĉF1a〉+ qa
〈
ĉφ̄1

〉 F0a

T0a
+ µ

〈
ĉB̄1‖

〉 F0a

T0a

√µdv‖dµ.

Furthermore, the gyroaverages ¯· · · and 〈· · · 〉 both can be replaced by multiplying
with the same Bessel function J0(k⊥ρa), as outlined in Refs. [15, 30]. A special
role is thereby played by the B1‖ gyroaverage, that requires the Bessel function
J1(k⊥ρ)/(k⊥ρ) , due to the additional sin θ and cos θ terms of the vector ĉ.
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2.2 Neoclassical theory as a subset of gyrokinetics

2.2. Neoclassical theory as a subset of gyrokinetics
We have derived the gyrokinetic equations suited to describe (electromagnetic)
plasma microturbulence. In this section, we show that this equation contains the
neoclassical transport problem as a subset, which thus can be solved with gyrokinetic
codes such as Gene. The standard theory for neoclassical transport is summarized
in the review paper of Hinton and Hazeltine [8]. The underlying equation is the drift-
kinetic equation, which we obtain by imposing further assumptions (the neoclassical
ordering) on our gyrokinetic equation.

2.2.1. The neoclassical ordering
Just as the gyrokinetic ordering, neoclassical transport ordering relies on the small-
ness of the parameter εδ = ρi/L0 � 1 with ρi denoting the ion gyroradius and L0 the
macroscopic scale length of background density, temperature, and magnetic field.
One expands the distribution function in powers of εδ as F = F0 + F1 + F2 + . . .
where the lowest order distribution function is Maxwellian F0 = FM . The neoclassi-
cal transport coefficients can be obtained by solving the first-order kinetic equation
for F1. Throughout this work, electric fields and magnetic field perturbations are
neglected, since they do not contribute to the neoclassical fluxes to lowest order
(see, for example, [35]). We thus have φ̄1 = 0, Ā1‖ = 0, and B̄1‖ = 0. In this case,
vD reduces to vd = v∇B + vc. If one instead wishes to consider the self-consistent
electric field, φ0 should be included, with its correct ordering, in the single particle
Hamiltonian before Lie perturbation methods are applied, but this is left for future
work. Neoclassical ordering is summarized as

1. The perturbed distribution is ordered as F1/F0 ∼ εδ

2. The drift velocity is ordered as vD/v‖ ∼ εδ

3. The advection terms are ordered as vD · ∇F1 ∼ εδvD · ∇F0 = O(ε2δ).

Note that there is a subtle difference to gyrokinetic turbulence ordering, where the
advection term vD · ∇F1 = O(εδ) is one order larger (and gives the E × B nonlin-
earity). This is because the perpendicular derivatives of the perturbed distribution
are ordered as ∇⊥F1 ∼ F1/ρi ∼ F0/L0 in gyrokinetics. The standard neoclassical
ordering can be understood in connection with the locality of neoclassical transport.
As long as particle orbits do not strongly deviate from the original flux surface, the
coupling between neighboring flux surfaces is weak. This lets F1 vary on the scale
length of background density and temperature only.

2.2.2. The neoclassical equation
Applying the above discussed ordering on Eq. (2.1.46), we have the zeroth order
equation fulfilled by a Maxwellian distribution function. The first order gyrokinetic
equation (without electromagnetic field perturbations) reduces to
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∂F1a

∂t
=− 〈CL

a [F ]〉+ B0

B∗0‖
v‖b̂0 ·

[
∇F1a − µ∇B0

1
mav‖

∂F1a

∂v‖

]

+ B0

B∗0‖
vd ·


[
∇n0a

n0a
+ ∇T0a

T0a

(
mav

2
‖/2 + µB0

T0a
− 3

2

)]
F0a

 (2.2.1)

+ B0

B∗0‖
vd · ∇F1a

and includes the additional term vD · ∇F1 that is formally of second neoclassical
order. The standard neoclassical theory truncates the equation at first neoclassical
order. The last term can thus be understood as the nonlocal correction to the
standard neoclassical equation. It is argued in Ref. [17] that including this term can
actually disturb the physics and that a consistent description would remove it from
the first order equation and, instead, add the second order equation

〈
CNL
a [F1]

〉
=∂F2a

∂t
+ B0

B∗0‖
vd · ∇F1a + B0

B∗0‖
vd ·

{
1

mav‖
µ∇B0

∂F1a

∂v‖

}
(2.2.2)

that includes the nonlinearity of the collision operator
〈
CNL
a [f1]

〉
= ∑

b 〈C[F1a, F1b]〉,
as well as a term that is part of the parallel nonlinearity. It is, however, not clear how
large the effect of the additional second-order terms is, which we do not consider here.
Let us note that the collisional nonlinearity is O(ε2δ) and, depending on the collision
rate, probably smaller. The drift term on the other hand, can involve nonlocal
effects by extreme peaking of the temperature gradient (like in transport barriers),
even in cases in which εδ is small. Neglecting the collisional nonlinearity is thus
formally correct in some cases. One example that requires an extension to standard
neoclassical theory is found near the magnetic axis where particles follow potato
shaped orbits rather than banana shaped orbits. These orbits are illustrated in
Fig. 1.3.2. As a consequence, the standard neoclassical approximation breaks down
in such a way that vD∇F1 is comparable to vD∇F0 and thus formally becomes first-
order.[24, 36] Helander states explicitly that due to variations of F1 on the potato-
orbit scale the gradient ∇F1 becomes large without breaking F1 ∼ εδF0.[36] In this
case the neglect of the collisional and parallel nonlinearity is justified. Vernay has
shown by means of global PIC simulations that including vD∇F1 in the first-order
equation yields unmodified local transport even where the standard neoclassical
ordering is valid.[24] Interestingly, near the magnetic axis, where the ordering breaks
down, including the nonlocal drift term actually removes the the strong increase of
neoclassical heat flux that is artificially obtained with local models.
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2.2 Neoclassical theory as a subset of gyrokinetics

2.2.3. The local limit and the decoupling of neoclassical and
turbulent transport

The neoclassical equation is axisymmetric; it is independent of the binormal (y) co-
ordinate. In a Fourier decomposition of F1a, only the ky = 0 part contributes, which
is linearly stable, but nonlinearly interacts with turbulent fluctuations. Without
the drift term vD · ∇F1a, Eq. (2.2.1) reduces to the standard neoclassical problem
that is intrinsically local in the radial direction. In this local limit, the neoclassical
equilibrium on a given flux surface is thus determined by the plasma parameters
(such as temperature and magnetic field) on that flux surface. In consequence, one
can solve for the neoclassical equilibrium on each individual flux surface separately,
which fully decouples the neoclassical problem from turbulent fluctuations. This
decoupling is seen by an additional Fourier decomposition in x: The neoclassical
drive only affects the kx = ky = 0 part of F1a, which in turn does not contribute
to the E × B velocity that is responsible for nonlinear interactions and turbulent
transport (defined in Eqs. (2.3.8) and (2.3.5)). Furthermore, we will see in Sec. 2.2.4
that the (second order) neoclassical fluxes do not require to compute the electric
field in the local limit. It is thus valid to set φ(k⊥ = 0) = 0 for neoclassical compu-
tations. In this context it is worth mentioning that the gyrokinetic Poisson equation
is not defined for k⊥ = 0, which is a consequence of the ordering k2

‖ � k2
⊥. Even in

the radially global case, the neoclassical equilibrium can be computed separately by
focussing on the ky = 0 Fourier mode. Nevertheless, the turbulent and neoclassical
transport problems are coupled by nonlinear dynamics in that case.

2.2.4. Equivalence to other formalisms and independence of first
order electric fields

Having derived the drift-kinetic equation in neoclassical ordering from the full-f
gyrokinetic equation, one is interested to compare the result to the equations of
other authors. The focus lies on the local limit here. Helander’s equation12 for the
equilibrium solution ∂tF1 = 0 reads

v‖b0 · ∇F1a + vD · ∇F0a + qav‖E
(A)
‖

∂F0a

∂ε
= CL

a [F1a] (2.2.3)

where E(A)
‖ = −∂tA0‖/c is the inductive electric field used for Ohmic heating. Im-

portantly, the derivative b0 · ∇ is taken at constant particle energy ε and magnetic
moment µ. Since these two velocity space coordinates are constants of motion to
lowest order, we have ε̇ = 0 and µ̇ = 0, such that no velocity derivative appears in
the drift kinetic equation.

12 Ref. [7] Eq. (8.13)
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For implementation in the Neo code, the first-order equation

v‖b0 · ∇F1a −
qa
ma

v‖b0 · ∇φ1
∂F0a

∂ε
+ vD · ∇F0a − qav‖Φ′0

∂F0a

∂ε
= CL

a [F1a]

(2.2.4)
is derived with Φ0 denoting some background electric potential that is constant on
Flux surfaces and φ1 the first-order potential.[35] We begin the analysis by trans-
forming Eq.(2.2.4) to the nonadiabatic part

h1a = F1a + qa
T0a

φ1F0a

of the distribution. With ∂εF0a = −(ma/T0a)F0a we obtain

v‖b0 · ∇h1a + vD · ∇F0a − qav‖Φ′0
∂F0a

∂ε
= CL

a [h1a] , (2.2.5)

where we use that the linearized collision operator annihilates Maxwellian distri-
butions (for equal temperatures). For comparison one thus can interpret F1 in our
Eq. (2.2.1), as h1a. According to Ref. [35], the second-order particle flux is computed
as

Γneo
a = 〈

ˆ
h1av

r
dd

3v〉

so that determining φ1 is not necessary to that order. The definition of the heat
flux follows the same rules, and together the neoclassical fluxes agree with our
definitions given in Sec. 2.3 when F1 = h1 is implied. Apparently, when comparing
to Eqs. (2.2.3) and (2.2.5), our Eq. (2.2.1) does not consider the background fields
E

(A)
‖ and Φ′0.
Moreover, the magnetic mirror term−µb0·∇B0∂v‖F1a/(mav‖) is missing in Eqs. (2.2.5)

and (2.2.3), which can be attributed to the fact that b0 · ∇ is taken at constant
energy ε opposed to performing the partial derivative at constant parallel veloc-
ity v‖. In field-aligned coordinates, one has b0 · ∇ = C/J∂z and the relation
v‖ = σ(v‖)

√
(2ε− 2µB0(z))/ma, with σ(v‖) = v‖/|v‖|, gives

∂v‖
∂z

= −1
2

σ(v‖)√
(2ε− 2µB0(z))/ma

2µ∂B0

∂z
= − µ

mav‖

∂B0

∂z
,

such that the parallel derivative is written as

v‖b0 · ∇f
∣∣∣∣
ε

= C
J
v‖
∂f

∂z

∣∣∣∣
v‖

+ C
J
v‖
∂f

∂v‖

∂v‖
∂z

= v‖b0 · ∇f
∣∣∣∣
v‖

− µ

ma

b0 · ∇B0
∂f

∂v‖

where the notation |(ε,v‖) denotes the derivative at constant (ε, v‖) and the last term is
the magnetic mirror term. Thus, when background electric fields are not considered
(which is done throughout this work), all three equations are equivalent.
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2.3. Cross-field transport in the kinetic framework

2.3.1. Turbulent and neoclassical transport
We have developed the electromagnetic gyrokinetic equations to describe the evo-
lution of the distribution function fa. Their solution is suited to compute both
neoclassical and turbulent transport. Energy and matter are advected by the drift
velocity vD. Cross-field transport of heat, particles and momentum is thus obtained
by taking appropriate velocity space moments of fa with the radial drift velocity

vrD = vD · êr

that is obtained by projection on the radial unit vector êr = ∇x/|∇x| = ∇x/
√
g11

of our curvilinear Clebsch coordinates. We decompose the drift velocity vD =
vχ + vd into the magnetic drift vd = v∇B0 + vc and the generalized E × B drift
vχ. Furthermore, we denote the distribution function as fa = fMa + 〈f1a〉y + f̃1a,
thereby separating the y-averaged (neoclassical) part from the rest of the perturbed
distribution.13 These decompositions ultimately allow us to define neoclassical and
turbulent transport.14 Importantly, χ1 = φ1−

v‖
c
A‖− 1

c
v⊥ ·A1⊥ is the scalar potential

in the gyrocenter moving frame that in general depends on the gyroangle.

Radial drift velocities

Before turning to the fluxes, we denote the drift velocity in radial projection. For
vχ we have

vrχ = vχ ·
∇x
|∇x|

= 1√
g11

c

C
g1ig21 − g2ig11

γ1
∂iχ (2.3.1)

=− c

C̃

(
∂yχ+ γ2

γ1
∂zχ

)
= vrχ,y + vrχ,z

implicitly defining the drifts due to the y and z derivative, respectively.15 Here,
C̃ =
√
g11C is a geometric factor. The curvature drift is

vrc =−
v2
‖mac

qa

1
C̃

(
1
B0

(
∂yB0 + γ2

γ1
∂zB0

)
+ βp

2p0

(
∂yp0 + γ2

γ1
∂zp0

))

=−
v2
‖mac

qa

1
B0

1
C̃

(
∂yB0 + γ2

γ1
∂zB0

)
.

13In a Fourier decomposition, the axisymmetric part of f1, 〈f1〉y, is the ky = 0 mode of the
perturbed distribution.

14We have argued in the introduction that classical transport due to collisional diffusion is negli-
gible.

15At a later stage we make use of vrχ,z/vrχ,y ∼ O(ε‖) in gyrokinetic ordering (but not in neoclassical
ordering)
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In the last step we make use of the fact that the MHD equilibrium pressure p0 is a
function of x alone. Similarly we have

vr∇B0 =− µc

qa

1
C̃

(
∂yB0 + γ2

γ1
∂zB0

)

for the ∇B drift. Thus, the magnetic drift velocity can be combined as

vrd = vr∇B0 + vrc = K̃x

Ωa

(
µB0

ma

+ v2
‖

)
= K̃x

Ωa

(
v2
⊥
2 + v2

‖

)
(2.3.2)

where K̃x = − 1
C̃

(
∂yB0 + γ2

γ1
∂zB0

)
(compare Eq. (2.1.47)).

Flux surface average in field-aligned coordinates

One is often interested in the transport through a given flux surface. Thus, a flux-
surface average is appropriate. In the field-aligned coordinate system, this flux
surface average for any quantity A is defined as

〈A〉(x) =
˝

JA(x′)δ(x− x′) dx′dy′dz′˝
Jδ(x− x′) dx′dy′dz′ (2.3.3)

where J denotes the Jacobian of the transformation to field-aligned coordinates. In
axisymmetric systems like tokamaks, the periodic boundary conditions allow for a
Fourier decomposition in the binormal coordinate y. Then, the Jacobian does not
depend on y and the y integral performs trivially: Only the ky = 0 Fourier mode of
A contributes to the flux surface average.

Particle fluxes

Let us now turn to the resulting flux surface averaged radial fluxes. The particle
flux for species a is calculated as

Γa(x) =
〈ˆ

vrDfa(x,v) d3v

〉
(2.3.4)

=Γturb
a (x) + Γneo

a (x)

and decomposed into the turbulent and neoclassical part as follows. The turbulent
contribution

Γturb
a (x) =

〈ˆ
f̃1a(x)vrχ,y d3v

〉
(2.3.5)

is associated to vrχ,y advection of small-scale fluctuations f̃1a, to which 〈f1a〉y does
not contribute. We also applied the parallel wavenumber ordering of strongly mag-
netized plasmas to neglect the vrχ,z term with respect to vrχ,y (see also Sec. 2.1.6.1).
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The advection of f0 and 〈f1〉 y due to vrχ,y indeed vanishes on flux surface average.
Neoclassical particle transport collects the remaining contributions of 〈f1〉 y and f0
as

Γneo
a (x) =

〈ˆ
(〈f1a〉 y + f0a) (x, z)

(
vrd + vrχ,z

)
d3v

〉
(2.3.6)

where we keep vxχ,z, because vxχ,y averages out (in axisymmetric systems) and thus
the parallel wavenumber ordering does not directly apply.

Energy fluxes

Similar to the particle flux, the energy flux for species a

Qa(x) =Qturb
a (x) +Qneo

a (x) +Qpot
a (x) (2.3.7)

is written as the sum of the turbulent kinetic energy flux

Qturb
a (x) =

〈ˆ 1
2mav

2vrχ,yf̃1a(x) d3v

〉
(2.3.8)

and the neoclassical kinetic energy flux

Qneo
a (x) =

〈ˆ 1
2mav

2
(
vrχ,z + vrd

)
(f0a(x, z) + 〈f1a〉 y(x, z)) d3v

〉
. (2.3.9)

Contributions of f0 are mainly due to the vrχ term [24], the vd term vanishes exactly
in up-down symmetric tokamaks, as shown in Eq. (2.3.12). In addition to the kinetic
energy fluxes, one has the potential energy flux

Qpot
a (x) =

〈ˆ
qaφ1v

r
Df0a(x, z) d3v

〉
(2.3.10)

where f1a is neglected, since including it would yield a third order flux. The role of
the potential energy flux is discussed for the electron species, while no major effect
is expected for ions since the ion kinetic energy flux is by itself larger. It has been
argued that the potential energy flux balances the vrχ,z contribution in Eq. (2.3.9)
and this must be kept in mind in the analysis. [24, 37]

Momentum fluxes

Analogously, one has the fluxes of parallel momentum

Π‖a = m

〈ˆ
vrDv‖fa(x,v) d3v

〉
= Πturb

‖a (x) + Πneo
‖a (x) ,
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which can be split into the turbulent and neoclassical parts as well. In the limit of
large toroidal field B0θ � B0φ (and using the axisymmetry of tokamaks), one can
approximate the toroidal momentum flux as the toroidal projection qRC/(JB0)×Π‖a
of the parallel momentum flux. For the turbulent component we again neglect vχ,z
due to parallel wavenumber ordering, which yields

Πturb
‖a (x) =

〈ˆ
mav‖v

r
χ,yf̃1a(x) d3v

〉

Πneo
‖a (x) =

〈ˆ
mav‖

(
vrd + vrχ,z

)
(f0a(x, z) + 〈f1a〉y(x, z)) d3v

〉
.

Neoclassical fluxes without electric field

Generally, it is stated that one needs not consider any electric field for second order
neoclassical fluxes (see Sec. 2.2.4). Also, due to low β, magnetic fluctuations are
not considered. Throughout this work, χ1 is thus neglected for the computation of
neoclassical transport. Setting χ1 = 0, the potential energy flux clearly vanishes.
The neoclassical fluxes become

Γneo
a (x) =

〈ˆ
f0av

r
d d3v

〉
+
〈ˆ
〈f1a〉 y(x, z)vrd d3v

〉
,

Qneo
a (x) =

〈ˆ 1
2mav

2vrdf0a(x, z) d3v

〉
+
〈ˆ 1

2mav
2vrd 〈f1a〉 y(x, z) d3v

〉
,

Πneo
‖a (x) =

〈ˆ
mav‖v

r
d〈f1a〉y(x, z) d3v

〉
, (2.3.11)

and we have have split them into the (in εδ) first-order fluxes that contain f0 and
the usual second order fluxes containing 〈f1a〉y.16 By inserting the Maxwellian, as
well as Eq. (2.3.2) we explicitly evaluate these f0 contributions as

Γneo
0a (x) =

〈ˆ
vrdf0 d3v

〉
= v2

Ta(x)n0a(x)mac

qa

〈
K̃x(x, z)
B0(x, z)

〉
,

Qneo
0a (x) =

〈ˆ
mav

2/2vrdf0d3v

〉
= 5

4
n0a(x)v4

Ta(x)m2
ac

qa

〈
K̃x(x, z)
B0(x, z)

〉
,

Πneo
0a (x) =

〈ˆ
mav‖v

r
df0d3v

〉
= 0 , (2.3.12)

where we have made use of the identitiesˆ ∞
−∞

xne−x
2 =


√
π n!

2n(n/2)! n ≥ 0, even,
0 n > 0, odd,ˆ ∞

0
xne−x = n! .

16 The formal ordering is also visible in the normalized fluxes of Sec. 3.2.5
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It is clear, that under the further assumption of up-down symmetric geometry the
first order fluxes vanish on flux-surface average.17 The f0a contribution to the mo-
mentum flux vanishes also in up-down asymmetric geometry, as long as f0 is even
in v‖, like the Maxwellian is. Although these f0 fluxes are formally of first order in
εδ, the asymmetry in the curvature terms might be small, however. If that is the
case, the f0 fluxes are negligible.

2.3.2. Fluxes in terms of moments of the distribution function
It is useful for the implementation in Gene to write the transport quantities in terms
of general moments of the perturbed, modified gyrocenter distribution function g1.
The necessary pullback operation has already been introduced in Sec. 2.1.7 to obtain
the gyrokinetic Maxwell equations. These moments are

Mmn
a (x) =

ˆ
δ(X− x + ρ)

[
F1a −

{
qaφ̃1 − µB̄1‖

} F0a

T0a

]
B0

ma

vm
‖ v

n
⊥dXdv‖dµdθ

In the local approximation, the fluxes caused by compressional magnetic fluctuations
are evaluated by defining another type of moment

Nmn
a (x) = π

(2B0

ma

)n/2+1 ˆ [
F1a −

{
qaJ0φ1 − µI1B1‖

} F0a

T0a

]
µI1v

m
‖ µ

n/2dXdv‖dµ

where gyroaverages have been written in terms of Bessel functions J0(k⊥ρa) and
J1(k⊥ρa) with the abbreviation I1(k⊥ρa) = 2J1(k⊥ρa)/(k⊥ρa).
The turbulent fluxes are further decomposed into the contributions of electrostatic

and magnetic field fluctuations by writing

vrχ,y = − c
C̃
∂φ1

∂y
+ v‖

C̃
∂A1‖

∂y
+ 1
C̃

v⊥ ·
∂A1⊥

∂y
.

This is convenient, because the dependencies on v‖ and v⊥ lead to higher order
moments for the magnetic contributions. Together, we obtain for the particle fluxes

Γturb
a (x) =

〈
− c
C̃
∂φ1

∂y
M00

a (x) + 1
C̃
∂A1‖

∂y
M10

a (x)− c

qaC̃
∂B1‖

∂y
N00
a (x)

〉

Γneo
1a (x) = Γneo

0a (x) +
〈
K̃x

Ωa

(1
2M

02
a (x) +M20

a (x)
)〉

, (2.3.13)

the energy fluxes are

17Up-down symmetry implies that Kx(z) = Kx(−z) in field-aligned coordinates. The same sym-
metry holds for B0.
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Qturb
a (x) = ma

2

〈
− c

C̃
∂φ1

∂y

(
M20

a (x) +M02
a (x)

)

+ 1
C̃
∂A1‖

∂y

(
M30

a (x) +M12
a (x)

)
− c

qaC̃
∂B1‖

∂y

(
N20
a (x) +N02

a (x)
)〉

Qneo
a (x) = Qneo

0a (x) + ma

2

〈
K̃x

Ωa

(1
2M

04
a (x) + 3

2M
22
a (x) +M40

a (x)
)〉

, (2.3.14)

and finally, the momentum fluxes read

Πturb
a (x) = ma

〈
− c

C̃
∂φ1

∂y
M10

a (x) + 1
C̃
∂A1‖

∂y
M20

a (x)− c

qaC̃
∂B1‖

∂y
N10
a (x)

〉

Πneo
a (x) = ma

2

〈
K̃x

Ωa

(1
2M

12
a (x) +M30

a (x)
)〉

. (2.3.15)

Note that all moments of the f1 distribution entering the second-order neoclassical
fluxes indeed depend on the axisymmetric part 〈f1a〉 only. This is because the
magnetic drifts are axisymmetric in a tokamak. In all neoclassical fluxes we do
not consider electromagnetic fields. Including a background electric field would add
terms to the neoclassical fluxes and also requires to compute the potential energy
flux.

2.3.3. Further observables and the bootstrap current
Besides the fluxes of particles, momentum, and energy, other moments of the distri-
bution function can be monitored. The turbulence code Gene outputs the density
n1a, the parallel flow velocity u1‖a, parallel and perpendicular temperature T1‖a and
T1⊥a. Furthermore, the parallel and perpendicular heat current densities q‖ and q⊥,
are computed. An important quantity determined by the the neoclassical equilib-
rium is the bootstrap current. It is defined according to Ref. [24] as the flux surface
average

jBa =qa〈u‖aB0〉 = qa

〈
B0

ˆ
d3v v‖ 〈fa〉y

〉
=qa

〈
B0M

10
a (x)

〉
(2.3.16)

of the mean parallel velocity u‖, weighted with the magnetic field. The total boot-
strap current is, of course, the sum of the contributions of all species jB = ∑

a jBa.
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2.4. Chapter summary
In this chapter the gyrokinetic eqations have been presented that form the basis of
the numerical work done in this thesis. A transformation to gyrocenter coordinates
is outlined that effectively removes the fast gyration time scale from the dynam-
ics without losing finite Larmor radius effects. The equations have been further
evaluated by splitting the distribution function into a constant background and a
small fluctuating part and by introducing a field-aligned coordinate system. All of
these steps allow the application of the gyrokinetic ordering and we have kept only
terms up to first order in the small parameters {εα}. We also discussed methods
of including the linearized Landau-Boltzmann collision operator. Test-particle and
field-particle collision operators have been derived in guiding-center coordinates with
the intent to preserve the self-adjointness property. For application in a gyrokinetic
code, it has been argued that neglecting the difference between the guiding-center
and gyrocenter distribution function in the collision operator is consistent in the
drift-kinetic limit (k⊥ρa → 0). Fluctuations of the electric potential φ1 and mag-
netic vector potential A1 have been calculated self-consistently with the gyrokinetic
Maxwell equations. The resulting set of equations is suited to study plasma micro-
turbulence including collisions and electromagnetic fluctuations.
Moreover, we have seen that the gyrokinetic equations contain the neoclassical

transport problem as a subset, with the limitation of neglecting background electric
fields, as well as the fluctuating quantities φ1 and A1.
Cross-field transport has been divided into the turbulent and neoclassical contri-

butions by splitting the drift velocity into the χ̄ × B and the magnetic drifts. It
has been shown that in the local limit, turbulent transport is fully attributed to the
fluctuating part of F1, while neoclassical transport is attributed to the background
F0 and the y averaged part of F1 and these transport problems are actually decou-
pled. For both types, the expressions to compute the fluxes of particles, momentum
and energy from the distribution function are derived by taking the appropriate
moments.
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3. A numerical implementation of
the gyrokinetic equations

3.1. Introduction

T
he implementation of the gyrokinetic equations in the Gene code requires
some further preparation that is provided in this chapter. First of all, the
expressions are conveniently normalized in Sec. 3.2. Furthermore, Sec. 3.3

discusses Gene’s discretization schemes and numerical solvers for the partial dif-
ferential equation at hand. Finally, we add Krook-type sources and sinks to the
equation in order to reach a stationary state also in radially global simulations.
Alternatives are briefly discussed.

3.2. Summary of the equations and normalization
3.2.1. Normalization
Naturally, computer codes work with dimensionless quantities. Here, a convenient
normalization is introduced in such a way that the dimensional reference quantities
reflect the gyrokinetic ordering. Every expression is substituted according to the
rule B0 = BrefB̂0, exemplified by the background magnetic field B̂0, normalized to
the reference field strength Bref . Following this scheme, the reference temperature
is Tref , the reference density is nref , the reference mass is mref , the reference charge
is e = |e| and the macroscopic length scale is Lref . Derived reference quantities like
the reference sound velocity cref , gyroradius ρref , Larmor frequency Ωref and plasma
beta βref are defined as

cref =
√
Tref/mref Ωref = eBref/(mrefc)

ρref = cref/Ωref βref = 8πnrefTref/B
2
ref .

In global geometry, radially dependent quantities, like the temperature are normal-
ized to a reference (central) flux surface x0. This gives T0a(x) = Tref T̂0a(x0)T̂pa(x)
where T̂pa(x) = T0a(x)/T0a(x0) contains the radial profile information. Equivalently
one has n0a(x) = nref n̂0a(x0)npa(x) for the density and

vTa(x) =
√

2T0a(x)/ma = cref v̂Ta(x) = cref

√
T̂pa(x)v̂Ta(x0)

for the thermal velocity. The perpendicular scales are normalized to ρref , the parallel
coordinate z is angle like and thus already dimensionless. In summary, spatial

53



Chapter 3 A numerical implementation of the gyrokinetic equations

coordinates and geometric quantities are normalized as

x = ρref x̂ kx = 1
ρref

k̂x γ1 = γ̂1

y = ρref ŷ ky = 1
ρref

k̂y γ2 = 1
Lref

γ̂2

z = ẑ qa = eq̂a γ3 = 1
Lref

γ̂3

t = Lref
cref

t̂ B0 = BrefB̂0 C = Bref Ĉ
Ωa = ΩrefΩ̂a B∗0‖ = BrefB̂0 J = Lref Ĵ

Kx = 1
Lref

K̂x Ky = 1
Lref

K̂y ,

where it is apparent that equilibrium quantities vary on the macroscopic scale Lref .
The velocity space coordinates are normalized species dependently as

vTa(x0) = cref v̂Ta(x0) v⊥ = v̂Ta(x0)cref v̂⊥
v‖ = v̂Ta(x0)cref v̂‖ µ = T̂0a(x0) Tref

Bref
µ̂ .

The potentials and fields are expressed as

φ1 = Tref
e

ρref
Lref

φ̂1 F0a = nref
c3

ref

n̂0a(x0)
v̂3

T a(x0) F̂0a

A1‖ = ρrefBref
ρref
Lref

Â1‖ F1a = nref
c3

ref

ρref
Lref

n̂0a(x0)
v̂3

T a(x0) F̂1a

B1‖ = Bref
ρref
Lref

B̂1‖ (Γa,x,Γa,y,Γa,z) = nref
c3

refLref

n̂0a(x0)
v̂3

T a(x0)(Γ̂a,x, Γ̂a,y, ρref Γ̂a,z) .

We now turn to the velocity space volume element d3v = Jvdv‖dµdθ. The velocity
space Jacobian Jv = B∗0‖(X, v‖)/ma (derived in Ref. [27]) is often approximated by
Jv = B0/ma. Due to the relation

B̂∗0‖ = B̂0 + βref

√
m̂aT̂0a(x0)

2
ĵ0‖

q̂aB̂0
v̂‖ ,

this is correct in the limit of low βref , in which one neglects the contribution of the
equilibrium current density j0. Since the gyroangle-dependence has been removed
from the integrands by Lie-transform, θ integrations can be performed immediately
to writeˆ

(· · · ) d3v =
ˆ [

c3
ref v̂

3
Ta(x0) (· · · )

]
d3v̂

=
ˆ ∞

0
dµ̂
ˆ ∞
−∞

dv̂‖
[
c3

ref v̂
3
Ta(x0)πB̂0 (· · · )

]
(3.2.1)

The collision operator is normalized as

C
T/F
ab = cref

Lref

nref n̂0a(x0)
c3

ref v̂
3
Ta(x0)

ρref

Lref
Ĉ
T/F
ab (3.2.2)
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3.2.2. Normalized gyrokinetic equation
We now apply the above rules to the gyrokinetic equation (2.1.48). We keep the
time derivative of g on the left hand side and conveniently group the right hand
side terms into the linear operator L[g1], the nonlinear operator N [g1, g1] and the
constant term Z0 to have

∂ĝ1a

∂t̂
= L[ĝ1a] +N [ĝ1a, ĝ1a] + Z0

L[ĝ1] = 〈ĈL
a [F̂ ]〉

− 1
Ĉ
B̂0

B̂∗0‖

 1
L̂na

+ 1
L̂Ta

 v̂2
‖ + µ̂B̂0

T̂pa
− 3

2

 F̂0a∂ŷ ˆ̄χ

− B̂0

B̂∗0‖

T̂0a(x0)
q̂a

µ̂B̂0 + 2v̂2
‖

B̂0
K̂xΓ̂a,x

− B̂0

B̂∗0‖

 T̂0a(x0)
q̂a

µ̂B̂0 + 2v̂2
‖

B̂0
K̂y −

T̂pa(x0)v̂2
‖

q̂aB̂0Ĉ
βref

p̂0a

B̂0

1
L̂pa

 Γ̂a,y

− v̂Ta(x0) Ĉ
ĴB̂0

v̂‖

[
Γ̂a,z −

1
2 µ̂

(
∂ẑB̂0

) 1
v̂‖

∂F̂1a

∂v̂‖

]

N [ĝ1, ĝ1] =− 1
Ĉ
B̂0

B̂∗0‖

(
∂ŷ ˆ̄χ1Γ̂a,x − ∂x̂ ˆ̄χ1Γ̂a,y

)

Z0 = + B̂0

B̂∗0‖

T̂0a(x0)
q̂a

µ̂B̂0 + 2v̂2
‖

B̂0
K̂x

 1
L̂na

+ 1
L̂Ta

 v̂2
‖ + µ̂B̂0

T̂pa
− 3

2

 F̂0a ,

(3.2.3)

where the normalized gradient lengths

1
L̂Ta

= −Lref

T0a
∂xT0a(x), 1

L̂na
= −Lref

n0a
∂xn0a(x) , and 1

L̂pa
= −Lref

p0a
∂xp0a(x)

of temperature T0a, density n0a and pressure p0a = n0aT0a have been introduced.

3.2.3. Normalized collision operator
3.2.3.1. Test particle operators

We define a species-independent dimensionless collisionality

νc = πe4nrefLref ln Λ
√

23
T 2

ref

,
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which is related to the usual notation of the electron-ion collision rate

νei = 4πniZ2
i e

4 ln Λ
(2Te)3/2m

1/2
e

as νei = 4 ni
nref

(
Tref

Te

)2
Z2
i

vte
Lref

νc .

Using νc, we find the normalized test particle operators in V̂ = (v̂‖, µ̂) velocity space

〈ĈT,V
ab 〉 =νc

q̂2
aq̂

2
b n̂0b(x)

m̂bT̂0a(x0)3/2m
−1/2
a

×

∂

∂V̂
· F̂Ma

 T̂0b(x)
T̂0a(x0)

1
v̂5

[
B0µ̂Φ1 + v̂2

‖Φ3 6µ̂v̂‖Φ2
6µ̂v̂‖Φ2

4
B0
v2
‖µΦ1 + 4µ̂2Φ3

]
· ∂
∂V̂
(3.2.4)

+
(

1− T̂0b(x)
T̂0a(x)

)
2Φ3

v̂3

[
v̂‖
2µ̂

] F̂1a

F̂Ma

that analytically equals the form acting

〈ĈT,V
ab 〉 = νc

q̂2
aq̂

2
b n̂0b(x)

m̂bT̂0a(x0)3/2m
−1/2
a

×

∂

∂V̂
·

 T̂0b(x)
T̂0a(x0)

1
v̂5

[
B0µ̂Φ1 + v̂2

‖Φ3 6µ̂v̂‖Φ2
6µ̂v̂‖Φ2

4
B0
v2
‖µΦ1 + 4µ̂2Φ3

]
· ∂
∂V̂

+2Φ3

v̂3

[
v̂‖
2µ̂

]F̂1a .

(3.2.5)

The (dimensionless) arguments of the coefficients Φi(x̂b) are x̂b = vT a(x0)
vT b(x) v̂ and thus

contain the radial temperature profile. In Appendix A, Eq. (A.1.4) we derive the
gyrocenter diffusion part of the collision operator. Its normalized form is

〈ĈT,⊥
ab 〉 = νc

q̂2
b n̂0b(x)T̂0b(x)m3/2

a

m̂bB̂2
0T

3/2
0a (x0)

1
v̂5

(
2v̂2Φ1 + 3B̂0µ̂Φ2

)
∇̂⊥ · F̂Ma∇̂⊥

F̂a

F̂Ma

(3.2.6)

3.2.3.2. Field particle operator

The field-particle operator involves the energy and momentum transfer rates Eq. (2.1.20).
Their normalization is given by

δP‖ba =−
ˆ
mbv‖C

T
ba(δfb)d3v

= cref

Lref

ρref

Lref
nrefmrefcref (n̂0b(x0)m̂bv̂Tb(x0))

(
ˆδP‖ba

)
,

ˆδP‖ba =−
ˆ
m̂bv̂‖Ĉ

T
ba(δf̂b)πB̂0d3v̂‖dµ̂
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δEba =−
ˆ
mbv

2CT
ba(δfb)d3v

= cref

Lref

ρref

Lref
nrefmrefc

2
ref

(
n̂0b(x0)m̂bv̂

2
Tb(x0)

) (
δ̂Eba

)
,

δ̂Eba =−
ˆ
m̂b(v̂‖ + µ̂B̂0)ĈT

ba(δf̂b)πB̂0dv̂‖dµ̂

Note that the species dependent normalization of the transfer rates from species b
to species a are performed with respect to species b, reflecting that momentum and
energy are transferred in physically correct units. We normalize the field particle
operator to obtain

ĈF
ab(f1a) = F̂MaB̂

P
ab(x̂b)v̂‖(
Î5,ab

) n̂0b(x0)v̂Tb(x0)m̂b

n̂0a(x0)v̂Ta(x0)m̂a

δ ˆ̇P‖ba (3.2.7)

+

(
Î1,ab

)
F̂MaB̂

E
ab(x̂b)−

(
Î2
ab

)
F̂Ma(

Î1,ab
) (
Î3,ab

)
−
(
Î2,ab

) (
Î4,ab

) n̂0b(x0)v̂2
Tb(x0)m̂b

n̂0a(x0)v̂2
Ta(x0)m̂a

δ ˆ̇Eba ,

where the the Xu-Rosenbluth coefficients

B̂P,XR
ab (x̂b) = 1, B̂E,XR

ab (x̂b) = x̂2
b , (3.2.8)

or the self-adjoint coefficients

B̂P,SA
ab (x̂b) =

√
2π
2 (1 + mb

ma

)3/26H(x̂b) (3.2.9)

B̂E,SA
ab (x̂b) =

√
2π
2 (1 + mb

ma

)3/2
{[(

1 + ma

mb

)
2x̂2

b − 1
]
H(x̂b)−K(x̂b)

}
,

are inserted, respectively. These coefficients are dimensionless by definition, but
contain radial profile information due to x̂b = x̂b(x) = v̂T a(x0)

v̂T b(x0) v̂/
√
T̂pb(x). The integral

expressions

Î1,ab =
ˆ
F̂Ma d3v Î2,ab =

ˆ
F̂MaB̂

E
ab d3v̂ Î3,ab =

ˆ
v2f̂MaB̂

E
ab d3v̂

Î4,ab =
ˆ
v̂2F̂Ma d3v̂ Î5,ab =

ˆ
v̂2
‖F̂MaB̂

P
ab d3v̂

are normalized for species a.
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3.2.4. Normalized field equations
The gyrokinetic Poisson equation becomes

λ̂2
D∇̂2

⊥φ̂1(x)−
∑
a

πq̂2
a

n̂0a(x0)
T0a(x0)

ˆ φ̂1B̂0
F̂0a

T̂pa
−
〈{

ˆ̄φ1B̂0
F̂0a

T̂pa

} ∣∣∣∣
x−ρ

〉dv̂‖dµ̂

= −
∑
a

πq̂an̂0a(x0)
ˆ 〈{B̂0ĝ1

} ∣∣∣∣
x−ρ

〉
+ µ̂

〈{
ˆ̄B1‖B̂0

F̂0a

T̂pa

} ∣∣∣∣
x−ρ

〉dv̂‖dµ̂ ,

where the combined normalization prefactors can be identified as the normalized
Debye length

λ̂D = λD
ρref

=
√

Tref

4πρref 2nrefe2 =
√

B2
ref

4πnrefmrefc2 .

The parallel component of the Ampère equation becomes

∇̂⊥Â1‖(x)− πβref
∑
a

q̂2
a

m̂a

n̂0a(x0)
ˆ 〈{

B̂0
F̂0a

T̂pa

ˆ̄A1‖

} ∣∣∣∣
x−ρ

〉
v̂2
‖dv̂‖dµ̂=

− πβref

2
∑
a

q̂av̂Ta(x0)n̂0a(x0)
ˆ 〈{

B̂0ĝ1a
} ∣∣∣∣

x−ρ

〉
v̂‖dv̂‖dµ̂

and for the perpendicular Ampère equation, we get(
∂ŷB̂1‖

−∂x̂B̂1‖

)
=πβref

2
∑
a

q̂av̂Ta(x0)n̂0a(x0)·

ˆ 〈ĉB̂3/2
0

F̂1a + q̂a
ˆ̄φ1

F̂0a

T0a(x0)T̂pa
+ µ̂ ˆ̄B1‖

F̂0a

T̂pa


∣∣∣∣
x−ρ

〉√
µ̂dv̂‖dµ̂.

3.2.5. Normalized cross-field fluxes
In order to derive the dimensionless expressions of the fluxes, we begin with the drift
velocities

vrχ = −cref
ρref

Lref

(
1
ˆ̃C

(∂ŷχ̂1)
)

(3.2.10)

vrd = cref
ρref

Lref

 T̂0a(x0)
q̂a

µ̂B̂0 + 2v̂2
‖

B̂0

ˆ̃Kx

 . (3.2.11)

Note the formal first order in ρref/Lref . The general moments Eq. (2.1.50) become

Mmn
a (x) = nrefn0a(x0)cm+n

ref vm+n
Ta (x0) ρref

Lref
M̂mn

a (x)

Nmn
a (x) = prefp0a(x0)cm+n

ref vm+n
Ta (x0) ρref

Lref
N̂mn
a (x)
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in accordance with Ref. [38]. Note that the N -type moments are associated to
B1‖ fluctuations, which are implemented in the local Gene version. In the global
version, N -type moments do not appear, since B1‖ fluctuations are not featured.
Using these moments, we find the fluxes Eqs. (2.3.13),(2.3.14) and (2.3.15), to be
normalized to gyro-Bohm fluxes ΓGB = nrefcref

ρref 2

L2
ref

, QGB = prefcref
ρref 2

L2
ref

, and ΠGB =
nrefmrefc

2
ref
ρref 2

L2
ref

. The particle flux is

Γturb
a (x)
ΓGB

= n̂0a(x0)
〈
− 1

ˆ̃C
∂φ̂1

∂ŷ
M̂00

a (x̂) + v̂Ta(x0)
ˆ̃C

∂Â1‖

∂ŷ
M̂10

a (x̂)− 1
ˆ̃C
T̂0a(x0)
q̂a

∂B̂1‖

∂ŷ
N̂00
a (x̂)

〉

Γneo
a (x)
ΓGB

= Lref

ρref
Γ̂neo

0a +
〈

2 ˆ̃Kx
n̂0a(x0)T̂0a(x0)

q̂aB̂0

(1
2M̂02,a + M̂20,a

)〉

Γ̂neo
0a = n̂0a(x)2T̂0a(x0)T̂pa(x)

q̂a

〈 ˆ̃Kx(x̂, ẑ)
B̂0(x̂, ẑ)

〉
, (3.2.12)

the energy flux is found to be

Qturb
a (x)
QGB

=− n̂0a(x0)T̂0a(x0)
〈
− 1
C̃
∂φ̂1

∂ŷ

(
M̂20

a (x̂) + M̂02
a (x̂)

)

− v̂Ta(x0)
ˆ̃C

∂Â1‖

∂ŷ

(
M̂30

a (x̂) + M̂12
a (x̂)

)
− T̂0a(x0)

q̂a
ˆ̃C

∂B̂1‖

∂ŷ

(
N̂20
a (x̂) + N̂02

a (x̂)
)〉

Qneo
a (x)
QGB

=Lref

ρref
Q̂0a + 2n0a(x0)T̂ 2

0a(x0)
q̂a

〈 ˆ̃Kx

B̂0

(1
2M̂

04
a (x) + 3

2M̂
22
a (x) + M̂40

a (x)
)〉

Q̂neo
0a =

5T̂ 2
0a(x0)T̂ 2

pa(x)n̂0a(x)
q̂a

〈 ˆ̃Kx(x, z)
B̂0(x, z)

〉
, (3.2.13)

and the parallel momentum flux is

Πturb
a (x)
ΠGB

=− n̂0a(x0)m̂av̂Ta(x0)
〈

1
C̃
∂φ̂1

∂ŷ
M̂10

a (x̂)

− v̂Ta(x0)
ˆ̃C

∂Â1‖

∂ŷ
M̂20

a (x̂) + T̂0a(x0)
q̂a

ˆ̃C
∂B̂1‖

∂ŷ
N̂10
a (x̂)

〉
(3.2.14)

Πneo
a (x)
ΠGB

= n̂0a(x0)m̂2
av̂

3
Ta(x0)

2q̂a

〈 ˆ̃Kx

B̂0

(1
2M̂

12
a (x̂) + M̂30

a (x̂)
)〉

. (3.2.15)
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For neoclassical computations we additionally monitor the bootstrap current. Equa-
tion (2.3.16) becomes

jBa = 〈u‖aB0〉(x) =

Brefnrefcref
ρref

Lref


´

dẑ B̂2
0(x̂, ẑ)Ĵ(x̂, ẑ)n̂0av̂Taπ

´ ´
〈f̂1a〉y(x̂, ẑ)v̂‖dv̂‖dµ̂´

dẑĴ(x̂, ẑ)

 ,

(3.2.16)

explicitly denoting the flux surface average that involves the Jacobian of the field-
aligned coordinate system.

3.3. Discretization and numerical solution
Gene discretizes the distribution function on a fixed five-dimensional phase space
grid, such that g1 can be seen as a vector, whose number of elements corresponds
to the number of grid points. Phase space derivatives are written in terms of finite
differences or more sophisticated schemes that preserve certain conservation prop-
erties. The most recent methods of discretization of the Vlasov operator and the
time stepping scheme implemented in Gene are found in Refs. [15, 29, 39]. In the
following, numerical solvers are described, hyperdiffusion terms are added to remove
sub-grid structures and the finite volume discretization of the test-particle collision
operator is introduced.

Initial value solver

The gyrokinetic equation is a partial integro-differential equation in phase space and
time. It is formally written as

∂tg1 = Lg1 +N [g1] + Z0 (3.3.1)

with the linear operator L (including linearized collisions), the nonlinearity operator
N and the neoclassical drive term Z0 that is independent of g1. Time evolution
of the distribution g1 is determined in Gene according to the method of lines:
In a first step, the right hand side of Eq. (3.3.1) is discretized on a fixed grid in
phase space, leaving only the time dimension continuous. In this way, the original
partial differential equation is turned into a system of ordinary differential equations
in time that can be solved as an initial value problem. The distribution at time
tn is denoted gn1 and its time evolution to gn+1

1 is achieved with a (fully explicit)
Runge-Kutta time stepping scheme, starting with an initial condition g0

1. This initial
value solver can be used for nonlinear (turbulence), linear (microinstabilities) and
neoclassical computations. The time step limit is determined by the stability of
the time stepping scheme (see Ref. [15] for details). In linear computations the
maximum stable time step can be computed from the spectral radius of the linear
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3.3 Discretization and numerical solution

operator L, in nonlinear computations an additional Courant-Friedrichs limit is set
by estimating the advection velocity of the nonlinearity [40]. Also a statistical
analysis of the nonlinear time trace is performed for time step control.

Linear computations and the eigenvalue solver

An eigenmode equation for linear microinstabilities is obtained by switching off the
nonlinearity N and the neoclassical term Z to have

∂tg1 = Lg1 . (3.3.2)

By means of an initial value computation, the fastest exponentially growing mode
can be determined, because it eventually dominates. Growth rate γ and frequency
ω can be extracted by fitting an exponential function. With the ansatz g1 =
g̃1 exp[γ + iω], the eigenvalues (γ + iω) and corresponding mode structures g̃1 can
also be computed as an eigenvalue problem. This offers an alternative to initial
value computations and furthermore allows to solve for a certain subset of eigen-
modes, instead of the fastest growing mode only. Gene features an interface to
various iterative solvers of the SLEPc package. Recent developments are reported
in Ref. [41, 42]. Furthermore, a direct solver with an interface to scaLAPAC1 is
implemented to compute all eigenmodes, which is possible for relatively small prob-
lems.

The algebraic solver for neoclassical equilibrium

The structure of the neoclassical equation does not include any linear instability,
because the linear drive term of L is proportional to ∂yχ̄1, while the neoclassical
problem is axisymmetric with ∂y = 0. Therefore, in Fourier representation (∂y →
iky) only the ky = 0 mode is involved in the neoclassical problem. The equilibrium
solution ∂tg1 = 0, can be found by an initial value computation. However, the
typical time scale for convergence is given by the inverse collision rate, resulting
in long simulation times at low collisionality. On the other hand, the equilibrium
solution satisfies the equation

Lg1 = −Z0 , (3.3.3)

which is a set of algebraic equations of the type A~x = ~b that can be solved for g1
directly. For that purpose, an interface to the PETSc library is implemented. A
computation with this algebraic solver is much faster than the initial value problem,
provided the number of grid points is not too large. Local (two species) neoclassical
computations with 1×1×24×48×16 grid points in x× y× z× v‖×µ phase space,
for example, take less than 10 second on 16 cores, where initial value computations

1A software package provided by Univ. of Tennessee; Univ. of California, Berkeley Univ. of
Colorado Denver; and NAG Ltd. (http://www.netlib.org/scalapack/ ) .
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would take about two hours to converge.2 However, the algorithms runtime scales
with the number of grid points squared. In consequence, global problems with large
x resolution, (300×1×24×64×16) for example, are not accessible with the algebraic
solver at present.

3.3.1. Differencing schemes and hyperdiffusion terms
Gene features a variety of differencing schemes to be chosen by the user. Periodic
boundary conditions allow for a Fourier representation in the binormal and/or radial
coordinate. Derivatives are then expressed as

f ′k = −ikfk

which is numerically exact and stable. However, the remaining phase space {z, v‖, µ}
as well as global setups with Dirichlet or von Neumann boundary conditions in {x, y}
do not allow Fourier methods. In these cases, derivatives of a discretized function
fi can be approximated by a finite difference

f ′i =
i+σ∑
j=i−σ

cσfj ,

where cσ are numerical stencil coefficients and σ is the stencil index. The number
of nonzero elements of cσ defines the stencil width that is generally related to the
numerical accuracy. The default choice in the Gene code is a the fourth order
centered finite difference scheme

f ′i = 1
12∆ [fi−2 − 8fi−1 + 8fi+1 − 1fi+2]

with a constant grid spacing of ∆. This scheme can, for example, be used for
derivatives with respect to the parallel coordinate z and parallel velocity coordinate
v‖. However, the above scheme tends to decouple next-neighbor grid points which
might lead to spurious effects.To remove such artifacts introduced by the discretiza-
tion, so called hyperdiffusion terms are introduced. They are typically fourth order
derivatives with stencils of second order of the form

Hi(f) = η
1

16∆ [−fi−2 + 4fi−1 − 6fi + 4fi+1 − fi+2]

with a numerical control parameter η that allows user defined adjustments. Hy-
perdiffusion operators can be employed in x, z, v‖ space (the numerical coefficients
being η ∈ {hyp_x, hyp_v, hyp_z}), and also ky, k⊥hyperdiffusion terms in the per-
pendicular plane are implemented.

2(IV) simulation times strongly depend on collisionality and aspect ratio, reference values are
νc = 0.001 ε = 0.166, (NC) computations do not converge for νc > 0.2 (much larger than
typical tokamak values).
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Arakawa scheme for the parallel Poisson bracket

As an alternative to centered finite differences, Gene features the discretization
of the terms containing z and v‖ derivatives (that exhibit a Poisson-bracket struc-
ture) with an Arakawa scheme, which is advantageous with respect to conservation
properties. Further details are found in Ref. [29].

Dealiasing methods

Furthermore, an important property of the centered differences to be emphasized
is their non-dissipative character. However, some degree of numerical damping is
necessary, when during the simulation small structures are created that are smaller
than the grid spacing.3 In this case, finite differences introduce errors and can
even become unstable. In many transport simulations, only larger scales are of
interest, the necessary damping of sub-grid fluctuations (dealiasing) can be provided
by hyperdiffusion terms. More details on the implications of hyperdiffusion terms
are found in Ref. [43].
If Fourier discretization is applied, the nonlinearity is computed after a back-

transformation to real space, which is less costly than computing the nonlinearity
in Fourier space. The required dealiasing is provided by the ’3/2 rule’, which means
that 50% more modes are used to perform the computation (for each Fourier dis-
cretized dimension). These extra modes are removed afterwards.

3.3.2. Finite volume discretization of the collision operator
In this section we derive the finite volume method implemented in the collision
operator of Gene. As a first step we introduce a flux F in velocity space by
schematically writing the collision operator as

〈CT,V [f ]〉 =
(
∂

∂t

)
c

f = 1
Jv

d
dv
· Jv

[
D11∂f/∂v‖ +D12∂f/∂v⊥ +R1f
D21∂f/∂v‖ +D22∂f/∂v⊥ +R2f

]

≡ 1
Jv

d
dv
· Jv

[
F1
F2

]
(
∂

∂t

)
c

f Jv = ∂

∂v‖
JvF1 + ∂

∂v⊥
JvF2 (3.3.4)

Here the two velocity space coordinates {v‖, v⊥} are used, but this easily generalizes
to other choices like {v‖, µ}. We consider one grid value flm where the indices l and
m label a point on the velocity grid. We further define a control volume ∆v⊥×∆v‖
centered around the considered (l,m) grid point. Its boundaries are placed half
distance to the next neighboring grid point, so that ∆v‖ = (v‖l+1 − v‖l−1)/2 and
∆v⊥ = (v⊥m+1 − v⊥m)/2 + (v⊥m − v⊥m−1)/2. Eq. (3.3.4) is integrated over this

3Phase mixing (associated to Landau damping) is an example of a physical process that generates
such small-scale structures.
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domain. In the lowest order finite-volume approach we may write the left-hand side
as
´
flm Jv d2v = f̄lm J̄v ∆v⊥∆v‖ and set the volume averaged functions f̄lm and

J̄v,lm equal to their grid values flm and Jv,lm. On the right-hand-side, we can use
the theorem of Gauß to eliminate the divergence as follows(

∂

∂t

)
c

flm = 1
∆v‖,lm∆v⊥,lmJv,lm

(ˆ
∂

∂v‖
JvF1dv‖dv⊥ +

ˆ
∂

∂v⊥
JvF2dv‖dv⊥

)
(3.3.5)(

∂

∂t

)
c

flm = 1
Jv,lm

(
1

∆v‖,lm
(JvF1) |l+1/2

l−1/2 + 1
∆v⊥,lm

(JvF2) |m+1/2
m−1/2

)
(3.3.6)

where we have, again identified the integral with the average value times the cell
length as

´
F2dv‖ = F2∆v‖ and

´
F1dv⊥ = F1∆v⊥ for parallel and perpendicular

flux. We compute the flux F at the cell boundaries using second order centered
finite differences (see [15]) as

∂f

∂v‖

∣∣∣∣
l−1/2

= fl − fl−1

∆v‖,l

For v⊥ derivatives at the v‖ boundary of the grid cell (l,m), the average

∂f

∂v⊥

∣∣∣∣
l−1/2

= 1
2

[
fl,m−1 − fl,m+1

2∆v⊥,m
+ fl−1,m+1 − fl−1,m−1

2∆v⊥,m

]

is taken. Generally, in Gene the perpendicular velocity grid is non-equidistant
(Gauß-Laguerre knots are used for the µ grid by default), so one has to consider
the appropriate grid spacing by adding four terms in total. In that case, the grid
spacing ∆v⊥ used in differencing does not generally coincide with the integration
weight, but the scheme derived here is still stable. At each boundary the velocity grid
is extended by one point for the finite differencing scheme. In total, we have a nine
point stencil for the computation of

(
∂
∂t

)
c
fl,m. An appropriate boundary conditions

is given by enforcing zero flux F at the upper and lower domain boundaries. This
is done by choosing the coefficients D, R ,∆v‖ and ∆v⊥ accordingly and does not
require boundary cells outside the simulation domain.
The finite-volume discretized form of the operator has the very convenient prop-

erty of automatically conserving the density. However, as the evaluation of the
matrix elements at the cell boundaries introduces asymmetries, the self-adjointness
relation Eq. (2.1.16) is not strictly fulfilled.

3.3.3. Gyroaverage operations
The essence of gyrokinetic theory is to separate the dynamics of a gyroaveraged
field Ā from the quickly fluctuating angle-dependent part Ã. In consequence, the
gyroaverage operation appears in the gyrokinetic equation that governs the time
evolution of the gyrocenter distribution F1a. Also the field equations that compute
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the electromagnetic fields in particle coordinates from F1a involve gyroaverages.
Formally, the gyroaverage operator G acts on a distribution function F1a or a three
dimensional field φ as

φ̄(X) = 1
2π

ˆ
φ(X + ρa)dθ = G · φ(x) .

In the discretized version, G is represented by a matrix and φ is the vector of grid
values of the function φ. The θ integration includes neighboring x grid values by
employing a finite element interpolation, as described in Refs. [30, 39]. As it turns
out, the second type of gyroaverage that has been introduced in Sec. 2.1.7, must be
discretized as

〈φ〉 (x) = 1
2π

ˆ
δ(X− x + ρa)φ(X)dXdθ = G† · φ(X)

with G† being the hermitian conjugate of the gyroaverage matrix G. Evaluating the
double gyroaverage appearing in the field equations as〈

φ̄P
〉

(x) = G† · {PG · φ(x)} ,

preserves the symmetry of the field equations (see Ref. [29]). In the local limit, the
profile factor P can be taken out of the gyroaverage. Moreover, the gyroaverage
matrix G itself is then diagonal in x and can be represented by a Bessel function J0
or J1. Both types of gyroaverages ( ¯· · · and 〈· · · 〉) are identical in this limit. The
necessary algebra is found in Ref. [15], for example, and yields

φ̄ = J0(k⊥ρ)φ Ā‖ = J0(k⊥ρ)A‖ F̄1a = J0(k⊥ρ)F1a .

A special role is taken by the compressional magnetic field fluctuation. Because those
involve the perpendicular velocity through the perpendicular current perturbation,
the appropriate gyroaverage is

B̄1‖ = I1(k⊥ρ)B1‖ = J1(k⊥ρ)
k⊥ρ

B1‖ .

It should be noted that the abbreviation I1 does not equal the modified Bessel
function.

3.4. Heat and particle sources in GENE
Global simulations allow heat and particle fluxes to relax the temperature and den-
sity profile of the plasma. To reach a steady state in the simulation, it is therefore
necessary to introduce sources (and sinks) of energy and particles. Two different ap-
proaches are pursued to that aim. The so-called flux-driven simulations provide the
radial profile of heat and particle sources. Density and temperature profiles result
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from an balance between these sources and sinks and the cross-field transport in the
coarse of the simulation. The use of the δf splitting method can, however, be prob-
lematic when the distribution function strongly deviates from the initially imposed
background F0. An automatic adaption of F0 to the developed temperature and den-
sity is therefore implemented in Gene. In the following, we will, however, employ a
second approach called gradient driven simulations.4 Initially imposed temperature
and density profiles are maintained throughout the simulation. For that purpose,
Krook-type heat and particle sources are employed. Such heat sources have been
motivated in Ref. [44] for the PIC code ORB5, using energy ε and magnetic moment
µ as gyrokinetic velocity space variables. Due to the different choice of velocity space
coordinates {v‖, µ} in Gene, a symmetrized distribution function

f1a(X, |v‖|, µ) = f1a(X, v‖, µ)− f1a(X,−v‖, µ)
2

is used to ensure that no additional parallel momentum is introduced.[29] The par-
ticle source

SKP,a =− γP ·
〈f1a(X, |v‖|, µ)

〉

−
〈
F0a(X, |v‖|, µ)

〉∑b qb

〈 ´ 〈
f1a(X, |v‖|, µ)

〉
d3v

〉
qjnspec

〈 ´
F0a(X, |v‖|, µ) d3v

〉
 (3.4.1)

is implemented for species a, where the second term in Eq. (3.4.1) ensures that the
charge density∑

a

qa

〈 ˆ
SKP,a d3v

〉
= 0 ,

introduced by the particle source vanishes, to preserve quasineutrality and nspec
is the number of considered plasma species. The corresponding Krook-type heat
source term is given by

SKH,a =− γeff ·

〈f1a(X, |v‖|, µ)
〉

−
〈
F0a(X, |v‖|, µ)

〉〈 ´ 〈f1a(X, |v‖|, µ)
〉

d3v
〉

〈 ´
F0a(X, |v‖|, µ) d3v

〉
 , (3.4.2)

where the second term ensures that no density perturbation is added by SH,a and
thus 〈 ˆ

SKH,a d3v
〉

= 0 .

4Local flux tube simulations are intrinsically gradient driven. No source terms are required due
to periodic boundary conditions.
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The total rate of heat input due to the SH term (on a specific flux surface) is given
by its second velocity moment

QKH =
〈 ˆ 1

2mav
2SH,a d3v

〉
.

The effective coefficient γeff is constructed such that the heat input

QKP =
〈ˆ 1

2mav
2SP,a d3v

〉
6= 0

due to the particle source is annihilated without destroying the above described
conservation properties of the two terms, as described in Ref. [29]. In this way, the
user-provided numerical coefficients γP and γH can be interpreted as some typical
rates of particle and heat input into the plasma.

3.5. Chapter summary
In this chapter we have completed the system of equations that is suitable to com-
pute neoclassical and turbulent cross-field transport, as it is implemented in the
Gene code. After a summary of the normalized kinetic equation (including the col-
lision operator), normalized versions of the Maxwell equations, as well as the fluxes
are given. Three different ways of running the Gene code have been presented, the
initial value, the eigenvalue and the neoclassical solver. Furthermore, the discretiza-
tion methods of Gene were discussed with a focus on the finite volume discretization
of the collision operator, as this plays a major role in this thesis. Finally, hyperdif-
fusion terms and heat sources and sinks have been introduced, since they have been
employed to gain the results being presented in the following chapters.
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4. Simulation of neoclassical
transport with GENE

4.1. Overview

N
eoclassical transport is defined as collisional heat, particle, and momen-
tum transport that originates from the (toroidal) magnetic field topology
[8, 45, 46]. In tokamak devices confining high temperature plasmas, neoclas-

sical transport usually plays a minor role, as long as plasma turbulence is present.
However, turbulence can be strongly suppressed, for example in internal transport
barriers or edge transport barriers. This is where neoclassical transport may not be
negligible and an accurate computation becomes important. Further, when magnetic
drifts become larger in strongly shaped plasmas, neoclassical fluxes are expected to
scale accordingly. Stellarators are optimized with respect to neoclassical transport
and thus require accurate computation, as well. For a turbulence code like Gene,
another motivation for computing neoclassical transport is given by the excellent op-
portunity of testing the implementation of the collision operator. Even benchmarks
against analytical results can be undertaken.
The neoclassical equilibrium solution is discussed by monitoring the bootstrap cur-
rent and the (second order) energy and particle fluxes, which are velocity space
moments of the distribution function. The structure of the standard neoclassical
equation allows to connect these fluxes to thermodynamic forces by means of a
transport matrix. The associated transport coefficients can be shown to obey an
Onsager symmetry, a direct consequence of the self-adjointness, momentum, and en-
ergy conservation of the collision operator. One can thus expect meaningful results
for neoclassical transport when these properties are sufficiently well represented in
the numerical implementation of the neoclassical set of equations.
The standard neoclassical equation is local in nature, i.e. the observables on a
flux surface only depend on the plasma parameters on that particular flux surface.
Terms that involve finite-size (ρ∗) effects (and thus interaction across flux surfaces)
are formally of second order and therefore not considered in the standard equation.
Some of these nonlocal effects are, however, accessible with the radially nonlocal
version of the Gene code, taking into account radial variations of the plasma kinetic
profiles and the geometry. The local limit is reached by letting ρ∗ → 0 , thus the
same results are expected from global and local computations at sufficiently small
ρ∗. Even if the additional nonlocal terms are small in the equation, an important
difference is that global computations allow for the relaxation of background profiles
and furthermore include heat sources and sinks and thus are far more involved.
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Interest in performing such global computations of the neoclassical equilibrium arises
from the fact that turbulent and neoclassical transport are actually coupled when
leaving the local flux tube limit.[47] This work provides a first step towards coupled
neoclassics/turbulence simulations with Gene by studying the global neoclassical
equilibrium alone. This intermediate step is important, because the requirements
can, in principle, be different from those met in a turbulence computation.
In Sec. 4.2 some theoretical background on the structure of the neoclassical trans-
port problem is given by introducing Onsager symmetry, that actually relates Boltz-
mann’s H-theorem and the self-adjointness of the collision operator. We begin to
present simulation results in Sec. 4.3, where benchmarks between the local version of
Gene and the well-established drift-kinetic code Neo [35] are performed. Different
implementations of the collision operator in Gene are tested and correlations be-
tween the self-adjointness properties of the operator and the agreement with the Neo
code are observed. Initial results on global neoclassical computations are presented
in Sec. 4.4 with a particular focus on comparisons to local results and reaching the
the local limit within the global framework. It turns out that, in particular for
large ρ∗, heat sources play an important role, and thus their influence for differ-
ent values of ρ∗ is studied in detail. Another important parameter for neoclassical
computations is the collisionality. Thus, in Sec. 4.5 we explore numerical settings,
like resolution, hyperdiffusion and heat source coefficients and discuss their impli-
cations on high and low collisionality cases. Finally, Gene is compared with the
global particle-in-cell code Orb5.[24] The overall satisfying comparison with this
numerically very different code, together with the additionally performed tests and
the correctly captured local limit, establishes neoclassical transport simulations with
the global Gene code and demonstrates the reliability of the collision operator in
the studied cases.

4.2. Remarks on entropy production and Onsager
symmetry

We begin with some theoretical considerations regarding neoclassical transport.
The basic neoclassical theory has been studied for more than half a century now
and two review papers already published in 1976 and 1981 give a rather com-
plete picture .[8, 45] Nevertheless, relatively recent publications like the work of
Sugama et al. 1996 [48] still address the structure of the equations (for non-axisymmetric
geometry). It should be noted that numerical tools for specific applications still con-
tinue to evolve. In particular, effort is undertaken to preserve the self-adjointness
(Eq. (2.1.16)) of the collision operator.[35, 48] The following considerations show,
why the latter is expected to be an important ingredient when addressing the neo-
classical transport problem. A first reason is given by the fact that an inherent
property of neoclassical transport theory, the Onsager symmetry [49, 50], relies on
the self-adjointness relation[46, 51]. Onsager symmetry becomes obvious when writ-
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ing the solution of the neoclassical transport problem as a linear relation between
fluxes and thermodynamic forces. The fluxes are the radial component of the par-
ticle flux, of the electron and ion heat fluxes, as well as the parallel electric current.
They are conveniently grouped in a four-vector J = (J1, J2, J3, J4). The conjugate
four-vector of forces X = (X1, X2, X3, X4) contains the radial components of the
total pressure gradient and of the two temperature gradients, as well as the flux
surface averaged externally induced parallel electric field. The first three quantities
of X are flux surface functions to leading order. Using the enclosed volume V as a
flux surface label and the notation p′ = ∂p/∂V , the fluxes and conjugate forces are
defined in Ref. [51] as

J1 ≡ 〈Γe ·∇V 〉
J2 ≡ T−1

0e 〈qe ·∇V 〉
J3 ≡ T−1

0i 〈qi ·∇V 〉
J4 ≡ B−1

0 〈B0 · j〉

X1 ≡ p−1
0e p

′
0e

X2 ≡ T−1
0e T

′
0e

X3 ≡ T−1
0i T

′
0i

X4 ≡ B−1
0 〈B0E

(A)
‖ 〉

(4.2.1)

with 〈B0 · j〉 = 〈ZeB0ui‖ − eB0ue‖〉.1 Considering the linear transport relation

Jr =
4∑
s=1

LrsXs

(extended) Onsager symmetry is found in the symmetry of

Lrs(b0) = −Lsr(−b0)

with respect to the magnetic field b0. The proof of this relation is shown to require
self-adjointness of the collision operator in Ref. [51]. Simplified cases are discussed
in Ref. [7].
The importance of self-adjointness of the collision operator is also apparent in an-

other context, namely the positivity of entropy production. By definition (neglecting
terms of the order εδ), the linearized entropy production rate

Ṡa = − ∂

∂t

ˆ
d3v fa (ln fa) =

∑
b

〈ˆ
f1a

f0a
CL
a [f1a, f1b]d3v

〉
(4.2.2)

is entirely attributed to collisions, since the other terms in the Fokker-Planck equa-
tion are conservative, as stated already in Eq. (2.1.5). We require that entropy
must increase (Ṡa ≥ 0), which is proven in Refs. [21, 48, 22, 7], making use of the
self-adjointness of the Fokker-Planck operator (see Sec. 2.1.2.3) and the Schwartz
inequality.
Interestingly, a link between Onsager symmetry and entropy production becomes

apparent when calculating the transport matrix (Lrs) from Eq. 4.2.2. To that aim,
1In this work, derivatives with respect to the flux surface label r are employed, while Ref. [51]
uses the enclosed volume V .
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the collision-free part of the drift kinetic equation (the operator dfa/dt) is is substi-
tuted for CL

a in Eq. (4.2.2), since we have dfa/dt = CL
a . It turns out that one can

write Ṡ in thermodynamic form

Ṡ = −
∑
s

JsXs

as a sum of fluxes and conjugate forces, which can be seen as a definition of the con-
jugate pairs. One term of the resulting sum is given by −J2X2 = −(∂T 0e/∂V )(〈qe ·
∇V 〉)/T 2

0e. This term generates entropy by a heat flux in the direction of decreasing
temperature, in accordance to the thermodynamic relation dq = T dS.
The strict proof of Onsager symmetry for the transport matrix relating these

conjugate pairs is rather comprehensive and has been performed in Ref. [48] for
general (non-axisymmetric) toroidal geometry. Here we just highlight the fact that
self-adjointness of the collision operator CL

a [f1a, f1b] is required.
The relevance of Onsager symmetry is not only discussed for neoclassical fluxes,

but also for anomalous fluxes caused by plasma turbulence. It has, however, been
shown that anomalous fluxes2 JAr = ∑

s L
A
rsX

A
s do generally not obey Onsager sym-

metry (although the collision operator might still be self-adjoint).[51] Instead, the
dissipative nature of collisions is relevant for the energy balance in (long-time) tur-
bulence simulations. When a δf scheme is used (e.g. in Gene), collisions provide
the only physically motivated sink for free energy. Interestingly, the self-adjointness
relation of the collision operator is desired in this context, since it guarantees dissi-
pation of free energy.[16, 21]
In summary, the self-adjointness property of the collision operator is an essential

ingredient for the calculation of neoclassical transport and could thus be a desirable
feature to be preserved in numerical implementation. The Gene results presented
in the next sections indeed support this conjecture.

4.3. Local benchmark between GENE and NEO
4.3.1. Simulation setup
We have motivated neoclassical transport computations with gyrokinetic codes as
a method to test collision operators and to compare with anomalous transport. In
this section we apply the local version of the Gene code and benchmark the results
against the neoclassical code Neo, as the latter solves the drift-kinetic equation
in the radially local approximation as well. The Neo code is well described in
Refs. [18, 35]. Because Neo is properly benchmarked and implements (various)
sophisticated collision operators, Neo results serve as a reference for Gene results,
here. In particular, we take the results for the full linearized Fokker-Planck operator
from Ref. [18] and indicate them with (FP).3 Although, in principle, arbitrary flux

2Anomalous fluxes and forces are defined in analogy to their neoclassical counterparts.
3The full, linearized Fokker-Planck operator evaluates the Rosenbluth potentials of the perturbed
distribution function δfb, instead of applying a model for the back-reaction term CFab[f0a, δfb].
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surface shaping can be treated, we focus on the ŝ − α equilibrium for simplicity.
Plasma parameters are chosen according to the GA (General Atomics) standard case
summarized in Tab. 4.3.2. Collisionality is numerically varied in the simulations.
The collision operators for Gene are classified in Tab. 4.3.1.

type test-particle operator CT field-particle operator CF

(XR) acting on F1a,Eq. (3.2.5) Xu-Rosenbluth, Eq. (3.2.8)
(SA) acting on F1a,Eq. (3.2.5) Self-Adjoint, Eq. (3.2.9)

(noCF ) acting on F1a,Eq. (3.2.5) none

Table 4.3.1.: Classification of collision operators used in this section.

In Gene, the grid resolution is chosen to be 32× 48× 16 points in the {z, v‖, µ}
directions and the velocity space domain is lv‖ = lv⊥ = 3vTa. It is important to
neglect hyper-diffusion terms, in particular for low collisionality, because they can
modify the neoclassical equilibrium when the numerical resolution is not very large.
As described in Sec. 3.3, Gene can either be run as an initial value solver (IV) that
converges to the equilibrium state in the long-time limit, or employ an algebraic
solver (NC) of the PETSc library that directly solves for the equilibrium state.[52]
The latter is usually much faster.4

r/a = 0.5 a/LTe = 3
R/a = 3 a/LT i = 3
ŝ = 1.0 a/Ln = 1
α = 0 Ti/Te = 1
q = 2.0 me/mi = 2.732× 10−4

Table 4.3.2.: GA standard case for local neoclassical benchmarks in ŝ−α geometry.

This is computationally expensive and thus not considered for the turbulence code Gene. How-
ever, recently the full linearized operator has been implemented in Neo [18] and is compared
to model operators like the (full) Hirshman-Sigmar operator and the ad-hoc self-adjoint field-
particle model that we also use in Gene. As it turns out, their model operators only yield a
deviation around 10-20% compared to the full linearized Fokker-Planck operator for the GA
standard case parameters.

4However, the algebraic solver is slow for very large resolutions (it scales with the number of
points to the third power) or large collision frequency (collision-dominated problems are harder
to solve, for they are strongly non-block-diagonal due to the velocity space derivatives).
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4.3.2. Comparison with analytical theory for adiabatic electrons
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Figure 4.3.1.: Comparison of neoclassical ion energy flux from Gene with the
Taguchi formula and the Neo code (taken from [18]) for adiabatic electrons.

We begin the code comparison in the limit of adiabatic electrons, in which analytical
expressions for the neoclassical ion heat flux are available. The formula derived by
Taguchi [7, 53] is known to work well in the (weakly collisional) banana regime,
defined by ν∗i = qR0/(τiivtiε3/2) . 1. In Fig. 4.3.1 we compare the analytical results
to Gene and Neo for the GA standard case. The collision operator type (SA) is
used in Gene. At small collisionality (ν∗i . 0.05) both codes coincide with the an-
alytic prediction. The Taguchi formula is known to overestimate neoclassical fluxes
when leaving the banana regime. Indeed, both Gene and Neo results deviate from
the Taguchi formula when ν∗i approaches unity. Deviations within 25% are found
between Gene and Neo around ν∗i ∼ 1, but the overall agreement is satisfactory.

4.3.3. Comparison of GENE and NEO for kinetic electrons
In the following, neoclassical studies with kinetic electrons are undertaken. Typical
velocity space structures of the distribution function are shown in Fig. 4.3.2. At
lower collision rate νc, structures at the trapped-passing boundary are clearly ob-
served. These vanish for larger collisionality because strong collisions inhibit trapped
particles from completing their orbits. They are thus strongly coupled to passing
particles. Because F1i is uneven in v‖, the 〈u‖i〉 moment (that is related to the
bootstrap current) rises in this case.
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4.3 Local benchmark between GENE and NEO

(a) (b) (c)

Figure 4.3.2.: Velocity space structure of the neoclassical equilibrium F1i at the
outboard midplane for different collision rates (a) νc = 10−5, (b) νc = 10−3 and
(c) νc = 5.6× 10−2.
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Figure 4.3.3.: The flow velocity 〈u‖aB0〉 of electrons and ions is shown as a function
of the (dimensionless) collisionality νc = νei/(4R/vte). (a) Gene data using the
self-adjoint (SA) form of CF is compared to the case without CF , as well as
Neo (FP) results. (b) Gene results for the Xu-Rosenbluth (XR) operator are
compared with Neo. It has been confirmed by the author of Refs. [18, 35], that
ρ∗ = 1/1000, which is used for the normalization, is correct.

The importance of the field-particle part of the collision operator becomes clear
when the flux surface averaged parallel flow velocity 〈u‖B0〉 of the two species is con-
sidered in Fig. 4.3.3. We completely switch off the field-particle operator in Gene
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(only keeping test-particle collisions) to observe that electron and ion flows are sim-
ilar in magnitude (with opposing signs) and decrease to zero at larger collisionality.
This break-down of 〈u‖aB0〉 can be explained by noting that the energy scattering
part of the collision operator acts as a sink of energy and thereby damps parallel
flows.[54] The energy conserving CF term is thus needed. In the following, we in-
vestigate the influence of the implementation of different functional forms for CF

in Gene. In particular, we use the Xu-Rosenbluth model operator,[25, 15] labeled
by (XR), and the self-adjoint form, labeled by (SA). Fig. 4.3.3 also shows Gene
results for 〈u‖aB0〉 using the self-adjoint (SA) form of CF . An about 40% larger
value for 〈u‖iB0〉 is obtained, when comparing to the previous case without CF at
low collisionality. Furthermore, a different functional dependency with increasing
νei is observed. Interestingly, the (SA) operator yields good agreement with Neo
results up to νc ∼ 0.005, which corresponds to ν∗i ∼ 0.1. At larger collisionality, the
Gene result for 〈u‖B0〉 is smaller. When using (XR) instead of (SA) type operators
in Gene, larger deviations between Gene and Neo data are observed, particularly
for the electron contribution 〈u‖eB0〉.
We further compare heat and particle fluxes obtained with Gene and Neo in

Fig. 4.3.4. Similarly, both codes do not observe a pronounced plateau regime that
is often found in the literature, which confirms the relevance of finite aspect ratio
(here: ε = 0.166) effects. Within small deviations, the ion heat flux is reproduced in
agreement with Neo by both operators. While the Xu-Rosenbluth model operator
overestimates the particle flux and the electron heat flux (Fig. 4.3.4(a)), the self-
adjoint form exhibits good agreement with Neo (Fig. 4.3.4(b)), which underlines
the importance of preserving certain symmetries, as indicated in Sec. 4.2.
In summary, the benchmark with Neo shows that the Gene code—with the

presently implemented collision operator—works reasonably well for neoclassical
heat and particle transport in the local limit, also under consideration of kinetic
electrons. The energy and momentum conserving terms CF are essential for the cor-
rect computation of the neoclassical observables 〈u‖aB0〉, Qneo

a and Γneo
a . Thereby,

the self-adjoint form of CF improves the agreement with the Neo results, which use
the full linearized Fokker-Planck operator.
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Figure 4.3.4.: Benchmark between Gene and Neo. Ion and electron heat and
particle fluxes are shown in gyro-Bohm units as a function of the (dimensionless)
collisionality νc = νei/(4R/vte). Significantly better agreement is found when
replacing the (standard) Xu-Rosenbluth operator (XR) with the self-adjoint (SA)
form of the field-part operator.

4.4. Finite-size investigations with GENE
Having demonstrated the ability to correctly predict neoclassical transport with
Gene in the local framework, this section provides an introduction to addressing
the radially global neoclassical transport problem. For that purpose, the global
version of the Gene code is employed. From the computational point of view, the
main differences to the local setup are given by non-periodic (Dirichlet) boundary
conditions, the possibility of including sources and sinks, as well as actual finite size
physics. Here, finite-size effects are taken into account by keeping the drift term
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vD · ∇F1 in the kinetic equation, which is neglected in the local limit. Because it
contributes to the neoclassical drive (vD · ∇F0), this term is expected to be im-
portant whenever relevant plasma scales—like the (temperature) gradient length or
the width of a steep gradient zone—are comparable to the extent of the particle
trajectories. In Sec. 4.4.1, we estimate typical trajectory widths in order to assess
the relevance of such nonlocal effects and their scaling with the finite-size param-
eter ρ∗ = ρi/a. Notably, internal or edge transport barriers might provide such a
physical scenario, in which neoclassical transport gains additional importance due
to the suppression of turbulence. Further interest in radially global computation
arises from the fact that in this case, the neoclassical solution is actually coupled to
turbulent fluctuations.5
As stated in Sec. ??, another possible finite-size effect is given by the nonlinearity

of the collision operator (and the parallel nonlinearity), which is formally of the same
order as the vD · ∇F1 term. The actual impact on the magnitude of neoclassical
transport is not known at present. However, these terms are not considered here.
Within our framework, finite-size effects on the transport prediction are high-

lighted by comparing global to local results, considering that for sufficiently small
values of ρ∗, the two versions must agree. Another important aspect of global com-
putations is the fact that temperature and density profiles are allowed to relax due
to heat and particle fluxes. Thus, in steady state, the balance between sources and
transport is investigated in the following sections.

4.4.1. Estimates for finite-size effects in neoclassics
In general, the influence of finite-size effects (which are characterized by the parame-
ter ρ∗ = ρi/a) can be expected for two reasons. The typical particle orbits of plasma
particles in tokamaks exhibit the shape of a banana when projected onto a poloidal
cross section, as discussed in Sec. 1.3 and visualized in Fig. 1.3.2. As it turns out, the
banana width rB scales linearly with the gyroradius ρa (and ρ∗). A first finite-size
effect is thus expected when rB becomes comparable to macroscopic quantities like
the temperature gradient length, or the width of a steep gradient zone. Close to
the magnetic axis, particles follow potato-shaped orbits instead of banana-shaped
orbits (see Fig. 1.3.2). The neoclassical ordering breaks down at distances within the
potato width rP from the magnetic axis, as stated in Refs. [36, 24]. Since rP ∝ ρ∗,
this constitutes a second finite size effect.
To estimate when these nonlocal effects become relevant, a circular equilibrium

with B0/Bp ∼ q/ε is assumed. Then, the poloidal gyroradius is given by ρp = ρiq/ε
and the banana width is [7]

rB =
√
ερp = q√

ε
ρi . (4.4.1)

This banana width rB is to be compared with the gradient scale length LT (or
the width ∆T of a steep temperature gradient zone) that typically is some factor

5In contrast, turbulence and neoclassics are decoupled in the local limit (see Sec. 2.2.3).
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1− 10 smaller than the minor radius a. When taking the typical values a/LT = 2.5,
∆T = 0.2 a, ε = 0.18 and q = 1.4, the ratios

rB
LT
∼ 8.2ρ∗ rB

∆T

∼ 16.4ρ∗ (4.4.2)

are still quite small, up to a relatively small machine with ρ∗ = 1/100. One thus
expects finite banana width effects when these ratios approach unity, for ρ∗ & 1/100
considering the chosen parameters. As mentioned above, the second nonlocal effect
comes into play in the potato regime close to the magnetic axis, where r is smaller
than the potato width rP = (q2ρ2

iR)1/3.[7, 36] For the parameters considered above,
rP = 0.06 a for ρ∗ = 1/100 (rP = 0.17 a for ρ∗ = 1/50). The potato effect thus is
expected to be visible for ρ∗ & 1/75. Otherwise the radial extent of this regime is
rather insignificant.

4.4.2. A setup for global neoclassical computations
The basic simulation setup for our global neoclassics computations is described in
the following. We summarize the default parameters in Tab. 4.4.1 as “case I”. The
employed magnetic geometry has concentric circular flux surfaces (see Refs. [24, 55])
and uses r/a as the radial coordinate, where r is the distance of a flux surface from
the magnetic axis. Actually, all macroscopic lengths are normalized to the reference
length Lref = a, whereas the microscopic reference length is ρref = ρi, so that
ρ∗ = ρref/Lref can be identified. The safety-factor profile is given by

q(r) = (q̄1 + q̄2(r/a)2)/
√

1− (r/R)2 ,

with the coefficients q̄1 = 0.845 and q̄2 = 2.184, such that q(0.5) = 1.42 and ŝ(0.5) =
0.81.6 The radial profile of the logarithmic temperature and density gradients are
expressed as

d lnT
d(r/a) = −κT

(
cosh

(
(r − rc)/a

∆T

))−2

d lnn
d(r/a) = −κn

(
cosh

(
(r − rc)/a

∆n

))−2

and peak at the center value rc/a = 0.5 with the maximum logarithmic gradients
κT = 2.49 and κn = 0.79 and the widths ∆T = 0.2 and ∆n = 0.2. Note that
a/Ln, a/LT , ŝ, and q correspond to the local cyclone base case (CBC) parame-
ters at the center position rc = 0.5 a. The described setup is therefore referred
to as global CBC. The computations are restricted to the ion species, which is

6Gene uses a 4th order polynomial in q =
∑4
i=0 qi(r/a)i. The coefficients qi have been obtained

by Taylor expansion with a resulting maximum deviation of ~2% at (r/a) = 1.
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not influenced by electron dynamics, because no electric fields are considered and
ion-electron collisions are negligible (νie � νii). The nominal collision frequency
is chosen to be ν∗i = 0.5 (with ν∗i = Rq/(τiivtiε3/2) and τii = 6

√
π/ν̄ii, where

ν̄ii = 8πniq4
i lnΛ/(miv

3
ti) = 16

√
2νc(vti/a)). The relevant timescale is given by the

ion-ion collision time τii ≈ 100 a/cs. Thus, the choice of a rather large value for the
collision rate facilitates computation due to comparably short saturation times. We
get reasonably converged fluxes employing a phase-space resolution of 24× 64× 24
grid cells in {z, v‖, µ} phase space and between 100 and 300 grid points in radial
direction. Typically, these simulations require about 100-1000 CPU hours.7 Note
that the electron species is not evolved in time in the described setup. If kinetic
electrons are to be considered, the time step for numerical integration reduces by
roughly the factor

√
mi/me ∼ 60 (assuming deuterium ions) and the simulation cost

increases by at least twice that factor.

Table 4.4.1.: Parameter sets for global test cases. Variations are indicated in the
text.

ν∗i q(x0) ŝ(x0) κT ∆T κn ∆n ρ∗

case I 0.5 1.41 0.79 2.49 0.2 0.79 0.2 1/100, 1/300
case II 0.5 1.41 0.79 2.49 0.05 0.0 0.05 1/100
case III 0.5, 0.05 1.41 0.79 2.49 0.2 0.79 0.2 1/180

We do, by default, deactivate hyper-diffusion terms, because they can easily dis-
turb the neoclassical equilibrium state as shown in Sec. 4.5. Instead, the numerical
resolution has to be high enough to exclude errors in the discretized derivatives. The
choice for the field-particle collision operator is the self-adjoint form, with the test-
particle Operator acting on f (operator type (SA)). In the local version of Gene
these collision operator settings have lead to good agreement with the Neo code in
the collisionality regime considered here.

4.4.3. Global computations in the local limit
We now turn to simulation results of the global neoclassical problem and compare
to local results. As a first step, we use the parameter case I of Tab. 4.4.1 with
ρ∗ = 1/300. Evaluating Eq. (4.4.2), the local neoclassical approximation is clearly
expected to be valid. For the comparison to local results, it is important to keep
in mind that global simulations allow temperature and density profiles to relax.
Therefore, in a steady-state global simulation, the saturated value of the heat flux
corresponds to the saturated value of the gradient profiles rather than the initial
profile. Employing a Krook type heat source, as described in Sec. 3.4, can often

7For comparison, a turbulence computation of similar parameter cases requires at least 25000
CPU hours, due to nonlinear dynamics and the necessity to include about 32 toroidal (ky)
modes.
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minimize this relaxation such that the saturated temperature and density are quite
close to the initial profiles. Nevertheless, we routinely set up local simulations based
on the (slightly relaxed) temperature and density profiles. For this purpose the
logarithmic temperature and density gradients as well as the collisionality are eval-
uated on the relevant flux surface. For direct comparison, the Coulomb logarithm
ln Λ that appears in the collisionality, is kept constant over the radius, although it
actually would have a (weak) temperature and density dependence as well. More-
over, it is important to establish a consistent norm for global and local results.
Here, gyro-Bohm units QGB(x0) on the reference flux surface of the global compu-
tation are used. In consequence, local fluxes (that are naturally normalized to local
gyro-Bohm units QGB(x) = n0(x)cs(x)T0(x)ρ∗2(x)) are re-normalized. Thereby,
ρ∗(x)/ρ∗(x0) =

√
T (x)/T (x0) is assumed, neglecting the (weak) influence of the

B0(x) profile.
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Figure 4.4.1.: Time traces of neoclassical heat flux computations of the local and
global versions of the Gene code for ρ∗ = 1/300 and Krook-type heating with
γH = 0.01. The different time scales for the radial positions r/a = 0.5 and
r/a = 0.05 is illustrated. For the time axis, a logarithmic scale is employed. The
local initial value simulations (for r/a = 0.5) are based on the weakly relaxed,
saturated temperature gradient profile (shown in Fig. 4.4.2).
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Figure 4.4.3.: Radial profiles of neoclassical heat flux are shown. Global results are
taken at t = 20000 a/cs where Qneo

i is reasonably well converged (see Fig. 4.4.1);
Here, we use ρ∗ = 1/300 and γH = 0.03. Local (NC) simulations are based
on the weakly relaxed final temperature profile of Fig. 4.4.2. For normalization,
QGB = n0T0csρ

∗2 has been evaluated at r/a = 0.5.

In the time traces of Fig. 4.4.1 we show that global and local neoclassical fluxes
agree quite well at r/a = 0.5. Obviously, multiple time scales for temporal con-
vergence are involved. While the kinetic profiles of Fig. 4.4.2 are stationary for
t = 2000 a/cs, the heat flux Qneo

i is saturated for t & 2000 a/cs at mid-radius
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r/a = 0.5, whereas at the inner radial boundary even at t & 20000a/cs, the flux
continues to gradually decrease. One can understand this from the fact that the
saturation time-scale is given by the collision time τii ∼ vti/νii, which is largest in
the high temperature region close to the magnetic axis. Furthermore, the smallness
of ε = r/R increases the neoclassical saturation time (see Ref. [7]), which is also
observed in local simulations. The saturated radial profiles are very close to the
initial profile (a/LT i(r/a) is shown in Fig. 4.4.3). For the local results, it has been
verified that the initial value solver (IV) and the algebraic solver (NC) agree. Here,
we use the (NC) solver because it is faster. Overall, global and local results agree
quite well—in the present case, the local limit is applicable.

4.4.4. Effects of large ρ∗ and heat source

Next, we address the question at which value of ρ∗ the global code starts to signif-
icantly deviate from the local version. The aforementioned modification related to
potato orbits is not discussed further, because it only occurs at very small radii. Two
aspects remain relevant when ρ∗ becomes larger than our previous choice ρ∗ = 1/300,
for which the local approximation holds well. One of those effects is the increased
influence of the particular form of the heat source, the other being actual finite-
banana-width effects. The latter are expected for ρ∗ & 1/100 in Sec. 4.4.1. As a
first step we modify the strength of the heat source in the ρ∗ = 1/300 case. It is
apparent from Fig. 4.4.4(a) that the magnitude of the heat source coefficient does
not significantly influence the global flux profile, and also the relaxed gradient pro-
files are very similar. It is illustrated in in the zoom-in Fig. 4.4.4(b) that a very
large simulation time of t & 20000 a/cs is needed for temporal convergence at the
inner boundary for ρ∗ = 1/300. We show that the influence of the heat source be-
comes significant when increasing ρ∗ to 1/100 in Fig. 4.4.4(c). With a heating rate
of γH = 0.03, the initial temperature profile can be maintained, but on the other
hand, the global energy flux is more peaked than the local results marked by blue
squares. Additionally, at r/a = 0.7 one has a minimum that does not correspond
to a locally smaller gradient. Reducing the heating coefficient lets the profiles relax
substantially, as depicted in Fig. 4.4.5. However, we find better agreement with the
local results based on the relaxed profiles. The demonstrated increased influence
of the heat source for larger values of ρ∗ is actually consistent with the gyro-Bohm
scaling Qneo

i ∼ ρ∗2. The larger ρ∗, the larger is the heat flux and thus the relaxation
of the background gradient. As a consequence, the particular choice of the heat
source term is more relevant.
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Figure 4.4.4.: Neoclassical heat flux profiles for different values of ρ∗ and heating
rate γH , compared to local results. The latter are obtained for the corresponding
saturated gradient profiles that are shown in Fig. 4.4.5.
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4.4.5. Neoclassical heat balance equation
Any other possible ρ∗ effects are masked in Fig. 4.4.4 by the influence of the heat
source, which therefore deserves a more detailed discussion. Let us first note that
the effects of the heat source in a global simulation are twofold. (i) By construction,
the Krook heat source draws the temperature moment of F1 towards the initial
profile (without affecting the density moment). (ii) In steady state, heat fluxes and
heat sources/sinks must be self-consistent. Since the heat flux is radially outward,
a source of energy is expected in the core, while towards the edge a sink must be
provided.
Note that also the radial Dirichlet boundary conditions can play the role of an

energy source/sink at the plasma edge. Consider a plasma volume that is conve-
niently chosen to be at thin slice around a flux surface. Obviously, a sink of energy is
present when the energy flux into that volume exceeds the outgoing flux, i.e. when
the radial derivative of the heat flux is largely negative. For a Krook term, this sink
is not necessarily found at the plasma edge. In extreme situations, we even obtain
a radially inward heat flux in steady state as the effect of this internal cooling. Ad-
ditionally, energy input is peaking where the derivative of Q is large and positive,
leading, in general, to an unphysical power deposition as well. When internal cooling
and heating is large, the resulting equilibrium can, of course, be quite different from
the local result, where periodic boundary conditions are applied and no additional
source term is needed to maintain the strength of the drive term.

The neoclassical continuity relation

We now explicitly monitor the energy input and output of the Krook terms by taking
the v2 moment of the neoclassical equation (Eq. (2.2.1) with added source terms)
and performing a flux surface average. The time evolution of the energy profile is
thus given by

∂

∂t

〈ˆ
d3 v

ma

2 v2F1a

〉
= −

〈
ma

2

ˆ
v2〈CL

a [F ]〉d3v

〉

+
〈
ma

2

ˆ
v2v‖

[(
b̂0 · ∇

)
F1a − µ

[(
b̂0 · ∇

)
B0
] 1
mav‖

∂F1a

∂v‖

]
d3v

〉

+
〈
ma

2

ˆ
v2vd ·

[
∇n0a

n0a
+ ∇T0a

T0a

(
mav

2
‖/2 + µB0

T0a
− 3

2

)]
F0ad3v

〉

+
〈
ma

2

ˆ
v2vd · ∇F1ad3v

〉

+
〈
ma

2

ˆ
v2 (SKH [F1a] + SKP [F1a] + Sbuff [F1a]) d3v

〉
,

85



Chapter 4 Simulation of neoclassical transport with GENE

where, obviously, the time derivative vanishes in steady state. In equilibrium, there
must be a balance between sources, sinks, and transfer terms. Collisions provide
energy transfer between species, but here we focus on ion-ion collisions that conserve
energy. The parallel (z, v) advection terms is conservative as well. In up-down
symmetric geometry that we consider here, also the third term on the right hand side,
the neoclassical drive term, yields no contribution to the energy balance. Sources
and sinks of energy are exclusively given by the Krook-type heat and particle sources.
Additionally, Gene offers optional Krook-type buffer zones at the radial boundary
that would have the same effect. The drift term vd · ∇F1 transfers energy from
one to another radial position. We will see shortly that this term is related to the
divergence of the heat flux. We are left with the balance between the transport term
and the Krook terms. The normalized version reads

−
〈ˆ

v̂2v̂xd∂x̂F̂1a

〉
=
〈ˆ

v̂2
(
ŜKH [F̂1a] + ŜKP [F̂1a] + Ŝbuff [F1a]

)
d3v̂

〉
, (4.4.3)

where v̂xd =
(
T̂0a(x0)/q̂a

)
K̂x(x, z)

(
µ̂B̂0(x, z) + 2v̂2

‖

)
/B̂0(x, z) denotes the normal-

ized radial drift velocity. Following the normalization rules of Sec. 3.2, we have
divided both sides of Eq. (4.4.3) by the constant

cref

Lref

ρref

Lref
nrefTref T̂0a(x0)n̂0(x0) = QGB

ρref
p̂0a(x0) ,

in which the gyro-Bohm energy flux is identified. We find v̂d · ∇F̂1a = v̂xd∂x̂F̂1a,
because the neoclassical equilibrium does not depend on y and, furthermore, the
drift velocity has no parallel component. The right-hand side of Eq. (4.4.3) can be
summarized as 〈ŜH〉, denoting the total heat input due to Krook terms. Further-
more, the left-hand side can be interpreted as the divergence of a heat flux, which
leads to a continuity equation

ρref

Lref

1
Â(x)

∂

∂(x/Lref)

〈
Â(x)

ˆ̃Qneo
a (x)
p̂0(x0)

〉
=
〈
ŜHa

〉
, (4.4.4)

where the derivative is renormalized to the macroscopic scale Lref and A(x) =
V ′(x) = 2π

˜
J(x′, z′)δ(x − x′)dx′dz′ is the flux surface area, which equals the

first derivative of the enclosed volume V . A simple interpretation is obtained by
integrating the above relation about a small volume of the width ∆x around a flux
surface. The total heat sources/sinks inside this volume must equal the difference
between outward and inward energy transport rates

P out
a − P in

a =
〈
A(x+ ∆x/2)Q̃neo

a (x+ ∆x/2)
〉
−
〈
A(x−∆x/2)Q̃neo

a (x−∆x/2)
〉

that consider the difference between the inner and outer flux surface areas. A
more complete transport equation is given in Ref. [56], taking into account also
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collisional heating as well as classical and anomalous transport. Here, we focus
on neoclassical transport, such that these additional terms vanish. However, we
derive the continuity relation Eq. (4.4.4) by employing the following (modified) flux
definition

ˆ̃Qneo
a (x) = Q̃neo

a (x)
QGB

≡ −p̂0(x0) 1
Â(x)

ˆ x
[
Â(x′)

〈 ˆ
v̂2v̂xd∂x̂′F̂1a d3v̂

〉]
dx̂′ ,

(4.4.5)

which, in general, does not coincide with the standard definition

Q̂neo
a (x) = Qneo

a (x)
QGB

= p̂0(x0)
〈 ˆ

v̂2v̂xd F̂1a d3v̂
〉
,

because the drift velocity v̂xd and v2 are actually functions of x, due to the variation
of the magnetic geometry. We have

1
Â(x)

∂x̂

〈
Â(x) ˆ̃Qneo

a (x)
〉

= 1
Â(x)

∂x̂

〈
Â(x)Q̂neo

a (x)
〉
− p̂0a(x0)

〈ˆ [
∂x̂v̂

2v̂xd Ĵv
]
F̂1a dv̂‖dµdφ

〉
. (4.4.6)

Note that the additional term is one order smaller in ρ∗. Consequently it vanishes in
the local limit, in which v̂xd , v2 and Jv do not depend on x, and both fluxes become
equivalent.

Back-transformation to particle space and the gyroaverage

Continuity relations are to be evaluated in particle space (as opposed to evaluating
them in gyrocenter space). Consequently, the pull-back operation has to be em-
ployed for the above velocity space moments, equivalent to the flux definitions pre-
sented in Sec. 2.3.2. In our case, no electromagnetic fields are considered. We thus in-
terpret the velocity space integration as

´
d3v(· · · ) =

´
δ(X−x+ρ)(· · · )Jvdv‖dµdφ,

which includes the gyroaverage operation and accounts for the transformation to
particle coordinates.

Numerical results

To observe the energy balance we define yet another test case (case II in Tab. 4.4.1)
by reducing the width of the temperature gradient profile from 0.2 to 0.05. Possible
effects of the radial boundary condition are minimized in this way. We further set
a/Ln = 0 and choose γH = 0.01 for the Krook heat source coefficient. The particle
source is small and does not yield a significant contribution to the energy balance
equation. Buffer zones are not employed. In circular geometry, the enclosed volume
of a flux surface is V = 2πR × πr2, thus the flux surface area is A = V ′ = 4π2Rr.
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Circular geometry also has x = r and gxx = 1, which turns the continuity equation
into

ρref

Lref

1
x̂

∂

∂(x/Lref)

〈
x̂Q̃neo

i

〉
= p̂0a

〈
ŜH,a

〉
. (4.4.7)

We integrate both sides to obtain an expression for the flux surface averaged neo-
classical flux〈

ˆ̃Qneo
i

〉
(x) = Lref

ρref
p̂0a(x0) 1

Â(x)

ˆ x̂

Â(x̂′)
〈
ŜH(x̂′)

〉
dx̂′, (4.4.8)

in relation to the integrated heat source profile.
The temperature and density profiles resulting from the described setup are de-

picted in Fig. 4.4.6, where we also show the final profiles in steady state (temporal
convergence is found at t = 10000 a/cs). Note that the density gradient is quite
perturbed and the temperature gradient is somewhat relaxed. In Fig. 4.4.7 the final
heat flux profiles are compared to the integrated heat source from Eq. (4.4.8) and
local results (based on relaxed temperature and density). Furthermore, Fig. 4.4.7 vi-
sualizes the continuity relation Eq. (4.4.7). It is found that the refined (Q̃neo

i ) energy
flux perfectly balances the source/sink terms, while the standard (Qneo

i ) definition
shows qualitative agreement. Local results are in good agreement with the standard
definition, up to the outer half of the tokamak, where the heat balance forces the
flux to become negative. In conclusion, ρ∗ effects are seen in the refinement of the
flux definition, while global simulation are also influenced by heat sources profiles.
Both effects have their origin in the nonlocal vd · ∇F1 term that also causes the
background gradients to relax. In the narrow steep gradient zone of the the relaxed
profiles, the local simulation yields a slightly (∼ 10%) larger flux than the refined
global value.
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Figure 4.4.6.: Temperature and density profiles for case II parameters are shown.
Saturated profiles for ρ∗ = 0.01 and γH(x) = 0.01 are taken at t = 10000 a/cs(x0),
where they are stationary.
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Figure 4.4.7.: The neoclassical energy balance is visualized using the refined and
standard definitions of the neoclassical flux. Case II parameters are taken whith
γH = 0.01 at t = 10000 a/cs(x0). (a) comparison of the heat flux to the integrated
heat source profile and local simulations. (b) the heat source profile and the
divergence of the neoclassical flux are shown.

4.5. Numerical tests of neoclassical transport
simulations at low/high collisionality

We have seen in Sec. 4.3 that, obviously, neoclassical transport strongly depends
on collisionality. Before, we have used a rather large value of ν∗i = 0.5. At low
collisionality, we use ν∗i = 0.05 here, one obtains smaller fluxes and larger time-
scales. We therefore perform a sensitivity study with respect to numerical settings
of neoclassical transport computations at high/low collisionality. In particular, we
systematically vary the Krook heat source coefficients (also at low collisionality) and
furthermore enable hyperdiffusion terms. The basic setup is case III of Tab. 4.4.1,
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Chapter 4 Simulation of neoclassical transport with GENE

using ρ∗ = 1/180. The simulations presented in this Section are meant to show
the limitations of numerical terms, we therefore use fixed, but very large simulation
times, where the neoclassical fluxes only exhibit an extremely slow time evolution
(compare Figs.4.4.1(a) and 4.4.4). We, however consider the fluxes well converged
for radii larger than 0.2 a. In this way, we can identify two effects of the variation
of a numerical coefficient: The first and most important effect is the modification of
the neoclassical equilibrium itself, the other is the modification of the time evolution
towards this equilibrium.

4.5.1. Influence of the heat source at low/high collisionality
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Figure 4.5.1.: Influence of the Krook-type heat source on the neoclassical heat
flux (a) for ν∗i = 0.5 (b) for ν∗i = 0.05. The simulation times are chosen as
t = 20000 a/cs (a) and t = 60000 a/cs(b). For comparison, we show the local
result for saturated gradient profiles.

We begin with a variation of the Krook-type heat source coefficient γH that is
required to achieve steady state in a global gradient driven simulation. Since the
particle flux is small in these simulations, we include a small (γP = 0.001) particle
source, but do not consider its effect here. Figure 4.5.1 shows that large values of
γH lead to more peaked flux profiles. Also, at the inner boundary up to r/a = 0.2
the heat flux is increased, which is considered artificial, since at these small radii the
time-scale for saturation is very large and we do not see convergence in the given
simulation time. One could expect that an increased heating coefficient decreases
the saturation time-scale, but the data of Fig. 4.5.1 shows that this is not the case.
Instead, a larger coefficient γH simply increases the flux perturbation at small radii
and leads to stronger peaking.
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Determining the correct magnitude of γH

We derive a rough rule to determine the magnitude of γH that keeps profiles rea-
sonably constant and, at the same time, does not modify the heat flux profile too
strongly. We presume that that neoclassical heat flux on a given flux surface is
mostly local (it depends on the plasma parameters on that flux surface only) and
thus follows the gyro-Bohm scaling Qneo ∼

´
v2vDF1 ∼ QGB = n0csT0ρ

∗2. In
equilibrium, the heat source term should balance the neoclassical flux according to
Eq. (4.4.8). With the scaling argument Qneo ∼ SH ∼ γHF1 ∼ ρ∗2 (and F1 ∼ ρ∗) , it
is clear that γH should, at least approximately, scale linearly with ρ∗. Comparing to
local computations in Fig. 4.5.1 we can measure the artificial peaking of Qneo

i due
to the Krook term. The present simulations have been performed for ρ∗ = 1/180,
where a coefficient γH = 0.018 gives a satisfying result for a collisionality ν∗i = 0.5.
When smaller (larger) fluxes are expected, for example at smaller (larger) gradients
or collisionality, then also a smaller (larger) value for γH is appropriate. This trend is
confirmed by the ν∗i = 0.05 simulations of Fig. 4.5.1. Taking a simple linear relation
between γH and Qneo, the (rough) estimate

γH ≈
Qneo

QGB

× ρ∗ (4.5.1)

gives a first impression what value of γH should be used. The gyro-Bohm normalized
heat flux may be approximated by local simulations that are substantially cheaper.

4.5.2. Influence of hyper-diffusion at low/high collisionality
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Figure 4.5.2.: Influence of radial hyperdiffusion on the neoclassical heat flux (a)
for ν∗i = 0.5 and (b) for ν∗i = 0.05 each taken at t = 20000 a/cs. The heat source
parameter is γH = 0.05.
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Hyperdiffusion coefficients are usually introduced to remove sub-grid fluctuations
that otherwise perturb the physical result. They can be avoided by using large nu-
merical grid resolution, but this is not always affordable. Gene allows for the use of
hyperdiffusion in the parallel direction z, parallel velocity v‖, and in the radial coor-
dinate x, which are the coordinates that involve finite-difference discretized deriva-
tives. Here, v‖ hyperdiffusion is not considered, because its influence on neoclassical
transport is found to be weak. The reason is that collisions already provide some
(physically motivated) diffusion in velocity space. We want to clarify in this Section,
to what degree the remaining hyper-diffusion terms perturb the neoclassical results.
We will generally find that these terms do not play a major role when the neoclas-
sical solution is smooth even without hyperdiffusion. When this hyperdiffusion-free
solution has some small scale structure, however, hyperdiffusion increases the neo-
classical heat flux. For smaller heat flux (we take smaller collisionality as a control
parameter), the results are more sensitive to hyperdiffusion. As a first test, Fig. 4.5.2
shows the influence of the radial hyperdiffusion, the numerical coefficient is hyp_x.
It is seen that well within the simulation domain, x-hyperdiffusion has no influence.
Only at the inner boundary r < 0.2 a, where our results did not yet reach temporal
convergence due to the extremely large saturation time scale, Qneo

i is increasingly
enhanced with hyp_x.
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Figure 4.5.3.: Influence of parallel hyperdiffusion on the neoclassical heat flux (a)
for ν∗i = 0.5 and (b) for ν∗i = 0.05. The coefficient γH = 0.05 is used for the Krook-
type heat source. For comparison, local results (based on the final temperature
profile for the smallest value of γH) are shown.
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Figure 4.5.4.: Influence of parallel hyperdiffusion on the neoclassical heat flux at
increased z resolution (a) for ν∗i = 0.5 (at t = 20000 a/cs), and (b) for ν∗i = 0.05
(at t = 60000 a/cs). Reasonable temporal convergence is governed for r/a > 0.2.

Parallel (z) hyperdiffusion is tested by varying the coefficient hyp_z. Figure 4.5.3
shows an artificially enlarged heat flux all over the radial domain that is obtained
for increased parallel hyperdiffusion. At higher collisionality ν∗i = 0.5 , the heat flux
increase of ~9% is moderate, even for a relatively large hyperdiffusion coefficient
hyp_z=4. The smaller collisionality case (ν∗i = 0.05) is affected more strongly
by such a large hyperdiffusion, in the studied case a heat flux increase of 80% is
found. Although the saturated temperature profile does essentially not depend on
hyp_z, the local results depicted in Fig. 4.5.3 confirm the flux-increasing effect of
z-hyperdiffusion. A further test using 32 (instead of 24) grid points in z reduces
the deviation substantially: Fig. 4.5.4 shows that for ν∗i = 0.5 (0.05) the heat
flux is only 3% (30%) larger. An explanation is found in the following: Increased
resolution reduces numerical errors in the finite differencing scheme, that generate
some unphysical small-scale structure in the distribution Fa. On the other hand, the
4th derivative of Fa that is implemented in the z-hyperdiffusion term, becomes large,
when Fa involves such small scales. In consequence, a less pronounced influence of
z-hyperdiffusion (at constant hyp_z) is expected for increased resolution.
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4.6. Global benchmark between GENE and ORB5

4.6.1. Definition of the benchmark case

Finally, the prediction of neoclassical transport of the global version of the Gene
code is benchmarked against the PIC code Orb5 described in Ref. [24] (and refer-
ences therein). The simulation setup defined tor this purpose is case III of Tab. (4.4.1)
described Sec. 4.4.2, using ν∗i = 0.5 and ρ∗ = 1/180 in global CBC geometry. For
simplicity, we do not consider the electron species and run without any electric field
in both codes. Additionally, all sources and sinks are switched off, which lets the
temperature profile relax in time. It is therefore important to match the simulation
time, for which several collision times τii are chosen. Both codes perform initial
value computations with f1 = 0 as the initial condition.
Hyperdiffusion terms are disabled, because Sec. 4.5 shows that they can easily per-

turb the neoclassical equilibrium. Our choice of the field-particle collision operator
for Gene is the self-adjoint form, with the test-particle operator acting on f . In the
local version of Gene, these collision operator settings have lead to good agreement
with the Neo code in the collisionality regime considered here. The self-adjoint
like-particle collision operator used in Orb5 is equivalent, it includes pitch-angle
scattering as well as energy diffusion terms. The numerical implementation is, how-
ever, very different in PIC and Vlasov codes.

4.6.2. Comparison of GENE and ORB5 results

We now turn to the code comparison by monitoring the ion neoclassical energy
flux Qneo

i and ion contribution to the bootstrap current jBi = 〈u‖iB0〉, given by
Eqs. (2.3.11) and (2.3.16). The particle flux Γneo

i is not considered in this benchmark,
because it is at least a factor of 10 smaller than the heat flux and decays further for
larger simulation times.8 After some initial oscillations, the time trace of Fig. 4.6.1
begins to change very slowly (at least for Qneo

i ). Although the amplitude of the
initial oscillations in Qneo

i is slightly larger in Gene, their time-scale is the same,
because it is determined by τii, the ion-ion collision time. We show in Fig. 4.6.2
that the radial profiles for Qneo

i and jBi at t = 2τii are slightly smaller in Gene, but
nevertheless, a satisfactory agreement is found at all radial positions. These results
show that global neoclassical computations with Gene compare well to another,
numerically very different code.

8Adiabatic electrons actually require a vanishing particle flux.
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Figure 4.6.1.: Time traces of (a) the ion neoclassical energy flux Qneo
i and (b) the

ion contribution to the bootstrap current jBi = 〈u‖iB0〉, both evaluated at the
box center r/a = 0.5. Results for Gene and Orb5 are shown. After initial
oscillations, saturation begins on the scale of several collision times τii. The heat-
flux is slowly decaying, because no heat sources are present and the gradient is
therefore decreasing gradually.

(a)

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5
x 10

−5

r/a

Q
 [
n

0
 c

s
0
 T

0
]

 

 

ORB
GENE  Q

neo
(2τ

ii
)

(b)

0.2 0.4 0.6 0.8
0

0.01

0.02

0.03

0.04

0.05

0.06

r/a

j b
i [

n
0
 c

s
0
 B

0
]

 

 

ORB
GENE  j

bi
(2τ

ii
)

Figure 4.6.2.: Profiles of (a) the neoclassical heat flux Qneo
i and (b) the ion contri-

bution to the bootstrap current jBi = 〈u‖iB〉. Gene results are evaluated at the
simulation time t = 2τii and Orb5 results are averaged over a small time window
around t = 2τii .

4.7. Chapter summary
In conclusion, we have shown in this chapter that the Gene code (and in partic-
ular the implemented collision operator) is suited for the numerical prediction of
neoclassical heat and particle transport. We have considered kinetic electrons and
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a single species of ions to successfully benchmark with the Neo code in the local
limit. The energy and momentum conserving terms of the collision operator are
an important ingredient for these computations and the self-adjoint form of CF is
shown to improve the agreement, in particular for the electron contributions Qneo

e

and jBe to heat flux and bootstrap current. The latter can correctly be computed up
to relatively large collisionality regimes around νc ∼ 0.01. We note in this context
that turbulence simulations show inherent statistical fluctuations and within these
the particular choice of the model for the field particle operator virtually makes no
difference.
Global neoclassical computations have been performed in the limit of adiabatic

electrons. The nonlocal term vd · ∇F1a allows relaxation of the background gradi-
ents. It has been confirmed that the local limit is valid for the system size parameter
ρ∗ = 1/300, when the initial temperature gradient is maintained by a Krook-type
heat source. Using ρ∗ = 1/100, agreement between the local and the global Gene
versions is found when a weak Krook coefficient is employed that lets the tempera-
ture gradient relax by about 25%. In global computations a Krook-type heat source
can strongly contribute to the equilibrium neoclassical solution, in particular for
large values of ρ∗. This Krook term actually provides not only energy sources, but
also (possibly internal) energy sinks. By noting that, in steady state, a heat con-
tinuity equation is to be fulfilled, we have pointed out a clear difference to local
simulations. In extreme cases, the Krook term enforces a radially inward flux, al-
though the neoclassical drive term vD∇f0 is still positive. This situation is never
given in the local limit that works without sources and sinks. Differences between
local and global computations that result from finite-size effects, are thus often cov-
ered by the Krook-type heat source. The heat continuity relation is exaclty fulfilled
in numerical simulations, when using a refined definition of the neoclassical heat
flux, which coincides with the standard definition in the local limit and can thus be
seen as an O(ρ∗) correction.
Further numerical tests have shown that hyper-diffusion terms tend to increase

the neoclassical heat flux. We note that the neoclassical equilibrium is found to be
reasonably smooth in phase space (for manageable grid resolution) such that it was
not necessary to include hyperdiffusion terms. In contrast, hyperdiffusion is often
used in turbulence simulations with moderate resolution to remove spurious small-
scale fluctuations that would otherwise lead to incorrect results. Consequently,
these tests are important not only for the computation of neoclassical transport
alone, but also form the basis for simultaneous turbulence-neoclassics simulations
(see e.g. Ref. [47]), a topic that is left for future work. A clear trend was seen when
decreasing collisionality (and thereby Qneo

i ). The low collisionality case (ν∗i = 0.05)
was stronger (up to 80%) modified by hyperdiffusion terms, compared to the ν∗i =
0.5 case (less than 10%). Noting that collisionality well below ν∗i = 0.05 can be
reached in experiments, these issues should be kept in mind when the neoclassical
equilibrium is to be computed at small collisionality and combined with turbulence
runs that require hyperdiffusion. On the other hand, neoclassical transport is small
in low-collisional plasmas, such that the overall transport is usually be dominated
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by anomalous fluxes. In the letter case, 80% relative errors in the neoclassical value
are likely to be negligible for the total heat and particle flux.
Finally, we have performed a benchmark of neoclassical transport between the

global Gene code and the numerically very different particle-in-cell code Orb5.
The overall satisfying agreement gives some confidence in the implementation of the
global collision operator and shows the feasibility of global neoclassical computations
with Gene.
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5. Microtearing turbulence in
standard tokamaks

5.1. Introduction and overview

I
n burning ITER [4] plasmas, the fusion processes will predominantly heat
the electrons. It is thus important to understand and be able to predict elec-
tron thermal transport via microturbulence in magnetically confined plas-

mas. In this context, many key aspects are still under investigation, and the over-
all picture continues to evolve. Prominent examples include the contributions of
sub-ion-gyroradius scale turbulence driven by electron temperature gradient (ETG)
modes [57] and the role of magnetic stochasticity caused by small-scale reconnecting
modes. The latter question has recently been addressed anew by means of high-
resolution gyrokinetic turbulence simulations [9, 58, 59, 60, 61], building on fairly
recent hardware and software advances. These modern methods allow to follow up
on theoretical considerations which started already decades ago.
In 1973, Stix argued that even minute magnetic perturbations can greatly enhance

the electron thermal transport if these perturbations are resonant.[62] Microinstabili-
ties are a possible source of such perturbations, provided that they exhibit a resonant
component of the vector potential, Ã1‖. The magnitude of this resonant component,
which is essentially an integral of Ã1‖ along the field line, crucially depends on the
parity of the perturbation. In an up-down symmetric tokamak, eigenmodes (with a
vanishing radial wavenumber kx) are characterized by either tearing (even) or bal-
looning (odd) parity with respect to Ã1‖, as illustrated in Fig. 5.1.1. Importantly,
the well-known ion temperature gradient (ITG) modes and trapped electron modes
(TEM), at kx = 0, belong to the second category.1 The corresponding field-line inte-
gral vanishes and thus cannot directly break field lines. Magnetic stochasticity can
be expected, however, when tearing-parity modes, such as the microtearing mode,
are present and create small-scale magnetic islands which may overlap to create a
stochastic field. In such a stochastic field, the fairly large parallel heat conductivity
is coupled to the cross-field component, which may greatly enhance electron heat
transport. First results in this area have already been obtained in the 1970’s by
several authors.[63, 64, 65, 66] Moreover, it has recently been proposed that in finite

1Vanishing radial wavenumber generally dominates the growth rate spectrum of an instability.
Even for finite radial wavenumber, ITG and TEM modes predominantly exhibit ballooning
parity.
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(a) ballooning parity (ITG) (b) tearing parity (microtearing)

Figure 5.1.1.: Illustration of ballooning and tearing parity modes in field-line fol-
lowing coordinates. The ballooning angle θ is the coordinate along the field line.
The wave numbers are ky = 0.11 in both cases and simulations have been per-
formed for ASDEX Upgrade geometry.

βe ITG/TEM turbulence, linearly stable microtearing modes can be excited via a
nonlinear coupling to zonal modes.[59] Interestingly, this can explain both the oc-
currence of stochastic fields [60] and the quadratic scaling of the magnetic transport
which contradicts standard quasilinear transport models.[67]
In the present work, the focus lies on linearly unstable microtearing modes. From

the published analytical work it is not entirely clear whether stabilizing or destabi-
lizing terms dominate under realistic experimental conditions.
Therefore, linear gyrokinetic studies have been undertaken in the last decade,

indicating a role of microtearing modes first in spherical (small aspect ratio) [68,
69, 70, 71, 72, 73, 74, 75, 76] and later also in standard (medium aspect ratio)
[77, 78, 79] tokamak plasma. Moreover, improved confinement regimes of reversed
field pinch plasmas may involve microtearing modes.[80] Among other things, these
gyrokinetic computations revealed another drive mechanism related to magnetic
curvature (thus not accessible in early slab models) which adds to the complexity of
the linear mode.[77] Exploring various physical parameter regimes, different types of
microtearing modes have been identified. In spherical tokamaks, operating at high
βe, they exist at rather high perpendicular mode numbers of kyρi ∼ 1, whereas in
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standard tokamaks, one typically finds kyρi ∼ 0.1. A quite extreme difference in the
radial scales between fine-scale parallel electron current (j1‖e) as well as electrostatic
potential (φ1) structures and large-scale Ã1‖ perturbations is commonly seen, an
effect which makes it computationally expensive to compute even linear modes.
To predict the resulting level of turbulent electron heat transport, however, it is re-

quired to transcend linear theory. A semi-analytic transport prediction of Drake and
co-workers has been used successfully to interpret the results of a rather collisional
discharge in the National Spherical Torus Experiment (NSTX).[75, 81] However,
such analytical treatments of the nonlinear microtearing problem suffer from severe
simplifications.
Investigations of the nonlinear dynamics of microtearing modes by means of ab

initio gyrokinetic simulations are extremely valuable in this context and are thus the
subject of this work. While we focus on standard tokamak plasmas, it is worthwhile
noting that within the last two years progress in predicting microtearing turbulence
has been reported also for spherical tokamaks. Turbulence level and thermal trans-
port is greatly enhanced with increasing electron temperature gradient, as expected
from linear physics. Interestingly, a series of simulations performed for a certain
NSTX discharge reproduces the experimentally determined favorable scaling with
collisionality.[58, 82, 83]
It should be pointed out that these simulations are extremely demanding in terms

of both the required computational resources and the level of detail in the physics
model. For example, in the radial direction, high resolution and a large domain
size are needed, due to the aforementioned multi-scale features in Ã1‖ and φ̃1. For
this reason, computations are commonly performed in the local (flux-tube) limit,
neglecting radial dependencies of quantities like temperature, density, their gradi-
ents, and magnetic geometry. The local approximation is expected to hold when the
tokamak minor radius a becomes much larger than the gyroradius ρi. While finite
machine size effects usually stabilize modes like the ITG instability due to profile
shearing [84, 39, 85], it is a priori not clear how microtearing modes are affected.
After giving a brief introduction to the linear theory of microtearing modes in

Sec. 5.2, we thus begin our gyrokinetic study by investigating microtearing modes
in radially global geometry in Sec. 5.3. A system size scan of linear microtearing
modes is performed in Sec. 5.4. Since it turns out that even for relatively small
machines the local limit is adequate, the flux-tube version of Gene is used in the
following. In Sec. 5.5, the AUG discharge 26459 is studied with respect to criti-
cal electron temperature gradient and βe. The two following Sections are devoted
to two important aspects of the linear instability, which are the influence of colli-
sions (Sec. 5.5.1) and the characteristics of the current layer at the mode rational
surface (Sec. 5.6). The prediction of electron heat transport requires to include
nonlinear physics. In Sec. 5.7 results on gyrokinetic microtearing turbulence simula-
tions are presented, employing a geometry model assuming concentric circular flux
surfaces.[55] We investigate (i) what sets the saturation levels of the magnetic field
fluctuations, (ii) in which way the magnetic fluctuation level is linked to the heat
transport level, and (iii) which kind of physics sets the saturation amplitudes and
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thus the transport levels in the quasisteady turbulent state. Since both the plasma
parameters chosen to perform the simulations and the obtained level of thermal
transport are close to what is found in experiments, microtearing modes are estab-
lished as an additional candidate for explaining turbulent transport in (standard)
tokamaks.

5.2. An intuitive picture of the linear microtearing
mode

Microtearing modes are the small-scale gyrokinetic analogues of the well-known
magneto-hydrodynamic (MHD) tearing modes [6, 86, 87], although they involve
quite different physics. While the MHD tearing modes gain free energy by relaxing
the magnetic field to a lower-energy state, microtearing modes draw free energy from
the background electron temperature gradient. The discovery of de-stabilization of
small-scale tearing modes due to an electron temperature gradient is generally at-
tributed to a work of Hazeltine in 1975.[63] The most prominent feature of tearing
modes is the break-up and reconnection of magnetic field lines by the formation
of a narrow current layer about a mode rational flux surface. Besides collision-
less reconnection processes (due to finite electron inertia), also a certain level of
collisionality facilitates magnetic reconnection. Drake and co-workers contributed
significantly to the theoretical understanding of microtearing modes by providing
an intuitive picture for the instability mechanism in three regimes named collision-
less (νei/|ω| � 1), semi-collisional (νei/|ω| � 1 and ∆J/ρi � 1), and collisional
(νei/|ω| � 1 and ∆J/ρi � 1).[64] Here, νei = 4πnee4 ln Λ(2Te)−3/2m−1/2

e denotes
the electron-ion collision rate, ω is a typical mode frequency, ∆J is the width of
the current layer, and ρi is the ion gyroradius. Modern tokamaks, characterized by
high temperatures, mostly operate in the semicollisional and collisionless regimes.
Importantly, the semicollisional regime, which is only accessible in numerical work,
typically yields the most robust tearing instabilities.
A review of the existing literature leads to the conclusion that (even) the linear

physics of the microtearing mode is surprisingly complicated. We take the oppor-
tunity to give a brief summary of the derivation of a dispersion relation and discuss
necessary simplifications. A useful overview can also be found in Ref. [77], for ex-
ample. Two drive mechanisms are reported, one being the so-called time-dependent
thermal force that is present even in slab geometry and relies on a certain degree of
collisionality [63, 64, 88, 81, 89, 90, 91, 92, 93, 94]. In toroidal geometry, collisional
effects at the trapped-passing boundary provide another drive mechanism for the
microtearing mode in the weakly collisional (banana-) regime.[65, 95, 96]
We will focus on the thermal force drive in slab geometry in this introduction,

and only briefly discuss toroidal modifications. As a starting point we note that
the safety factor, defined as q(r) = B0φ(r)/B0θ(r), varies with the flux surface label
r. Therefore, certain mode rational surfaces exist for poloidal mode number m and
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Figure 5.2.1.: Vector relations of the wave vector k is illustrated in sheared slab
geometry that is often used in analytical work (like Ref. [64]) Close to the rational
surface at x = 0 one has k‖ = kyx/Ls width the shear length Ls = B0/ (∂xB1y).
The angle α(x) is enlarged for clarity. By comparison to Eq. (5.2.1) (and re-
defining the sign of k‖) one finds the equivalent Ls = qR/ŝ of the shear length in
toroidal geometry.

toroidal mode number n, characterized by nq(r0) = m. At these rational surfaces,
a (n,m) solution of the linearized Vlasov-Maxwell system may close in itself after
an integer number of poloidal turns,2 where the parallel wavenumber k‖ is allowed
to vanish. Introducing x = r − r0, one often approximates k‖ [6, 96]

k‖ = m− nq
qR

≈ −n∂rq
qR

∣∣∣∣∣∣
r0

x = − ŝ

qR
kyx (5.2.1)

with the usual definitions of the binormal wave number ky = nq0/r0 and the mag-
netic shear ŝ = (r0/q0)∂q/∂r. By means of a geometric argument illustrated in
Fig. (5.2.1) we find the equivalent expression k‖ = −kyx/Ls for sheared slab geom-
etry, where Ls is the shear length.
We characterize microinstabilities by the associated electromagnetic potential per-

turbations Ã1‖ and φ̃1 and assume a space-time dependence[
Ã1‖, φ̃1

]
=
[
A1‖(x), φ1(x)

]
exp(−iωt+ ikyy + ik‖z) to have

B1x = ikyA1‖(x, ky, k‖)
B1y = −∂xA1‖ (5.2.2)
E1‖ = −(1/c)∂tA1‖ − k‖φ1.

For low β plasmas one may neglect parallel magnetic field perturbations (they are
a factor of β smaller than their perpendicular counterpart). Tearing parity modes

2Magnetic confinement forces possible perturbations to have small perpendicular extension, but
allows for a larger parallel correlation length.
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are characterized by a vector potential A1‖ that is even about x = 0 such that
B1y(0) = 0. Such a vector potential is self-consistently generated by a parallel
current along the strong background field B0. Those modes lead to magnetic re-
connection and the formation of magnetic islands. The corresponding parity of the
electrostatic potential φ1 is odd.3 Microtearing modes are radially localized and
thus the boundary condition A1‖(x) ∝ exp(ky|x|) is applied.4 Instability occurs
when at the rational surfaces a growing parallel current perturbation j‖ reinforces
itself through the electron response in Ampère’s law(

∂2

∂x2 − k
2
y

)
A1‖ = −4π

c
j1‖ . (5.2.3)

The vector potential, generated by the current in turn induces a parallel electric
field

E1‖ = −1
c

∂

∂t
A1‖ = i

ω

c
A1‖ − k‖φ1 , (5.2.4)

where ω = iγ + ωr denotes the (complex) frequency. Ultimately, this electric field
accelerates electrons and enhances the current perturbation. We can write down a
generalized Ohm’s law

j1‖ = σ‖eE1‖ , (5.2.5)

which formally allows solving for a dispersion relation by combining Eqs. (5.2.3),
(5.2.4), and (5.2.5). The detail and the difficulty of the calculation lies in determining
the electron conductivity σ‖e.5 This is done by taking the v‖ moment of the (gyro-
or drift-) kinetic equation and solving for E‖, a very challenging task that can only
be completed when strong assumptions are made to simplify the equations. It is
thus not surprising that various flavors of the microtearing mode appear, depending
also on choice of the collision operator.
The simplifications applied here require the parallel current j1‖ to be strongly

localized within |x| < ∆J around the mode rational surface, where the inverse
transit time is smaller than the mode frequency,

vtek‖(x) .ω . (5.2.6)

Here, vte is the thermal electron velocity and k‖(x) is the x-dependent parallel wave
number that vanishes right at the rational surface. In the opposite limit, when
the transit time exceeds the mode frequency, the electrons will see an oscillating
mode, which reduces their response in Ampère’s law. Obviously, Eq. (5.2.6) does

3The opposite parity is a fundamental property of the equations also found in up-down symmetric
toroidal geometry.[97, 98]

4Applying this boundary condition is equivalent to matching the solution for the MHD tearing
mode to the outer (current free) MHD solutions, resulting in the tearing parameter ∆′.[93]

5The ion contribution can be ignored due to the comparably very large mass
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not include the effect of collisional broadening and should therefore only be valid
in the semicollisional to collisionless regime. Another point of view is connected
to the parallel force balance. When k‖ is significantly larger than zero, electrons
are adiabatic and thus a current can only be generated in close proximity to the
rational flux surface. A quantitative discussion of the current layer width is given
in Sec. (5.6) by means of gyrokinetic simulations. In the following, ∆J � ρi is
implied. To analytically derive a dispersion relation for microtearing modes we will
now (i) neglect the potential φ1 within the current layer and (ii) take A1‖ constant
across the current layer. The latter is commonly called constant-A1‖ or constant-
Ψ approximation.6 However, the derivative ∂A1‖/∂x is discontinuous across the
layer. We illustrate our assumptions on the the mode structure in Fig. 5.2.2, using
a numerically computed gyrokinetic example. Both (i) and (ii) are motivated by
the smallness of ∆J and the tearing parity properties φ1(x) = 0 and A1‖(x) 6= 0 at
x = 0. It is now possible to insert Eqs. (5.2.4) and (5.2.5) into Eq. (5.2.3), divide
by A1‖(0) and integrate the result across the current layer to obtain

1
A1‖(0)

dA1‖

dx

∣∣∣∣∣∣
∆J

−∆J

= 4πiω
c2

ˆ ∆J

−∆J

σ‖e(x)dx

where the left hand side is identified as the tearing stability parameter

∆′ = 1
A1‖(0)

dA1‖

dx

∣∣∣∣∣∣
∆J

−∆J

∼ −2ky (5.2.7)

evaluated here in the high modenumber limit neglecting k2
y against ∂2

x in the layer.
The boundary condition A1‖ ∼ exp(−ky|x|) for |x| � 1 is applied. Note that in this
case, ∆′ is negative. Further assuming a slab geometry model, as well as ω/νei � 1
(which is the semicollisional regime, since we take ∆J � ρi and neglect φ) and
γ � ωr, the dispersion relation can be solved and written in the form [93]

ωr
(vte/a) = kyρe

(
a

Lne
+ 5

4
a

LTe

)
(5.2.8)

γ

(vte/a) = N1

(
a2

L2
Te

)(
k2
yρ

2
e

) 1
νei/(vte/a) −N2

(
k2
y

k2
0

)(
a

Ls

)
(5.2.9)

where dependencies not required in this discussion are hidden in the factors N1,2
and k−1

0 = c/ωpe is the collisionless skin depth. Note that the real frequency
ω = ωT∗e = kyρevte(1/Lne+(5/4)/LTe) is closely related to the diamagnetic frequency,
which reflects the drift character of the mode. The first term in Eq. (5.2.9) repre-
sents the electron temperature gradient drive corresponding to the time-dependent
thermal force. The second term represents magnetic field line bending, and this

6Ψ means the magnetic flux in this context.
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Figure 5.2.2.: Flux surface averaged mode structure of je‖ and A‖ for kyρi = 0.14,
as simulated with Gene in the local approximation. Defining 2∆J = 0.72ρi as
the full width at half maximum, as shown in the figure, we obtain ∆′ = −0.21/ρi
from Eq. (5.2.7). For more detailed analysis, we refer to Sec. 5.6, where also the
parallel dependence is accounted for.

term is stabilizing because ∆′ is negative. Clearly, within these approximations,
microtearing growth can be understood as the successful competition of these two
terms of Eq. (5.2.9). It is interesting to note that due to the gradient drive, γ ∼ 1/νei
in the considered semicollisional regime.

Already in Ref. [93] it is stated that the assumptions underlying Eq. (5.2.9) are
generally not met in experiments, which is underlined by numerical methods to solve
the dispersion relation. One reason is that experiments are set up mostly between
the collisionless and semi-collisional limits and this is where the growth rate is found
to be largest (see also [92, 83]). This intermediate collisionality regime is, however
not easily accessible analytically. Moreover, at low magnetic shear, the constant-
A‖ approximation breaks down, leading to a non-monotonic dependence of γ on
magnetic shear. Furthermore, Gladd and co-workers [93] pointed out the potential
role of φ̃ in destabilizing the current layer in the context of a semi-analytic theory,
thereby further complicating the physical picture. A stabilizing role of φ̃ is expected
for larger current layers,[64] because the additional electric field Ẽ‖φ = −∇φ̃1 short-
circuits the response E‖A = −(1/c) ∂tÃ1‖.

Another limitation imposed here is the choice of slab geometry within which
toroidal effects are ignored. As mentioned above, in toroidal geometry another drive
mechanism is reported. A sophisticated analysis by Connor et al. [96], however,
leads to the conclusion that these modes are linearly stable for realistic tokamak
parameters in the regime νei/ε > ω > νei. In the same work the damping effect of
the collisional broadening of the passing Landau resonance is explained.
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5.3. Global linear microtearing modes in ASDEX
Upgrade

We begin our gyrokinetic studies by performing a linear stability analysis of the
AUG shot 26459 with Gene. This well diagnosed H-Mode discharge shows Type
II ELMs (Edge Localized Modes) and is characterized by strong plasma shaping
and high density, with high triangularity, high elongation, and high q95. Discharges
where Type II ELMs are created start as standard H-Modes with Type I ELMs and
are then pushed upwards to a near double-null configuration.[99, 100] When the
plasma density is sufficiently high, Type I ELMs develop into the faster and weaker
Type II ELMs. Additionally, the electron temperature decreases in the outer core
region. Due to the high density, the collisionality is rather large, which is why one
might expect tearing modes to appear. However, we find νei/|ω| < 10, and thus the
collisional regime defined in Ref. [64] is not reached.
The results presented below correspond to the Type II ELM phase. Temperature

and density profiles as well as magnetic geometry are averaged over a time-slot be-
tween 4.0 and 4.6 seconds of that discharge. The measured data for temperature
and density are taken from the AUG database (see Fig. 5.3.1). The resulting pres-
sure gradient in the plasma edge, together with the signals of the magnetic pickup
coils, serves as input boundary conditions for the Cliste code that reconstructs the
equilibrium. The resulting safety factor profile is depicted in Fig. 5.3.3. The field-
aligned coordinate system used in Gene is then obtained with the Tracer module.
In this work, ρtor = x/a is used as a radial coordinate, where a =

√
(Ψtor,sep/(πB0))

is the effective minor radius, such that the separatrix is located at ρtor = 1.
Using these profiles as input, we perform global linear Gene simulations of mi-

crotearing modes in toroidal geometry. Fig. 5.3.2 shows the Ã1‖ and φ̃1 contour
plots for n = 11 perturbations. For the most unstable microtearing mode, one can
identify the dominant poloidal mode number m = 24. The electrostatic potential
perturbation and the parallel electron current shown in Fig. 5.3.3 are rather local-
ized about the corresponding mode rational surface of q = 24/11, while the Ã1‖
perturbation is more extended. The plasma parameters at this position (ρtor = 0.6)
are: βe = 0.00423, νei = 0.685 cs/a, q = 2.18 ≈ 24/11, ŝ = 1.31, a/LTe = 3.02,
a/Ln = 0.376, a/LT i = 2.185, Ti/Te = 1.192, and ρ∗ = 1/330.7 For this particular
run, we reduced the ion temperature gradient to a/LT i = 1.6, which speeds up the
computation due to a shorter transient phase. However, local runs have shown that
the microtearing instability is indeed the most unstable mode also for the nominal
value of a/LT i. Convergence studies show that a radial grid spacing of 0.2 ρi is
required to obtain the correct growth rate.

7We define the electron beta as βe = 8πneTe/B2
0 and the electron-ion collision rate as νei =

4πnee4 ln Λ(2Te)−3/2m
−1/2
e .
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Figure 5.3.1.: Temperature and density profile fits and measured data points from
the AUG data base for discharge 26459 in the time interval between 4.0 and 4.6
seconds. We restrict ourselves to ρpol > 0.4 (ρtor > 0.29) to obtain a more accurate
fit in the outer region. For the density, the confidence band of the extended tanh fit
is given. The interferometer density measurement (black squares) is well matched
when one integrates the density fit along the corresponding line of sight (red
crosses).
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5.3 Global linear microtearing modes in ASDEX Upgrade

Figure 5.3.2.: Contours of Ã1‖ and φ̃1 in the poloidal plane for n = 11 are shown.
The most unstable microtearing mode is localized at the q = 24/11 flux surface
and has m = 24 in this case. The mode rotates in the electron diamagnetic
direction (counter-clockwise) in our convention. Ã1‖ forms larger structures, while
φ̃1 is closely bound to the mode rational surface.

Figure 5.3.3.: The q profile of AUG discharge 26459 is shown (blue line). The
electron current perturbations, j1‖e (shown in green color), peak at the rational
flux surfaces for n = 11 that are indicated by vertical lines. For the chosen time
slice, the fastest growing mode m = 24 is not yet completely dominating.
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5.4. System size effects
Having established that global Gene simulations of actual AUG discharges ex-
hibit microtearing instabilities, a natural follow-up question is to which degree these
modes are influenced by nonlocal effects. To address this issue, it is useful to per-
form systematic scans in the parameter ρ∗ = ρi/a which sets the ratio of the typical
turbulence scale length and the machine minor radius a. Of fundamental interest is
the convergence behavior in the local limit, ρ∗ → 0. For these ρ∗ variations, we fix
both the radial box length in units of a and the grid spacing of 0.2ρi. Therefore the
number of radial grid cells increases as 1/ρ∗, and the simulations become more com-
putationally expensive for smaller ρ∗. The profile of the electron temperature gradi-
ent is peaked at the center of the radial domain (x0/a = 0.5) in all the runs. This is
also where we place the q0 = 3 mode rational surface. We thus expect the mode with
the maximum growth rate at this position. The binormal wave vector is kyρi = 0.12,
which corresponds to the toroidal mode number n0 = (x0/a) q−1

0 (kyρi) (ρ∗)−1. The
dependence on ρ∗ in this relation implies that larger devices involve more unstable
mode numbers. For ρ∗ = 1/50, the mode density is very low, and only a few modes
fall into the typical low ky regime of linear instability.
Now, Fig. 5.4.1 shows that the local result is even valid for relatively large values

of ρ∗. This is somewhat surprising, since ITG modes are known to be strongly
stabilized with increasing ρ∗.[85, 101] A possible explanation can be found in the
fundamentally different mode structure. One of the stabilizing ρ∗ effects is the
variation of the diamagnetic drift velocity ω∗ across the width of typical eddies,
which is associated with some intrinsic shearing. When the shearing rate becomes
comparable to the growth rate, the ITG mode is stabilized. In a similar fashion,
shearing due to zonal flows saturates the ITG instability. One can understand this by
noting that a sheared ITG eddy is linearly damped. In contrast to an ITG mode, in
which all relevant fluctuating fields have comparable scale lengths in radial direction,
microtearing modes show inherent multiscale features. The vector potential Ã1‖
is fairly large-scale, but other fields like j1‖e, φ̃1, and T1e are peaked (within few
ρi) about the rational flux surfaces. Those narrow structures are apparently less
susceptible to radial shearing effects. However, a certain level of ρ∗ stabilization is
seen in cases for which ω∗ is still essentially constant across the extremely narrow
current layers, indicating that other fields (like Ã1‖) also play a role in the instability
mechanism. In Fig. 5.4.1, we further observe that the limit ρ∗ → 0 is correctly
captured.
We note in passing that in some cases, two microtearing modes at different radial

positions have very similar growth rates, including the one shown in Fig. 5.4.1. Thus,
long (initial-value) simulations are required to clearly identify the fastest growing
mode. We also point out that careful convergence tests have been performed for
ρ∗ = 0.01, confirming the need for significant computational resources. In particular,
it was found that 40× 16 points in (v‖, µ) velocity space and 24 points in the field-
line following direction z are required, as well as a radial grid spacing of 0.2ρi.
Here, we use a phase space domain characterized by Lx/a = 0.6, Lv‖ = 3.28vTa,
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Figure 5.4.1.: ρ∗ variation in radially global simulations with fixed gradient profile
and binormal wave number kyρi = 0.12. Even at large ρ∗, profile shear stabiliza-
tion is moderate, and the local limit ρ∗ → 0 is correctly captured.

and Lµ = 11Ta/B0 for plasma species a. In practice, up to 10,000 CPU-hours are
required per linear simulation.

5.5. Local simulations for ASDEX Upgrade discharge
26459

We have verified in the previous section that the (linear) microtearing instability
is well represented by the local limit even for moderate values of ρ∗. AUG has
typical ρ∗ values of a few times 10−3 and usually falls into that regime. The results
presented below are obtained with the local (flux-tube) version of the Gene code.
The reason for that is the increased simplicity and computational efficiency of local
compared to global computations.
Using local runs, we first determine the linear growth rate as a function of the

radial position ρtor. The physical parameters for these simulations are extracted
from the AUG data base. We summarize them in Tab. 5.5.1 in the right column
(2). Fig. 5.5.1 shows that microtearing modes of binormal wavenumber kyρi = 0.12
have a positive growth rate in the outer half of the torus. The growth rate decreases
towards the edge, most likely because a/LTe decreases in the particular temperature
profile used. (In addition, the position of the maximum growth rate might have
moved in ky space.) The modes rotate in the electron diamagnetic direction (in our
sign convention, this corresponds to negative frequency), and the magnitude of the
real frequency is about 50 to 100 kHz. A ky spectrum shows that ITG modes are
also expected at higher ky values. We can distinguish these modes by measuring
the parity of Ã1‖ as a function of the parallel coordinate z (corresponding to the
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Chapter 5 Microtearing turbulence in standard tokamaks

Figure 5.5.1.: A local scan over the radial position ρtor = x/a shows that mi-
crotearing modes are unstable over a wide range in the outer half of the tokamak
core. For the fixed binormal mode number kyρi = 0.12, the real frequency is
around 50 to 100 kHz.

ballooning angle θ). Ã1‖(θ) is even (odd) for microtearing (ITG) modes. Also, the
ITG real frequency has opposite (positive) sign and yields a smaller ratio ω/ky.
For the spectrum at the radial position ρtor = 0.8 shown in Fig. 5.5.2, the plasma
parameters have been slightly modified, see Tab. 5.5.1 in the left column (1). The
used gradients match better the ρtor = 0.5 position that are listed in Tab. 5.7.1. In
particular, βe has been increased from 0.003 to 0.004 and a/LT i has been decreased
from 2.2 to 1.6. These modifications make the microtearing modes more pronounced
and weaken, to some degree, the ITG modes. However, the overall picture remains
unchanged. ETG modes are not shown in the graph, although they also have positive
growth rates.
Simulation results on pure microtearing turbulence suggest that the linear coex-

istence of microtearing instabilities and ITG modes observed in Fig. 5.5.2 carries
over into the nonlinear regime, because (a) the transport peak is found at wavenum-
bers slightly lower than the range of ITG activity and (b) the turbulence level of
microtearing modes is only weakly susceptible to (possibly ITG driven) zonal flows.
The results of corresponding nonlinear simulations are detailed in Sec. 5.7. In the
following, we will focus on investigations concerning the linear critical gradients
instead. It is widely known that once a certain critical ion temperature gradient
is exceeded, heat transport due to ITG modes increases rapidly with increasing
gradient. The resulting heat flux usually does not allow the profile gradient to sig-
nificantly exceed the critical value, implying profile stiffness. This critical gradient,
however, experiences a nonlinear up-shift in ITG turbulence. Interestingly, in the
analysis of nonlinear simulations in Sec. 5.7, we will see that a similar effect is ex-
pected for microtearing turbulence. Strong transport only sets in once a threshold
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Figure 5.5.2.: Microtearing modes dominate the low-ky region. They coexist with
an ITG branch at higher wavenumbers. The ETG instability at kyρs ∼ 2 is not
shown. When comparing to the results from the AUG database, slightly modified
plasma parameters are used, see Tab. 5.5.1.

Table 5.5.1.: Comparison of the parameters used for Fig. 5.5.2 (1) to the values
derived from the AUG database at ρtor = 0.8 (2). Fig. 5.5.1 is based on the latter
set (2).

parameter set (1) (2)
ρtor 0.8 0.8
a/R 0.37 0.37

a/LTe 2.5 1.63
a/LT i 1.8 2.08
a/Ln 0.43 0.30
Ti/Te 1.0 1.2
mi/mp 2 2

ρ∗ 0.00304 0.00304
βe[%] 0.4 0.25

νei/(cs/a) 0.97 1.54
q 3.7 3.7
ŝ 2.48 2.48
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Figure 5.5.3.: Variation of microtearing growth rate with R/Ln and q is shown in
circular geometry. Nominal parameters are q = 3, ŝ = 1, R/Ln = 1.

in the magnetic field fluctuation amplitude (and therefore in the drive strength) is
exceeded.

In all gyrokinetic studies to date, a threshold behavior in the parameters a/LTe
and βe has been observed. Sensitivities on the density gradient seem to depend on
the specific parameter regime and magnetic geometry. NSTX high-k microtearing is
damped by a/Ln around the experimental value: An ηe = Ln/LT drive is reported
[102] and other discharges suggest that stability depends on the ratio νei/ω, that is
modified by a/Ln.[83] AUG results have shown a a/Ln drive including a threshold
[79] in the plasma edge, and circular geometry results shown in Fig. (5.5.3) exhibit
a weak dependence around realistic values for 0 . a/Ln ≤ 2. Fig. 5.5.3 also shows
the influence of the safety factor q. Strong de-stabilization is found for 1 . q . 2,
but for larger values of q that are relevant in the outer-core region of a standard
tokamak, the dependence is found to be moderate. This study of critical parameters
for microtearing thus focuses in particular on a/LTe and βe, the results are depicted
in Fig. 5.5.4. The instability threshold for a/LTe is increased for decreasing βe in the
low-wavenumber limit, but the experimental reference values for both a/LTe and βe
(Tab. 5.5.1) are well above this threshold. The critical parameter study performed
for the reference AUG discharge 26459 reveals that microtearing modes at low ky
have a smaller critical gradient than ITG modes. Thus some relevance of such modes
is expected: If the temperature gradients of both species (electrons and ions) are
ramped up together, microtearing sets in first.
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Figure 5.5.4.: Critical gradient studies for three values of kyρi and three values of
βe. The gradients a/LT i and a/LTe are changed simultaneously. At the lowest
kyρi = 0.04 microtearing modes are found with (a/LT )crit = 0.5, at the nominal
value for βe, the threshold increases with decreasing βe, thus a critical βe threshold
can be found for constant gradient. At intermediate kyρi = 0.2, βe = 0.003 the
critical gradient is around unity, and microtearing modes set in first. Higher βe
leads to a stronger presence of microtearing modes in this interesting regime. At
kyρi = 1 ITG modes dominate with a critical gradient of 0.8.
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Figure 5.5.5.: The dependence of the microtearing growth rate on the collision fre-
quency is moderate. A maximum growth rate is reached at intermediate collision
frequencies , where νei/|ω| ∼ 1 − 10, consistent with early slab-geometry calcu-
lations [92, 93] and gyrokinetic simulations [77, 83]. In ITER baseline outer core
plasmas, the collisionality is still large enough for a microtearing instability, even
if other plasma parameters like a/LTe are kept constant.

5.5.1. Role of collisions
Including collisions is essential for studying microtearing modes, since the associ-
ated resistivity facilitates magnetic reconnection.8 Moreover, one of the tearing
mode drive mechanisms, the time derivative of the thermal force, requires finite
collisionality. It is responsible for the energy transfer from the background temper-
ature profile to the mode. In the weakly collisional regime (very low values of νei),
where the thermal force essentially vanishes, alternative microtearing drive mecha-
nisms are expected to be too weak to overcome the stabilizing terms.[105, 96, 106]
On the other hand, in the opposite limit of strong collisionality, the microtearing
mode is also stabilized. Here the intuitive picture is that collisional decorrelation
strongly inhibits electron motion along field lines, such that a current layer cannot
be established. Early theoretical work showed that experimental conditions, which
are typically between the collisionless and (semi-)collisional limit, often can not be
treated in a purely analytic fashion, even in slab geometry.[92, 93] We note in pass-
ing that one important ingredient in these calculations is an appropriate energy
dependence of the collision frequency νei.
Further progress was achieved when Applegate and co-workers performed linear

gyrokinetic simulations of microtearing modes in a systematic fashion.[77] As they
also showed a few years ago, the energy dependence of νei actually becomes less im-
portant when going from slab to toroidal geometry, and the qualitative behavior of

8Collisionless reconnection is possible as well (see e.g. [103, 104]), but does not play a major
role in the context of microtearing modes, since the maximum growth rate is found in the
intermediate collisionality regime.

116



5.6 Microtearing mode current layers

the growth rate, peaking in the intermediate collisionality regime relevant to exper-
iments is preserved. The latter finding is confirmed via Gene simulations presented
in Fig. 5.5.5. Here, one observes that the growth rate changes only moderately over
several orders of magnitude in νei. A maximum is found around collision frequen-
cies at which the mean-free-path λmfp approximately equals the connection length
2πqR, and it is more pronounced for larger mode numbers. Collisionality scales as
νei ∼ nT−3/2 and is thus smaller in hotter plasmas. Our standard-tokamak parame-
ter set (compare Sec. 5.7) is, however, still microtearing unstable when the collision
frequency obtained for the ITER baseline scenario at ρtor ∼ 0.7 − 0.8 is inserted,
even if other plasma parameters like the temperature gradients are kept constant.
Thus, the present work is also relevant to future tokamak devices.

5.6. Microtearing mode current layers
We now turn to gyrokinetic investigations of a fundamental aspect of the physics
behind the microtearing instability, which is the (temperature gradient driven) cre-
ation of a parallel current at a resonant flux surface, q = m/n. Interest arises,
in particular, in the width of this current layer mainly for two reasons: (1) the
comparison with analytic predictions yields insights into the underlying physics,
and (2) the actual theoretical/numerical treatment can be validated. For example,
the assumption of unmagnetized (adiabatic) ions only holds for ∆x � ρi, and the
validity of this criterion can be tested. Resolving the current layer in gyrokinetic
simulations generally requires very fine radial resolution (much more than what is
needed for growth rate convergence). Thus, the simulations are performed in flux-
tube geometry with a rational surface in the radial domain center. For illustration,
a typical mode structure of the electron parallel current in the x-z plane is shown
in Fig. 5.6.2. One obvious difference with respect to existing theories is the peculiar
parallel structure of j1‖e, which is linked to the strong ballooning of Ã1‖ shown in
Fig. 5.6.1.
In the following, we will present linear gyrokinetic simulations with Gene in order

to shed light on the impact of a wide range of plasma parameters on the microtearing
current layer. To compare with the intuitive picture given in Sec. 5.2, Eq. (5.2.6)
is evaluated at the distance x = ∆J , expressing k‖ by means of Eq. (5.2.1). The
resulting expression

∆J

ρi
=q
ŝ

ω/(cs/R)
kyρi

√
me

mi

(5.6.1)

characterizes the analytic prediction of the current layer width. The numerical
eigenmodes computed with Gene are assessed by measuring the full width at half
maximum of j1‖e(z = −π, x) at the torus inboard side. This position is chosen be-
cause we generally observe a widening at the outboard side. This structure actually
corresponds to finite k‖ at x = 0 and already gives some hint that the analytic model
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Figure 5.6.1.: Typical parallel structure of A‖ developed by a microtearing mode.
A strong k‖ = 0 (resonant) component exists, but also non-vanishing k‖ contribu-
tions are obvious.

might be too simple. The particular structure of this widened mode generally de-
pends on the plasma parameters, but the narrow layer at the inboard side appears
to be universal. In these simulations, basically all the plasma parameters entering
Eq. (5.6.1) have been varied. The frequency is actually not an input parameter, of
course, but has been varied through the dependence on the electron temperature
gradient ω ∼ a/LTe, which is, in fact, approximately linear. Also an increase of ω
with the density gradient a/Ln is observed, in general agreement with the analytic
slab result Eq. (5.2.8), reflecting the the drift-wave character of microtearing modes.
The simulation data suggest that some basic physics is indeed captured correctly

by the intuitive model: The overall trends depicted in Fig. 5.6.3 are generally repro-
duced. To give some examples, an increase in q, as well a decrease in ω or ŝ widens
the current layer, as expected. Quantitative agreement is only obtained in the sense
that current layers tend to be as thin as (0.1− 0.5) ρi, while the exact value can not
be predicted by Eq. (5.6.1). We want to point out that the derivation of Eq. (5.6.1)
does not consider collisional broadening of the current layer. For collisional plasmas
(νei � ω) the modification ∆J,ν = ∆J

√
νei/ω has been estimated by Gladd and

co-workers in Ref. [93]. Simulations varying collisionality within 0.1 . νei/ω . 6
(magenta squares in Fig. 5.6.3) show indeed broader current layers for larger col-
lisionality. Note that νei influences ω and thus enters Eq. (5.6.1) indirectly. The
remaining runs fix the collision frequency in the intermediate collisionality regime
νei = 0.02vte/R where νei ∼ ω. Moreover, it is noteworthy that Eq. (5.6.1) predicts
too small values of ∆J for AUG geometry with rather high shear ŝ = 1.7 and deu-
terium ions for which a 0.02 < kyρs < 0.12 scan is shown in Fig. 5.6.3. Note that due
to ω ∝ ky for drift waves, a constant current layer width is predicted from Eq. (5.6.1)
when ky is varied. In Fig. 5.6.3(b) we use a Gladd-type estimate ∆J

√
νei/2ω (adding

a factor 1/
√

2 ). This improved model indeed exhibits enhanced agreement with the
gyrokinetic data points obtained by the variation of νei and ky (both changing the
ratio νei/ω).
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Figure 5.6.2.: Typical structure of a current layer of a microtearing mode in the
x − z plane and taken at the torus inboard (z = π) and outboard (z = 0)
side. While (a),(c),(d) use νei = 0.02vte/R, the nominal value, (b) has higher
collisionality νei = 0.08vte/R and a wider current layer. Lack of radial resolution
will smear out the fine structure at z = 0 and lead to the conclusion of a wider
layer.
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We have also investigated the impact of φ̃1 on the standard-tokamak microtearing
mode, motivated by the diverse effects mentioned in Sec. 5.2 and gyrokinetic findings
for the MAST and NSTX spherical tokamak. In MAST, zeroing out φ̃1 is found to be
stabilizing [77], suggesting that φ̃1 actively takes part in the instability mechanism,
in accordance to slab theory [93]. In NSTX, on the other hand, a destabilizing effect
is observed when φ̃1 is weakened, which is consistent with Zeff scalings reported in
Refs. [82, 83]. Some standard tokamak Gene results are shown in Fig. 5.6.3: The
data points marked by red diamonds are obtained zeroing out φ̃ for a q scan in
circular geometry. The modification of the growth rate or the current layer width
is rather small. Measuring the mode growth, we find the trend that including φ̃1
is destabilizing for q . 3 and stabilizing for q & 3. This is clear evidence for the
existence of different flavors of the microtearing mode, an interesting aspect which
remains to be better understood.

5.7. Turbulent transport due to microtearing modes

Table 5.7.1.: Plasma parameters for ρtor = 0.5, 0.65, 0.8 of ASDEX Upgrade shot
26459 compared with the circular model used for the turbulence simulations.

Circular AUG 0.5 AUG 0.65 AUG 0.8
x/a 0.40 0.50 0.65 0.80
a/R 0.37 0.37 0.37 0.37
a/LTe 0.9-2.2 2.855 2.686 1.627
a/LT i 0.000 2.088 2.343 2.077
a/Ln 0.370 0.341 0.365 0.303
Ti/Te 1.000 1.113 1.218 1.209
νei/(cs/a) 2.310 0.405 0.873 1.542
β[%] 0.600 0.586 0.363 0.251
q 3.000 1.811 2.449 3.703
ŝ 1.000 0.794 1.583 2.478
mi/mp 1 2 2 2

Finally we turn to the simulation results on nonlinear gyrokinetic microtearing
turbulence for standard tokamak plasmas that have also been reported in Ref. [9].
The nominal parameters for the nonlinear simulations are summarized in Tab. 5.7.1
(normalized to the minor radius and labeled as “Circular”). For comparison, the
values for AUG discharge 26459 are shown. The value of q and νei fit the outer core
regime, while the other parameters are close to those at the ρtor = 0.5 surface. It
is worth mentioning that increasing q has been shown to increase the microtearing
growth rate in this regime up to values of q ∼ 3, above which increasing q (and
keeping all other parameters constant) is slightly stabilizing (see Fig. 5.5.3). The
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Figure 5.6.3.: Comparison of analytic predictions for the current layer width to
gyrokinetic simulation results. (a) uses Eq. (5.6.1) for ∆J , while (b) considers a
collisional correction as described in the text. Blue dots vary q, ŝ, ω and me/mi,
magenta triangles vary collisionality (and thus ω), red diamonds vary q with φ̃ = 0,
and black squares vary ky in AUG geometry. The full width at half maximum
of j1‖e, taken at the torus inboard side, is smaller than ρi. In the intermediate
collisionality regime considered here, zeroing out φ̃ has no significant influence.
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Chapter 5 Microtearing turbulence in standard tokamaks

ion temperature gradient has been set to zero for the nonlinear simulations to avoid
multi-mode drive and to make the already demanding computations more tractable.
It has been verified that the ion temperature gradient does not modify the microtear-
ing branch, but it can be seen in Fig. 5.7.1 that the ITG branch disappeared. As
a second simplification, an analytic model for the magnetic equilibrium, assuming
concentric circular flux surfaces, is taken.[55] This change also does not affect the
microtearing mode substantially. We may thus expect that many qualitative and
semi-quantitative features found in the nonlinear simulations will carry over to more
realistic cases.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6

h
ea
t
fl
u
x
[c
s
n
e
T
e
ρ
2 s
/R

2
]

kyρi

lin. growth rate γL (A.U.)
Qe

em R/LTe = 3.5
Qe+i

es R/LTe = 3.5

Figure 5.7.1.: Typical transport spectrum for pure microtearing turbulence in
standard tokamaks. The electron heat flux is predominantly of magnetic na-
ture and peaks at very low values of ky. Unlike in ITG turbulence, the peaks of
the heat flux and linear growth rate are found to almost coincide, with only a
minimal nonlinear down-shift.

Convergence studies indicate that (for these physical parameters) a nominal res-
olution of 384 × 64 × 24 × 32 × 16 grid points in x × y × z × v‖ × µ phase space
is required. The domain width in the perpendicular plane is set by lx = 150ρi and
ly = 300ρi, resulting in a radial grid spacing of ∆x ∼ 0.5ρi.9 The velocity space
domain is lv‖ = lv⊥ = 3vTa for species a. It has been verified that the linear growth
rate is reasonably converged for all involved mode numbers.

5.7.1. General features of microtearing turbulence
A typical resulting transport spectrum obtained by means of Gene is displayed
in Fig. 5.7.1. While the particle flux is very low, one observes that the heat flux
is dominated by the magnetic component Qem

e in the electron channel, generally
providing more than 80% of the total transport.

9This grid spacing is slightly larger than the current layers found on the high-field side (z = π),
but smaller than the current layer on the low-field side. Nonlinear runs show no severe change
when doubling the grid spacing.
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Figure 5.7.2.: Impact of an equilibrium E × B shear flow on microtearing turbu-
lence measured in electron heat diffusivity. The saturated electron heat flux is
reduced, but even with E ×B shearing rates exceeding the linear growth rate by
a factor of 10, about 20% of the initial transport level remains.

An interesting aspect of microtearing turbulence is the impact of an equilibrium
E × B shear flow. A series of Gene simulations addressing this question is shown
in Fig. 5.7.2. Here, the response of the saturated turbulent state (for the nominal
parameters) to a number of different external E×B shearing rates (see Ref. [107]) is
provided. Somewhat surprisingly, microtearing turbulence, in the parameter regime
studied here, seems to be only mildly susceptible to E×B shearing. This finding is
in line with the observed weak dependence on nonlocal effects discussed above, and
indicates that microtearing modes in standard tokamaks tend to be rather robust
with respect to equilibrium shear flows.

5.7.2. Magnetic fluctuation amplitude
Given this result, let us now return to simulations of microtearing turbulence without
flow shear. In a first step, we will focus on the magnetic fluctuation levels: what
sets them and how do they depend on various plasma parameters? According to a
model developed by Drake and co-workers in Ref. [81], one should expect a relative
fluctuation amplitude of the magnetic field of

B̃1x/B0 ∼ρe/LTe (5.7.1)

where ρe is the thermal electron gyroradius. This estimate was obtained in the
collisional limit within the framework of a drift-kinetic theory, neglecting parallel
dynamics. The results from about a dozen Gene simulations for different values
of R/LTe and different numerical resolutions are displayed in Fig. 5.7.3. The Drake
expectation is shown for comparison as a dashed line. Interestingly, it describes
the gyrokinetic simulation results quite well, indicating that the general physical
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Figure 5.7.3.: Microtearing modes saturate at a fluctuation level of B̃1x/B0 ∼
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reduction by 1/3 or 1/2 in one of the phase space directions, leads to only moderate
scatter.

reasoning underlying it might also apply (possibly in some refined form) to the three-
dimensional gyrokinetic system. We will return to this important point later. In this
context, we would like to note, however, that the magnetic fluctuation amplitude
is sensitive to plasma parameters such as βe or νei, as well as various geometrical
quantities. As an example, a βe scan is shown in Fig. 5.7.4(a), for dependencies on
νei we refer to the linear results of Fig.(5.5.5) and also Ref. [82]. Given that the
linear microtearing instability exists only if βe exceeds a certain threshold (∼ 10−3

in the present case), it comes as no surprise that the magnetic fluctuation level
increases with increasing βe. Thus, the Drake formula should only be viewed as a
rough estimate which captures some of the main effects but ignores such additional
parameter dependencies.

5.7.3. The role of magnetic stochasticity
In a second step, we would now like to investigate in which way the magnetic fluctu-
ation level is linked to the associated transport level. As mentioned before, the ther-
mal transport associated with microtearing turbulence is dominated by the magnetic
contribution in the electron channel. The corresponding electron heat diffusivity χem

e

is given in terms of the electron heat flux Qem
e via

Qem
e =− neχem

e ∇Te . (5.7.2)
This diffusivity, as obtained from a set of about 15 Gene simulations (varying the
electron temperature gradient and βe), is found to be well described by a Rechester-
Rosenbluth ansatz

χem
e ∼ vteLC(B̃1x/B0)2 , (5.7.3)
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Figure 5.7.4.: Influence of the plasma parameter βe on (a) the magnetic field fluc-
tuation amplitude and (b) the electron magnetic heat diffusivity. The electron
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(a)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7

χ
em e

/(
ρ
2 i
v t

i/
R
)

(B̃x/B0)/(ρe/R)

threshold for large transport

weak drive

strong drive

χe
em=1.37 vte qR (B̃x/B0)

2

Gene R/LTe variation
Gene βe variation

(b)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

D
M
[ρ

2 i
/R

]

B̃x/(B0ρi/R)

threshold
weak drive

strong drive

R/LTe variation
β variation

πqR(B̃x/B0)
2

Figure 5.7.5.: (a) Electron heat diffusivity as a function of the relative fluctua-
tion level of the magnetic field. The Gene results are described well by the
Rechester-Rosenbluth model χem

e = η vte qR (B̃1x/B0)2 with η = 1.37. (b) Mag-
netic diffusivity computed from Gene data with Eq. (5.7.4). The quasilinear
result DM = πqR(B̃1x/B0)2 is well applicable in the present regime. We find two
outliers at small amplitude, where stochasticity is not established and thus also
the Rechester-Rosenbluth model breaks down, as explained in the text.
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Chapter 5 Microtearing turbulence in standard tokamaks

Figure 5.7.6.: Poincaré plots of magnetic field lines intersecting the perpendicular
plane on the outboard side for weak drive (a/LTe = 0.925, left-hand plot) and
stronger drive (a/LTe = 1.3, right-hand plot). The observed features are discussed
in the text.

as can be seen in Fig. 5.7.5(a). Obviously, the onset of strong transport is subject to
a nonlinear up-shift that also is observed in the beta scaling shown in Fig. 5.7.4(b).
The reason for this behavior is that a certain threshold in the linear drive strength
has to be overcome to create magnetic fluctuations large enough to fulfill the Chirikov
criterion for island overlap.[108] Only then, a fully stochastic field (an assumption
underlying the Rechester-Rosenbluth ansatz) can be established. In two weakly
driven cases, one at a/LTe = 0.925 and one at βe = 0.003, the transport is signif-
icantly overestimated by Eq. (5.7.3). As can be observed in the Poincaré plots of
Fig. 5.7.6 in these cases the microtearing modes only create small, non-overlapping
magnetic islands, preventing a full stochastization. In this context, we would like
to point out a certain analogy with the well-known Dimits-shift [109] that describes
the damping of weakly driven ITG turbulence due to zonal flows. Of course, the
underlying physics is completely different in these two scenarios.
The degree of stochasticity may also be quantified by using a field-line tracer to

measure the field line diffusivity

DM = lim
l→∞

〈(ri(l)− ri(0))2〉
l

(5.7.4)

in the simulation data. Here, l = 2πqRnpol measures the distance along the field
line i. For the tracing, the magnetic field configuration is held fixed, taking snap-
shots of the turbulent time-trace of B̃1. We get sufficient statistics when following
a field line about npol = 1000 poloidal turns and averaging over about 100 field
lines. Field-line following particles, of course, experience time-dependent fluctua-
tions. Meaningful data is thus obtained by averaging over a large number of DM

126



5.7 Turbulent transport due to microtearing modes

Figure 5.7.7.: Cross phase analyses in the strongly driven microtearing turbulence.
In the region of transport peak at kyρi ∼ 0.2, q̃1‖ and B̃1x are in phase (left) while
q̃1‖ and T̃1‖ have random phase (middle). In conclusion, T3 dominates over T1,
and Eq. (5.7.3) is applicable. On the right panel the cross phase analysis of B̃x

with T̃e‖ is shown

snapshots. As expected, Fig. 5.7.5(b) shows that the weakly driven cases exhibit
a significantly lower value of DM compared to more strongly driven microtearing
turbulence. For the latter cases, we find the magnetic diffusivity to be well char-
acterized by the quasilinear result DM = LC(B̃1x/B0)2, with the auto-correlation
length taken as LC = πqR = π∆k−1

‖ and the parallel spectral width ∆k‖.[110] This
correlation length can be modified by collisional decorrelation when the electron
mean free path λmfp = vte/νei becomes small. Following Ref. [111], we introduce
an effective length Leff = π((qR)−1 + λ−1

mfp) = 0.94LC , in this case. The presented
results for stochastic heat transport are in good agreement with the heat flux ex-
pression Qst

e =
√

2/π fp vteDM n∂T/∂r of Ref. [60]. This is valid for small particle
flux and refines slab geometry results of Ref. [111] by taking into account the passing
particle fraction fp ≈ 1−

√
r/R. The corresponding heat diffusivity (including the

small collisional correction) is given as χst
e =

√
2/π fp vte Leff/LC DM , which yields

η = 1.45, about 5% above the fit on the simulated data in Fig. 5.7.5.
One can also take another point of view, writing the radial electron heat flux as

Qem
e =〈q̃e‖B̃1x〉/B0 (5.7.5)

with

q̃e‖ = −ne0χe‖
(

dT̃1e‖

dz + B̃1x

B0

dT̃1e‖

dx + B̃1x

B0

dT0e

dx

)
. (5.7.6)

The three terms on the right-hand side denote the components of∇‖T along the per-
turbed magnetic field lines. We refer to them as T1, T2, and T3 in the following. The
parallel conductivity has been computed for slab geometry as χe‖ = 9/(5

√
π) (vte/k‖)
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Chapter 5 Microtearing turbulence in standard tokamaks

Figure 5.7.8.: In weakly driven cases, the cross phase corresponding to T3 (left) is
less pronounced at the transport peak kyρi . 0.1. Also, q̃e‖ is partially in phase
with T̃1e‖, as seen in the middle panel. One can thus expect modifications to
the Rechester-Rosenbluth model, Eq. (5.7.3). On the right panel the cross phase
analysis of B̃1x with T̃1e‖ is shown

in the adiabatic limit.[112] In our toroidal model with quasiperiodic boundary con-
ditions along the field line, technically there is no quantity like k‖, but we may
estimate k‖ ∼ 1/(qR). Doing this, one obtains Eq. (5.7.3), provided T3 dominates.
Indeed, the dominant role of T3 can be confirmed by observing cross phase relations

between the fluctuating quantities shown in Figs. 5.7.7 and 5.7.8. In typical strong
microtearing turbulence cases, one concludes T3 � T1 from the fact that q̃‖ and T̃1‖
have random phases and a tendency to anticorrelate at a phase of π/2, while q̃‖ and
B̃1x are correlated around the transport peak in ky. In weakly turbulent cases, the
correlation of q̃‖ and B̃1x is less pronounced, in particular, at the transport peak
ky ∼ 0.06, and at the same time, q̃‖ and T̃1‖ are partially correlated. One can
conclude that in these weakly driven cases, Eq. (5.7.3) is not applicable and, as a
result, the diffusivity is over-predicted. The second term, T2, may also contribute, in
principle. We conclude from the rightmost panels of Figs. 5.7.7 and 5.7.8 that ∂xT̃1‖
and B̃x are in phase (between −π/8 and π/4) in both cases. As stated before, in the
strongly driven case, q̃‖ and B̃1x are in phase and thus also q̃‖ and

(
∂xT̃1‖

)
B̃1x are

correlated. In the weakly driven case, a similar conclusion can be drawn. The cross
phases α(q̃‖ × B̃1x) are similar to α(∂xT̃1‖ × B̃1x) in the important low-ky regime.
Thus, the main difference between those two cases lies in the importance of T3 for
the heat diffusivity.
In the present context, we would like to note that the application of diffusivity

models may also be restricted by completely different physics. Del Castillo-Negrete
[113] has shown that the electron heat flux along perturbed magnetic field lines
can, in general, be non-diffusive. Nonlocal effects (in the parallel direction) actually
prohibit the description of the radial heat flux in terms of a simple diffusivity. In
the present gyrokinetic simulations, no such non-diffusive behavior has been found,
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Figure 5.7.9.: Time-averaged (magnetic) electron heat flux spectrum in ky space
for R/LTe = 3.5. The linear growth rate spectrum is shown for comparison. Net
free energy dissipation is found at kyρi > 0.2.

however.

5.7.4. Aspects of the nonlinear saturation mechanism
In a third and final step, we will now address the question which kind of physics
actually sets the saturation amplitudes in the quasi-steady turbulent state. In
other words, which are the mechanisms behind the observed relationship B̃1x/B0 ∼
ρe/LTe? We get some first hints by inspecting the time-averaged electron heat flux
spectrum for one of the nonlinear runs. As is shown in Fig. 5.7.9, the linear growth
rate spectrum drops to zero at kyρi ∼ 0.2 while a substantial fraction of the trans-
port is driven at much higher wave numbers. This is in noticeable contrast to ITG
or trapped electron mode driven microturbulence (see, e.g., Refs. [114, 115]) and
demonstrates that microtearing modes are able to transfer free energy to small per-
pendicular scales quite efficiently. We also show a spectrum of free-energy sources
or sinks [116] to demonstrate that (only) the small scales act as a net sink.
To understand this aspect better, it is helpful to recall that individual microtearing

modes have a peculiar mode structure. In particular, the electrostatic potential φ
and the parallel electron current j1‖e are highly anisotropic in the perpendicular
plane: Fine radial scales are present at rather long wavelengths in the y direction. In
Fourier space, the same feature is expressed by the fact that at a single kyρi ∼ 0.1,
a microtearing mode involves a large number of kx modes which are coupled via
the parallel boundary condition.[117] The E × B nonlinearity couples a Fourier
mode k = (kx, ky) with two modes k′ and k′′, provided the relation k = k′ + k′′
holds. Once the mode amplitude is large enough to allow for nonlinear dynamics,
each mode is able to interact with other modes and itself, quickly spreading free
energy in wave number space and exciting high-k modes which are linearly stable.
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Figure 5.7.10.: Time traces of the magnetic heat flux in microtearing turbulence.
A case with self-generated zonal flows is modified by (i) zeroing out zonal flows
and (ii) zeroing out zonal fields. The response is fast, but the average heat flux
only increases by about 20%.

Performing a secondary instability analysis of the self-coupling process, one finds
that modes at twice the value of ky grow linearly with time at a rate of several vti/R
times the square of the primary mode’s (normalized) amplitude Φp. Thus, such
transfer processes are comparable to the linear growth rates of about 0.1 vti/R for
Φp ∼ 0.1. The observed mode amplitudes are comparable to these values, supporting
the notion that the nonlinear interactions tend to establish perpendicular small-scale
isotropy in the system by enhancing high-ky fluctuations – and damping high-kx
fluctuations.
Although the mode couplings just described also create zonal flows and fields,[118]

the latter are not decisive in this context as shown in Fig. 5.7.10 by zeroing them
out: this test changes the transport level by at most 20%. Instead, the key is the
observed strong transfer of free energy to small perpendicular scales. It is evident
that free energy pumped into the system via linear drive terms at some rate must
be dissipated at the same rate to obtain a saturated turbulence state. Thus, we may
assume a balance between the maximum linear growth rates γmax

l and the nonlinear
damping rates γnl, in the same spirit as, e.g., Refs. [81, 119, 120]. In the present
case, one may want to model the latter by γnl = χem

e k2
diss in terms of Eq. (5.7.3)

and a typical perpendicular dissipation scale kdiss & 0.2/ρi as long as field line
stochasticity prevails. Using an expression like γmax

l ∝ (R/LTe)2 vti/R, the Drake
estimate, B̃1x/B0 ∼ ρe/LTe, could be recovered. However, linear simulations rather
suggest something close to an offset-linear dependence of γmax

l on R/LTe, where
both the zero crossing and the slope depend on various plasma parameters (like βe)
in a nontrivial fashion. Thus, the relation found in Fig. 5.7.3 is not universal, and
one should take this fact into account when trying to predict microtearing-induced
transport.
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5.7.5. Experimentally relevant thermal transport
Finally, we would like to address the question if the resulting transport levels are
sufficiently large to be considered experimentally relevant. To assess this issue,
we use the plasma parameters corresponding to the AUG discharge 26459. These
include R = 1.65 m, B0 = 2.37 T, T0e = 1.09 keV, n0e = 7.94 × 1019 m−3, and
ρ∗ = 0.003. For an electron temperature gradient of a/LTe = 1.85 (R/LTe = 5) and
the otherwise nominal parameters summarized in Tab. 5.7.1, we find a magnetic
perturbation level of B̃1x/B0 ∼ 3.5·10−4 and a corresponding electron heat diffusivity
of χem

e ∼ 1.4 m2/s. These numbers suggest that microtearing turbulence must be
considered an additional candidate for explaining the observed anomalous heat losses
in present-day and future (standard) tokamaks.

5.8. Summary and conclusions
In summary, the work presented in this chapter—based on comprehensive gyroki-
netic simulations—provides strong evidence for the existence of microtearing turbu-
lence in standard tokamak devices. In particular, using realistic global MHD equi-
libria and experimentally measured temperature and density profiles, microtearing
modes are observed at various mode rational surfaces in the outer core of AUG
discharge 26459. A study of system size effects was performed by variation of the
parameter ρ∗ in a circular geometry model. The finite temperature gradient profile
width, which is known to substantially weaken ITG modes was shown to be less
effective for microtearing modes. The growth rate obtained in global simulations
stays close to that in the local limit even for narrow temperature gradient profiles,
strongly supporting a local treatment of the microtearing problem. In addition, the
microtearing mode is found to be only weakly affected by background E ×B shear
flows. Therefore, in the remainder of this work, nonlocal and equilibrium shear flow
effects have been neglected.
In terms of linear physics, several peculiar features of microtearing modes in stan-

dard tokamaks have been observed. Interestingly, their growth rate spectrum tends
to peak at rather low binormal wavenumbers of kyρs ∼ 0.1, which allows them to
co-exist with ITG/TEM modes at larger wavenumbers. The most critical plasma
parameters turn out to be βe and a/LTe, with the linear threshold of the latter
typically below the respective value of a/LT i for ITG modes. In addition, colli-
sions play an important role. Although gyrokinetic simulations exhibit stabilization
when decreasing collision frequency, microtearing modes are still expected to appear
in low-collisionality plasmas like those in ITER. Overall, the linear physics of mi-
crotearing modes remains to be better understood, as was exemplified by a study on
the radial width of the current layer. While at the torus inboard side, the observed
trends roughly coincide with the predictions of common analytical models, the latter
do not account for the parallel mode structure.
In nonlinear simulations, one finds that the heat transport is dominated by the
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magnetic component in the electron channel, which can be well described by means
of a Rechester-Rosenbluth model. Examining nonlinear effects, one concludes that
the saturation levels of the magnetic field fluctuations are set by a balance between
large-scale drive and small-scale dissipation. Strong transport is found to set in as
soon as a certain threshold in the fluctuation amplitude is overcome and the Chirikov
criterion for island overlap is fulfilled, resulting in a nonlinear up-shift of the critical
electron temperature gradient. An analogy to the well-known Dimits shift for ITG
modes can be seen here, although the underlying physics is completely different.
Finally, we inserted the plasma parameters of an actual AUG discharge (shot

26459) into the scaling laws suggested by the simulation data, obtaining electron
heat diffusivities of up to a few m2/s. It should be noted that transport strongly
depends on the precise value of the electron temperature gradient. Evaluating these
results, the present work points towards a role of microtearing turbulence in standard
tokamaks, including ITER.
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6. Conclusions
In future tokamak devices, strong electron heating is expected due to the NBI,
ICRH and ECRH heating systems as well as fusion alpha particles. To enable pre-
cise theoretical predictions for electron thermal transport, it is thus important to
further evolve the overall picture. Besides electron-scale (high-wavenumber) turbu-
lence, magnetic perturbations that create a stochastic field structure are a possible
source of enhanced electron heat transport. The main goal of this work was to clar-
ify whether magnetic field perturbations due to microtearing modes are relevant in
realistic scenarios, focusing on standard tokamaks like the future experimental reac-
tor ITER and the currently running experiment ASDEX Upgrade. Since analytical
theory is forced to undertake severe simplifications, a numerical approach is needed
to study this problem. A set of gyrokinetic simulations have been performed and
analyzed, using the turbulence code Gene, which allows for radially global simu-
lations including electromagnetic fluctuations and realistic geometry. The collision
operator included in Gene has been further developed and tested in the course of
this work.
Below, we summarize the main results of each chapter and discuss possibilities for

future work.

6.1. Summary

Aspects of gyrokinetic theory
The gyrokinetic equations implemented in the Gene code have been presented and
relevant aspects of their derivation have been given. Since previous analytical work
on microtearing modes indicates an important role of collisions, we discussed in
detail, how collision operators are included in the gyrokinetic framework. We de-
veloped a model operator that is self-adjoint and locally conserves particle num-
ber, momentum, and energy. While the electromagnetic part of the collision-free
(Vlasov) equation that is implemented in Gene is well benchmarked, benchmarks
of collisional simulations have previously been restricted to linear TEM cases. We
thus derived the equations for neoclassical equilibrium computations, which provide
an excellent test scenario for collisions. Importantly, the neoclassical drive term
vD · ∇F0a has been included, which is often neglected in turbulence simulations.
Furthermore, the (formally second-order) drift term vD · ∇F1a has been taken into
account for nonlocal neoclassical computations. This term vanishes in the local
limit, but it is believed to be relevant in steep gradient zones and in transport bar-
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riers. The radial fluxes of particles, parallel momentum, and energy have been split
into neoclassical and turbulent contributions to illustrate that these two problems
are connected in the global case, but decouple in the local limit.

The GENE code
The Gene code solves the gyrokinetic equations on a fixed grid in the five-dimensional
phase space. To that aim, a convenient normalization has been introduced and the
methods of discretization, as well as Krook-type heat sources are described. The
structure of the equations has been shown to allow for initial value computations,
eigenvalue computations, as well as the use of an algebraic solver for the neoclassical
equilibrium. Because they form the basis of our results, all three approaches have
been briefly described. In the course of this work, the aforementioned self-adjoint
form of the collision operator, as well as several features regarding neoclassical com-
putations have been implemented.

Neoclassical transport
Setting up neoclassical computations with Gene allowed us to perform thorough
tests of the implementation of the collision operator. Operating in the local limit, the
presented benchmarks with the Neo code show that Gene is capable to correctly
compute neoclassical fluxes with kinetic electrons. Overall, better agreement was
found when an improved (self-adjoint) collisional model was used in Gene.
We performed radially global neoclassical computations that allow for the relax-

ation of the kinetic profiles and therefore exhibit a balance between sources and
sinks in steady state. To exactly fulfill this energy balance in the simulations, a
refined definition of the neoclassical heat flux has been employed, which accounts
for the radial variation of the drift velocity. Comparisons with local simulations con-
firmed the existence of nonlocal neoclassical effects at large values of the system-size
parameter ρ∗.
Finally, we have performed a benchmark of neoclassical transport between the

global Gene code and the PIC code Orb5. Both codes are very different from a
numerical point of view, but produce very similar physical results. This confirmed
the correctness of the implementation of the global collision operator and showed
that the Gene code is well suited for global neoclassical computations.

Microtearing turbulence
Finally, we addressed the question whether enhanced electron heat transport can
be attributed to tearing mode turbulence. The physics involved is indeed quite
different from the E × B advection processes that usually dominate ITG or TEM
turbulence. The small-scale magnetic perturbations of tearing modes form magnetic
islands at rational surfaces, which may overlap to produce a stochastic magnetic field
structure. Due to the large parallel mobility of electrons, heat diffusion in such fields
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6.2 Possibilities for future work

can become substantial. While gyrokinetic heat transport predictions for spherical
tokamaks have recently been published by other authors, the present work—based on
comprehensive gyrokinetic simulations—provides strong evidence for the existence
of microtearing mode turbulence in standard tokamak devices.
In particular, using realistic equilibria and experimentally measured temperature

and density profiles, microtearing modes are observed at various mode rational sur-
faces in the outer core of AUG discharge 26459. A study of system size effects
strongly supports local treatment, which allows for extensive parameter variations
(including collisionality), leading to the conclusion that microtearing modes also
appear in ITER plasmas. Interestingly, in standard tokamaks they are allowed to
co-exist with ITG/TEM modes in the linear wavenumber spectrum. Overall, the
linear physics of microtearing modes remains to be better understood, as was ex-
emplified by a study on the radial width and parallel structure of the current layer,
where common analytical models cannot always capture the observed trends.
In terms of nonlinear physics, the electron heat transport is dominated by the

magnetic component, which can be described by a Rechester-Rosenbluth model and
thus increases quadratically with the saturated value of the magnetic field fluctuation
amplitude. The latter can be understood in view of a balance between a large-
scale linear drive and nonlinear dissipation at smaller scales. Moreover, it was
found that the Chirikov criterion for island overlap implies a threshold for the linear
drive strength, resulting in an effective nonlinear up-shift of the critical electron-
temperature gradient. An analogy to the well-known Dimits-shift for ITG modes
can be seen here, although the underlying physics is completely different. Inserting
the plasma parameters of an actual AUG discharge (shot 26459), one obtains electron
heat diffusivities of up to a few m2/s, depending mainly on the precise value of the
electron temperature gradient. Consequently, the present work points towards a role
of microtearing turbulence in standard tokamaks, including ITER.

6.2. Possibilities for future work

Further code development: Collisions

Collisions play an important role in gyrokinetics, since they provide the physically
motivated sink of free energy. The current implementation of the Landau-Boltzmann
collision operator in Gene accounts for finite Larmor radius effects in test-particle
collisions, but neglects them in the field-particle operator. While this has not been
important for the present studies, future investigations must explore their impact, in
particular when high wavenumbers k⊥ρi � 1 are involved. Moreover, improving on
the symmetry properties of the discretization scheme is desirable, since these sym-
metries are required to analytically prove free energy dissipation and Boltzmann’s
H-theorem.
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Chapter 6 Conclusions

Global neoclassical computations
A possible extension of the computations presented in this thesis is the global simu-
lation of turbulence, starting from a neoclassical equilibrium. Nonlinear interactions
between the neoclassical equilibrium and turbulent fluctuations are of special inter-
est, but have not yet been studied with continuum gyrokinetic codes like Gene.
With respect to heat and particle sources that are necessary to obtain a steady
state in the simulation, Krook terms have been employed thus far. A more realistic
power deposition profile would be reached in flux-driven simulations, which typically
require very long simulation times and are thus not attempted here. Furthermore,
it could be interesting to apply the global neoclassical solver to tokamak discharges
that exhibit internal transport barriers, where strong deviations from local results
are expected.

Microtearing turbulence
We have shown that microtearing modes are a possible candidate to explain anoma-
lous electron heat transport. Our nonlinear simulation scenario, however, has not
considered the ITG instability despite its typical co-existence with microtearing
modes in the linear wavenumber spectrum. The most natural extension to our work
is thus to study the interaction between ITG and microtearing modes in fully de-
veloped turbulence. Such simulations are very demanding and we leave them for
future work.
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A. The gyroaveraged Fokker-Planck
operator

A.1. Explicit transformation to guiding center
coordinates

The gyrokinetic equation evolves the gyrocenter distribution function F1a in time,
which is evaluated at the gyrocenter position X. It is of significant computational
advantage to evaluate the collision operator with this distribution as well. Thus far,
the collision operator has been written in terms of the particle distribution, that is
evaluated at particle position x. While it is well justified to evaluate the macroscopic
background F0(X) at gyrocenter instead of particle position, this is not a-priori clear
for the microscopic perturbation f1. However, according tho Eq. (2.1.29) that has
been derived in the limit of long collisional mean free path λmfp it is actually correct
to evaluate the gyroaveraged operator 〈C[〈F (X(gc))〉]〉 with the guiding center distri-
bution at guiding center position X(gc) instead of f(x), retaining only zeroth order
terms in εν = ρa/λmfp. A sophisticated transformation of of the Fokker-Planck oper-
ator Eq. (2.1.13) to guiding center coordinates is given by Brizard [28] for isotropic
background species making use of a non-canonical Poisson bracket structure. The
results are equivalent to the transformation presented in this section and remove
fast-angle dependencies due to a background magnetic field that is non-uniform,
but constant in time. The difference between gyro center and guiding center coor-
dinates will not be considered for collisions. In the drift-kinetic limit k⊥ρ → 0 this
treatment is consistent also with the conservation properties Eq. (2.1.23).

A.1.1. Test particle operator
A transformation of Eq. (2.1.13) to guiding center phase space coordinates Zi in-
volves the Jacobian of this transformation in the phase space divergence J−1 ∂

∂Z ·J().
One explicit choice are pitch-angle coordinates Zi = {X, v, ξ, θ} with the Jacobian
Jpitch = v2 and ξ = v‖/v . Such coordinates are used, for example in Ref. [16] to
denote Eq. (2.1.13). The Gene code uses Zi = {X, v‖, µ, θ} with parallel velocity
v‖, magnetic moment µ =

√
v2
⊥/2mB0 and gyroangle θ as velocity space coordinates,

where v2
⊥ = v2

x + v2
y. The guiding center coordinates are

X =x− ρ(θ) (A.1.1)
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Appendix A The gyroaveraged Fokker-Planck operator

with x = {x, y, z}. We take the gyration vector and velocity as

ρ = v⊥
Ω [ê1 cos θ − ê2 sin θ]

v = v‖b0 + v⊥ [−ê1 sin θ − ê2 cos θ] ,

to find that the velocity space Jacobian Jv = B0/ma is constant in velocity space.1
With the Jakobi matrix

G =


∂X
∂vx

∂Y
∂vx

∂Z
∂vx

∂v‖
∂vx

∂µ
∂vx

∂θ
∂vx

∂X
∂vy

∂Y
∂vy

∂Z
∂vy

∂v‖
∂vy

∂µ
∂vy

∂θ
∂vy

∂X
∂vz

∂Y
∂vz

∂Z
∂vz

∂v‖
∂vz

∂µ
∂vz

∂θ
∂vz

 = 1
v⊥

 0 ρa 0 0 −2µ sin θ − cos θ
−ρa 0 0 0 −2µ cos θ sin θ

0 0 v⊥ v⊥ 0 0

 .
the diffusion tensor and advection vector of Eq. (2.1.9) are transformed according
to the chain rule of derivatives as

∂

∂v
·
←→
D ab ·

∂

∂v
= 1
Jv

∂

∂Z
· Jv
←→
D

Z

ab ·
∂

∂Z
(A.1.2)

←→
D

Z

ab = GT←→D abG

∂

∂v
·Rab = 1

Jv

∂

∂Z
· JvRZ

ab (A.1.3)

RZ
ab = GTRab(z)

Note that position and velocity coordinates are mixed by Eq. (A.1.1) and, conse-
quently, ←→D Z

ab and RZ
ab have nonvanishing (X, Y ) spatial components. The desired

form of the collision operator

〈CT
ab[〈F 〉]〉 = 1

Jv

∂

∂Z
·
(
Jv〈
←→
D

Z

ab〉
∂〈F 〉
∂Z

+ Jv〈RZ
ab〉〈F 〉

)

is constructed by gyroaverage 〈〉 = 1
2π

´ 2π
0 dθ to consistently remove the fast gy-

ration time-scale from the equations. Thereby, the spatial components of 〈RZ
ab〉

vanish, while the spatial part of 〈←→D Z
ab〉 decouples from the velocity components.

The gyroangle component is decoupled itself and thus we can identify F = 〈F 〉 from
now on. Detailed calculations are found in Ref. [15]. Here, the results are summa-
rized with the difference of using the fa/fM form. Because the Landau-Boltzmann
collisions are local in particle space, a spatial guiding center diffusion operator

〈CT,⊥
ab [Fa]〉 = 1

Jv

γabn0bT0b

m2
ambΩ2

a

1
v5

(
v2Φ1(xb) + 3B0µ

ma

Φ2(xb)
)
∇⊥ · JvFMa∇⊥

Fa
FMa

(A.1.4)
1Canonical transformation (e.g. Ref. [27]) yields Jv = B∗0‖/ma = B0/m + O(β). This (small)
difference is neglected here.
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A.1 Explicit transformation to guiding center coordinates

is found that describes the repositioning of the guiding center after a collision. This
term is referred to as a FLR correction to the test particle collision operator. The
remaining diffusion/advection operator in guiding center velocity space V = (v‖, µ)
reads

〈CT,V
ab [Fa]〉 = 1

Jv

γabn0b

mamb

∂

∂V
· JvFMa

 T0b

mav5

[ 2µB0
ma

Φ1 + v2
‖Φ2 6µv‖Φ2

6µv‖Φ2
2ma

B0
v2
‖µΦ1 + 4µ2Φ3

]
· ∂
∂V

(A.1.5)

+
(

1− T0b

T0a

) Φ3

v3

[
v‖
2µ

] Fa
FMa

,

which equals Eq.(2.1.40).

A.1.2. Field particle operator and discussion of FLR effects
Test particle collisions involve velocity space derivatives at constant particle position
x, not at constant gyrocenter position X, which is why the gyrodiffusion terms in
the test-particle operator appear. A gyroaveraged field-particle operator thus has
the form

〈
CF
ab[fb]

〉
a

=

〈
δṖ‖ba

〉
a
CT
ab[v‖fMa]´

d3v v‖Cab[v‖fMa, fMb]

+

〈
δṖ⊥baCT

ab[v⊥fMa]
〉
a

1
2

´
d3v v⊥ · Cab(v⊥fMa, fMb]

+

〈
δĖba

〉
a
CT
ab[v2fMa]´

d3v mav2Cab[v2fMa, fMb]
, (A.1.6)

where the notation 〈〉a denotes gyroaverage considering gyration orbits of species a.
Note that the perpendicular momentum transfer coefficient is gyroangle-dependent.
The transfer terms

δṖ‖ba = −
ˆ
mbv‖

〈
CT
ba[fb]

〉
b
Jvdv‖dµ

δṖ⊥ba = −
ˆ
mb

〈
v⊥CT

ba[fb]
〉
b
Jvdv‖dµ

δĖba = −
ˆ
mbv

2
〈
CT
ba[fb]

〉
b
Jvdv‖dµ (A.1.7)

involve gyroaverages at species b (we explicitly write them in (v‖, µ, θ) coordinates
here). Neglecting the FLR effects has the following consequences. (i) gyroaverages
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Appendix A The gyroaveraged Fokker-Planck operator

for different particle species are equal. (ii) guiding center and gyrocenter distribu-
tions are equal.2 (iii) the perpendicular term

〈
v⊥CT

ba[fb]
〉
b
vanishes. In this limit

one identifies
〈〈
CT
ba[fb(x)]

〉
b

〉
a

=
〈
CT,V
ba [Fb(X)]

〉
from Eq. (A.1.5) (note the change

of coordinates) and thus computes the transfer rates Eq. (A.1.7) directly from the
test-particle operator. This property nicely translates into numerical implementa-
tion. Several authors [16, 20, 21, 28, 121] have discussed operators including FLR
corrections. In this thesis FLR corrections in the collision term are believed to play
a minor role and are thus neglected. A corresponding extension of the Gene code
is planned, though.

2This becomes clear by examining the pull-back operator Eq. (2.1.51).
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B. The scanscript and parallelization
efficiency

I
n the course of this thesis some effort was made to improve the Gene code’s
capability of running large parameter sets. Gene features to invoke several
instances of Gene subroutines, processing a set of input files in parallel. A

perl script has been extended to provide the necessary input file structure for Gene.
This so-called scanscript parses the input parameters file for parameter scans. Its
detailed functionality and syntax is provided in the Gene users manual Ref. [122].
Automatic parallel efficiency tests are by default performed previous to every pa-
rameter scan. Parallelization efficiency is measured by the total wall clock time used
for a Runge-Kutta timestep, which is computed as the wall-clock time per time step
multiplied with the number of CPUs used. A typical result is shown in Fig. B.0.1.
An important feature is the maximum of parallel efficiency at a processor number
of 32 in this case. For larger number of processors, MPI communication becomes
inefficient, while for smaller number of processors, cash memory is not optimally
used. The optimum between these two effects is generally machine dependent and
hard to predict. Consequently, the automated procedure provided here helps to
reduce computation time. Using optimal parallelization efficiency yields significant
speedup, in particular for large parameter scans.

 0.01

 0.1

 1

 10  100  1000

w
a

ll 
c
lo

c
k
 t

im
e

 p
e

r 
ti
m

e
 s

te
p

 (
lo

g
lo

g
)

 number of processes

wall clock time per time step

efficiency.log

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

p
a

ra
lle

l 
e

ff
ic

ie
n

c
y
 (

%
)

 number of processes

parallel efficiency (best is 100%)

efficiency.log

Figure B.0.1.: Efficiency scan. The wall clock time per step decreases up ot 192
processes, but efficiency decreases to 40% of the optimum that is reached with 32
processes in this case.
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